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Abstract: A compatible factorization of order v, is a v ×
(v−1)

2
array of distinct triples

in which row i form a near-one-factor with focus i. This article aims to develop compatible

factorization to display v×( v−1
2

− 2
3
) triples with minimum repetition. Through this article, we

propose and define a new type of factorization called near-compatible factorization. First, we

prove the existence of near-compatible factorization. Then, the construction will be presented

based on difference triple method. Finally, we employ this near-compatible factorization to

illustrate the development of triple design, that is called near-triad design.
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1. Introduction

We shall review standard notations and some definitions on graph theory. Kv

will denote the complete graph of order v.
A one-factor in a graph G is a set of edges in which every vertex appears

exactly once. A one-factorization (briefly OF ) of a graph G is a partition of
the edge set into edge-disjoint one-factors. Obviously, the necessary condition

Received: November 30, 2017

Revised: February 6, 2018

Published: September 30, 2018

c© 2018 Academic Publications, Ltd.

url: www.acadpubl.eu

§Correspondence author



in order for a graph to have an OF is that a graph with a one-
factor must have an even number of vertices. A comprehensive
background on one-factorization and related subjects can be found
in [11].

A near-one-factorization (briefly NOF ) is the closest thing to a
one-factor of a set on n − 1 edges which cover all but one vertex. A
near-on-factorization is a set of near-one-factors which covers every
edge exactly once [11]. It is easy to construct an NOF from an OF by
removing a common vertex. And vice versa, we can also construct
OF from NOF by adjoining to each near-one-factor a new vertex.
For example, when v = 5 we can construct OF from NOF and NOF
from OF as follows:

NOF
1 2 5 3 4
2 1 4 3 5
3 1 2 4 5
4 1 5 2 3
5 1 3 2 4

=⇒ OF
NOF ⇐=

OF
0 1 2 5 3 4
0 2 1 4 3 5
0 3 1 2 4 5
0 4 1 5 2 3
0 5 1 3 2 4

If a near-one-factor written as:
F : a c d e f . . . y z,
this refers to
a c d a e f . . . a y z,
as the set of triples associated with F . For more, readers can refer
to [3] and [6].

A balanced incomplete block design BIBD is a pair (V, T ), where
V is a finite set of v objects and T is a collection of k-subsets of V
called blocks, 2 ≤ k < v, such that each pair of distinct objects of V
is contained in exactly λ blocks of T . The design is often described
as a (v, k, λ) BIBD.

A triple system of index λ (or a λ-fold triple system), denoted
by T S(v, λ), is a BIBD with k = 3. On other words, we can say
that a λ-fold triple system is a decomposition for λKv, the graph
with v vertices in which every two vertices are joined by λ parallel
edges, into edge disjoint triangles. A triple system T S(v, λ) with

V = Zv is cyclic if, for each triple {c0, c1, c2} ∈ T we also have
{c0 + 1, c1 + 1, c2 + 1} ∈ T . It is simple if its triples are all distinct.

The development of triple design construction is one of the most
prominent areas of research in combinatorics. Recently, studies
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have been carried out in the construction of triple designs. Ibrahim
and Wallis constructed a new type of factorization called compat-
ible factorization, and they used this factorization in building up
the triad design which concerned with the arrangement of distinct
triples into rows satisfying certain specified conditions [6]. They
proved that the existence of triad design only for v ≡ 1 or 5 (mod
6). New algorithms have been developed for triad design for cases
v ≡ 1 or 5 (mod 6) in [5] and [8].

In the field of constructing simple cyclic designs, some decompo-
sitions of triples of Zv into cyclic triple systems have been proposed
by Tian and Wei [9] and [10]. Furthermore, they defined a large set
of cyclic triple systems to be a decomposition of triples of Zv into
indecomposable cyclic designs.

In this article, some preliminaries and definitions are provided in
Section 2. Then, Section 3 presents the basic concepts and construc-
tion for near-compatible factorization. The development of triple
system that is called near-triad design will discussed in Section 4.
Furthermore, we use near-compatible factorization to illustrate the
case near-triad design of order 9. Finally, Section 5 discusses the
conclusions and future work.

2 Preliminaries and Definitions

In this section, we provide definitions and preliminaries that are
needed in the sequel.

Theorem 1. [2] In a (v, k, λ)-BIBD with b blocks each object
occurs in r blocks where

(i) λ(v − 1) = r(k − 1);

(ii) bk = vr.

Definition 2. [3] A compatible factorization of order v, de-
noted by CF (v), is a v × v−1

2
array which satisfies the following

conditions:

(i) The entries in row i form a near-one-factor with focus i;(ii)

The triples associated with the rows contain no repetitions.
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It is evident that the necessary condition for the existence of a
CF (v) is that v must be odd.

Theorem 3. [3] A compatible factorization of order v exists
for every odd order v > 3.

Proof. Suppose v = 2s + 1 > 3. The near-one-factor form the
patterned starter, with i-th factor

i (i+ 1)(i− 1) (i+ 2)(i− 2) . . . (i+ n)(i− n) (mod v)

is a compatible factorization.

Example 4. To construct CF (9) satisfying the conditions of
Definition 2, we must have 36 distinct triples are associated in 9
rows with 4 columns and one column of isolated vertex as shown in
Table 1.

C1 C2 C3 C4 C5

1 2 3 4 5 6 7 8 9
2 1 4 3 5 6 8 7 9
3 1 5 2 4 6 7 8 9
4 1 3 2 5 6 9 7 8
5 1 2 3 4 6 7 8 9
6 1 2 3 5 4 8 7 9
7 1 3 2 6 4 5 8 9
8 1 5 2 7 3 6 4 9
9 1 4 2 3 5 7 6 8

Table 1: Example of CF (9).

By appending C1 to each other columns C2, C3, C4, and C5, we
optain four triples in each row.

Definition 5. [4] A triad design on v objects, denoted by
TD(v), is a way of arranging

(
v
3

)
distinct triples into v rows such

that:

(i) Row i contains v−1
2

triples, among which object i meets ev-
ery other object precisely once, and contains also some other
triples among which every object other than i occurs equally
often;
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(ii) No two objects occur together twice or more in the same row;

(iii) Each triple appears precisely once in the design.

Theorem 6. [4] In any triad design, v ≡ 1 or 5 (mod 6).

Proof. Suppose there is a triad design on v objects. Then the(
v
3

)
distinct triples on v objects must be partitioned into v sets,

each set containing the same number of triples. So v divides
(
v
3

)
.

Therefore 6 divides (v − 1)(v − 2). This implies v ≡ 1 or 2 (mod 3).
Now, v must be odd in order for the required CF to exist (from
Theorem 3), so v ≡ 1 or 5 (mod 6).

Definition 7. [7] A covering of a graph G with triangles is a
triple (V, T, P ), where V is a vertex set of G, P is a subset of the
edge set of λG based on V (λG is the muligraph in which every
two vertices are joined by λ parallel edges), and T is a collection
of triangles which partitions the union of P and the edge set of
G. P is called the padding and the number |V | the order of the
covering (V, T, P ). If |P | is as small as possible the covering is called
a minimum covering with triangles (MCT ).

3 Algorithm for Near-Compatible Factorization

In this section, we define concept of difference triple as a base to-
wards constructing a new type of factorization called near-compatible
factorization which aims to arrange v(v−1)

2
− 2v

3
triples in v rows by

using near-one-factor with minimum repeated triples. This type of
factorization will be employed to construct some triple designs for
arranging

(
v
3

)
triples into v rows for v ≡ 3 (mod 6) with minimum

repetitions of triples. Then, a construction for near-compatible fac-
torization will be presented.

For any edge {x, y} in Kv with V (Kv) = Zv, we define the
difference of the edge {x, y} by d = min{|y − x|, v − |y − x|}.
For ai ∈ Zv − {0} and 1 ≤ ai ≤ bv/2c, i = 1, 2, 3, if a1 + a2 +
a3 ≡ 0 (mod v) or a1 + a2 ≡ a3 (mod v), then (a1, a2, a3) is called a
difference triple. The orbit of triples corresponding to a difference

triple (a1, a2, a3) is {1 + i, (1 + i) + a1, (1 + i + a1) + a2 : i ∈ Zv},
and the triple {1, 1 + a1, 1 + a1 + a2} is called a starter triple.

For v ≡ 3 (mod 6), we partition the difference triples of Zv into
three types:
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Type 1: (a, a, 2a), where 1 ≤ a ≤ v−1
2

. In particular, the following
difference triple (v

3
, v
3
, v
3
) has a short orbit of size v

3
. The

number of difference triples for this type is v−1
2

.

Type 2: (a, b, c), where a < b < c. The number of this type of

difference triples is (v−3)2

12
.

Type 3: (a, c, b) the adjoined difference triples of Type 2, and they
have the same number of difference triples.

For example, consider v = 9. Then the set of all distinct triples
on 9 objects equals

(
9
3

)
triples can be arranged by the difference

triples as shown in Table 2.

Type 1 of difference triples. Type 2 and Type 3 of difference triples.

Table 2: The set all triples on 9 objects.

When v = 9 we have
(
9
3

)
= 84 different triples. We used 36

different triples in the construction of CF (9) as shown in Table
1, and we have 48 different triples have been left. Since 48 not
divisible by 9, hence, we can’t arrange the remaining triples to
construct TD(9). A natural question to ask then, how ”close” can
we arrange

(
9
3

)
triples into 9 rows.

Even though the triad design is a completion to compatible
factorization and compatible factorization exists for every odd order
more than 3, then triad design does not exist for v ≡ 3 (mod 6)
because of

(
v
3

)
is not divisible by v. For this purpose, we aim to

develop the compatible factorization in order to construct a new
type of factorization will be called near-compatible factorization can
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be contributed to arranging
(
v
3

)
triples into v rows for v ≡ 3 (mod 6)

with minimum repetitions of triples.

Definition 8. A near-compatible factorization on v objects,
denoted by NCF (v), is a v × v−1

2
array that satisfies the following

conditions:

(i) The entries in row i form a near-one-factor with focus i;

(ii) The triples associated with the rows contain minimum re-
peated triples.

Lemma 9. There exists a near-compatible factorization for
v ≡ 3 (mod 6).

Proof. Suppose v = 6n + 3. Then v is odd and divisible by 3.
Since v is divisible by 3, then there exists a difference triple (v

3 , 
v
3 , 

v
3 ) 

which represents a one-third column (a short orbit of size v
3 ) and 

this column contains the minimum repeated triples. Since v is
odd, then near-one-factor exists. So there exists a near-compatible
factorization of order v.

Theorem 10. There are exactly v
3 triples repeated thrice in 

near-compatible factorization of order v ≡ 3 (mod 6).

Proof. Suppose v ≡ 3 (mod 6). Let (V, T ) be a T S(v, 3), then
V = {1, 2, 3, . . . , v}. Let T ∗ be a collection of all triples correspond-
ing to Type 1 of difference triple, and let T ∗∗ be a multiset of triples 
corresponding to a difference triple (v

3 , 
v
3 , 

v
3 ) repeated twice.

By applying a minimum covering with 3-fold triple system (MCT )
on Type 1 of difference triples, we get (V, T ∗ ∪ T ∗∗, P ) is a min-
imum covering of order v with 3-fold triple system, where P is a
multi-edge set which partitions the multiset E(T ∗∗) of edges of T ∗∗. 
Now T ∗∗ contains v

3 triples repeated twice, so a near-compatible 
factorization of order v which formed by T ∗ ∪ T ∗∗ contains v

3 triples 
repeated thrice.

Now by choosing the orbits of triples corresponding to Type 1 of
difference triples and repeating the triples of short orbit twice such
that the number of repeated triples minimized, we get a cyclic triple
system of index λ = 3 called near-compatible factorization as shown
for case v = 9 in Table 3.
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(1,2,1) (2,4,2) (3,3,3) (4,1,4)
1 2 9 1 3 8 1 4 7 1 5 6
2 3 1 2 4 9 2 5 8 2 6 7
3 4 2 3 5 1 3 6 9 3 7 8
4 5 3 4 6 2 4 7 1 4 8 9
5 6 4 5 7 3 5 8 2 5 9 1
6 7 5 6 8 4 6 9 3 6 1 2
7 8 6 7 9 5 7 1 4 7 2 3
8 9 7 8 1 6 8 2 5 8 3 4
9 1 8 9 2 7 9 3 6 9 4 5

Table 3: Desired near-compatible factorization of order 9.

In this case, we have three repeated triples and each row con-
tains one of them. Note that the triples are unordered. For example
{1 4 7}, {4 7 1} are considered the same triple.

The next steps are construction for near-compatible factoriza-
tion. We exemplify the construction for two cases v = 9 and v = 15
as a groundwork in developing our near-compatible factorization.

Step 1: Suppose there are 6n + 3 vertices. Divide the vertices
as follows: the even vertices on the left beginning from
2, 4, . . . , 6n+ 2 and the odd vertices on the right beginning
from 3, 5, . . . , 6n + 3. And vertex 1 will be put on the top
middle of the partition as shown in Figure 1.

Figure 1: Partition of vertices.

Step 2: To form the triples (triangles) of the first factor F1, consider
vertex 1 be the reference vertex. Then connect each even
and odd vertex with vertex 1 as shown in Figure 2.
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Figure 2: The first factor of NCF (v).

Step 3: To form the even factors, for example F2, consider vertex 2
be the reference vertex and rotate all the triangles counter-
clockwise as shown in Figure 3. Continue in this pattern
to create the remaining even factors F4, F6, . . . , F6n+2.

Figure 3: The second factor of NCF (v).

Step 4: To form the odd factors, for example F3, consider vertex 3
be the reference vertex and rotate all the triangles clockwise
as shown in Figure 4. Continue in this pattern to form the
remaining odd factors F5, F7, . . . , F6n+3.

Figure 4: The third factor of NCF (v).
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Example 11. The construction of NCF (9).

F1 : 1 2 3 4 5 6 7 8 9 F2 : 2 1 4 3 6 5 8 7 9

F3 : 3 1 5 2 7 4 9 6 8 F4 : 4 2 6 1 8 3 9 5 7

F5 : 5 3 7 1 9 2 8 4 6 F6 : 6 4 8 2 9 1 7 3 5

F7 : 7 5 9 3 8 1 6 2 4 F8 : 8 6 9 4 7 2 5 1 3
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F9 : 9 7 8 5 6 3 4 1 2

Figure 5: Construction of NCF (9).

From the construction of NCF (9) above we have the following
table.

F1 : 1 2 3 4 5 6 7 8 9
F2 : 2 1 4 3 6 5 8 7 9
F3 : 3 1 5 2 7 4 9 6 8
F4 : 4 2 6 1 8 3 9 5 7
F5 : 5 3 7 1 9 2 8 4 6
F6 : 6 4 8 2 9 1 7 3 5
F7 : 7 5 9 3 8 1 6 2 4
F8 : 8 6 9 4 7 2 5 1 3
F9 : 9 7 8 5 6 3 4 1 2

Table 4: Example of NCF (9).

Note that both compatible factorization CF (v) and near-compatible
factorization NCF (v) are near-one-factorization. CF (v) contains
no repetitions of triples, while NCF (v) contains only v

3
triples re-

peated thrice.

Example 12. Given v = 15 and the objects are labeled as 1,
2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e and f. Then the following table
provides an example of NCF (15) based on the above construction
steps.
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F1 : 1 2 3 4 5 6 7 8 9 a b c d e f
F2 : 2 1 4 3 6 5 8 7 a 9 c b e d f
F3 : 3 1 5 2 7 4 9 6 b 8 d a f c e
F4 : 4 2 6 1 8 3 a 5 c 7 e 9 f b d
F5 : 5 3 7 1 9 2 b 4 d 6 f 8 e a c
F6 : 6 4 8 2 a 1 c 3 e 5 f 7 d 9 b
F7 : 7 5 9 3 b 1 d 2 f 4 e 6 c 8 a
F8 : 8 6 a 4 c 2 e 1 f 3 d 5 b 7 9
F9 : 9 7 b 5 d 3 f 1 e 2 c 4 a 6 8
Fa : a 8 c 6 e 4 f 2 d 1 b 3 9 5 7
Fb : b 9 d 7 f 5 e 3 c 1 a 2 8 4 6
Fc : c a e 8 f 6 d 4 b 2 9 1 7 3 5
Fd : d b f 9 e 7 c 5 a 3 8 1 6 2 4
Fe : e c f a d 8 b 6 9 4 7 2 5 1 3
Ff : f d e b c 9 a 7 8 5 6 3 4 1 2

Table 5: Example of NCF (15).

In this case, we have five triples repeated thrice, and each row
forms a near-one-factor.

4 Towards Near-Triad Design

This section explains how near-compatible factorization can be con-
tributed to solving the problem of arranging

(
v
3

)
triples into v rows

for v ≡ 3 (mod 6) with minimum repetitions of triples, we define a
new triple design will be called near-triad design.

Definition 13. A near-triad design of order v, denoted by
NTD(v), is a way of arranging

(
v
3

)
triples into v rows such that:

(i) Row i contains v−1
2

triples, among which object i meets every
other objects precisely once, and contains also some other
triples among which the objects other than i occurs equally
often;

(ii) Each triple appears once except v(v−1)
6

triples appear exactly
thrice in the design.

Theorem 14. For each v ≡ 3 (mod 6), there exists a near-triad
design of order v.
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Proof. Suppose v = 6n + 3. There are
(
v
3

)
distinct triples on v

objects. By adding v(v−1)
6

triples twice to
(
v
3

)
distinct triples (the

set of all triples on v objects), we get a multiset of
(
v
3

)
+(2)v(v−1)

6
=

(v−1)v2

6
triples among which only v(v−1)

6
triples repeated thrice.

Since v divides (v−1)v2

6
, then a multiset of (v−1)v2

6
triples can be

partitioned into v multi-subsets of the same cardinality, each multi-
subset containing (v−1)v

6
triples. So any triple design of v rows

formed by a multiset of (v−1)v2

6
triples must contains (v−1)v

6
columns.

Since v = 6n+ 3, then there exists a NCF (v) (from Lemma 9). By

subtracting (v−1)
2

(the number of triples in row i of NCF (v)) from
(v−1)v

6
(the number of triples in row i of the design) we get:

(v − 1)v

6
− (v − 1)

2
=

(v − 1)(v − 3)

6

This implies that (v−1) divides (v−1)v
6
− (v−1)

2
. Therefore the objects

other than i can occur equally in the remaining tripls of row i. So
there exists a NTD(v).

Lemma 15. A set of all triples on Zv is a TS(v, v − 2).

Proof. A set of all triples on Zv is (v, 3, λ)-BIBD contains
(
v
3

)
distinct triples. By substituting b =

(
v
3

)
and k = 3 in (i) of Theorem

1, we have r = (v−1)(v−2)
2

. Then by substituting r = (v−1)(v−2)
2

in
(ii) of Theorem 1, we obtain λ = (v − 2). So a set of all triples on
Zv is a TS(v, v − 2).

Theorem 16. For v ≡ 3 (mod 6), a near-triad design of order
v is a v-fold triple system contains a minimum of repeated triples.

Proof. Suppose v = 6n+ 3. Since a set of
(
v
3

)
distinct triples is

a TS(v, v − 2) (from Lemma 15), and NTD(v) contains repeated
triples then NTD(v) is a (v, 3, λ)-BIBD with λ > v − 2.

By substituting λ = (v− 1) in (ii) of Theorem 1, we get r = (v−1)2

2
.

Then by substituting r = (v−1)2

2
in (i) of Theorem 1, we obtain

b = v(v−1)2

6
. Since v = 6n + 3 then b = 2(2n + 1)(3n + 1)2 is not

divisible by 6n + 3. So the triples of (v, 3, v − 1)-BIBD cant be
arranged into v rows. Therefore (v, 3, v − 1)-BIBD is not near-triad
design.
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By substituting λ = v in (ii) of Theorem 1, we get r = v(v−1)
2

.

Then by substituting r = v(v−1)
2

in (i) of Theorem 1, we obtain

b = v2(v−1)
6

. Since v = 6n + 3 then b = (6n + 3)(3n + 1)(2n + 1) is
divisible by 6n+ 3. So the triples of (v, 3, v)-BIBD can be arranged
into v rows. Therefore (v, 3, v)-BIBD is a near-triad design of order
v with least value of λ > v−2. Now a near-triad design of order v is
a v-fold triple system contains a minimum of repeated triples.

The following table provides an example of NTD(9) to illustrate
how near-compatible factorization can be used in the construction
of near-triad design.

Table 6: Example of NTD(9).

The first four columns which have Type 1 of difference triples
form NCF (9). In this case, we have 12 triples repeated thrice in
NTD(9) among which 3 triples repeated thrice in NCF (9).

5 Conclusions

In this article, we have investigated new triple designs with mini-

mum repetitions of triples for the odd case v ≡ 3 (mod 6). Espe-
cially, we have defined and proved the existence of NCF (v). We
have also constructed our near-compatible factorization, and this
construction has been exemplified for two cases v = 9 and v = 15.
Then we have defined NTD(v) as an application for NCF (v). We
expect this factorization can be developed and extended to con-
struct new triple designs with minimum repetitions of triples for

even cases v ≡ 0, 2, 4 (mod 6).
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