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Abstract

Let v, A bepositive integers, LK,, denote a complete multigraph on v

vertices in which each pair of distinct vertices joining with A edges.
In this article, difference method is used to introduce a new design that
decomposes 4K, into cycles, when v = 2, 10(mod12). This design

merging between cyclic (my, ..., m )-cycle system and near-four-
factor is called anear cyclic (my, ..., m)-cycle system.

1. Introduction

In this paper, it is considered that all graphs are undirected with no loops
and vertices set Z,. We denote the complete graph on v vertices by K.

An mrcycle (respectively, m-path), denoted by (cg, ..., Cp—1) (respectively,
[Cos - Cm-1]), cONsists of mdistinct vertices {cg, ¢, .., Cp_1} and m edges
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{cicis1}, 0<i<m-2 and cyc,_ (respectively, m —1 edges {cicj,1},

0<i<m-2).

An (my, ..., m.)-cycle is the union of all edges in each m;-cycle,
1 <i < r. A decomposition of a graph G is a set of subgraphs {Hj, ..., H,.}
of G whose edges set partitions the edge set of G. If K, has a decomposition
into r cycles of length my, m,, ..., m,, then it is said an (my, ..., m,)-cycle
system of order v that is defined as a pair (V, C) such that V' = V(K,,), and
C is a collection of edge-disjoint m; -cycles, for 1 <i < r, which partitions
the E(K,). In particular, if m; =--- = m, = m, then it is called an m-cycle

system of order v or (K,,, C,,)-design.

A complete multigraph of order v, denoted by AK,,, can be obtained by
replacing each edge of K, with A edges. A (my, ..., m,.)-cycle system of
LK, is a pair (V, C), where V =V(AK,) and C is a collection of edge-
disjoint m; -cycles for 1 < i < r which partitions the edge multiset of AK,,.
An automorphism of (my, ..., m,.)-cycle system of AK, is a bijection
a:V(Z,) > V(Z,) such that for any (c, ..., c;_1) € C if and only if
(acq), o alcs—1)) € C, (my, ..., m,.) -cycle system of AK,, is called cyclic if it
has automorphism that is a permutation consisting of a single cycle of order

v, for instance, o = (0, 1, ..., v —1) and is said to be simple if all its cycles
are distinct.

Given an m-cycle C,, =(cp, ¢{5 s Cy—1), by C,, +i we mean
(co +i, ¢ +1, . ¢pyy +1i), where ieZ, Analogously, if C={C,,
Ciyses Cpy. b is an (my, ..., m.)-cycle, then we use C+i instead of
{Cy +1i, Cpyy +1i, .., Gy +i}. A set of cycles that generates the cyclic
(my, ..., m,.)-cycle system of AK, by repeated addition of 1 modular v

which is called a starter set (briefly d).

The study of (my, ..., m,.)-cycle system of AK, has been considered the
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most important problems in graph decomposition. The important is case
A=1m =-=m, =m The existence question for a (K,, C,,)-design
has been solved by Alspach and Gavlas [2] in the case of m odd and by Sajna

[11] for m even. While the existence question for a cyclic m-cycle has been
settled when m =3 [8], 5 and 7 [10]. For m even and v = l(mod 2m), a

cyclic m-cycle system of order v was proved for m = 0, 2(mod 4) in [6, 9].

Recently, Bryant et al. [3] showed the necessary and sufficient conditions for

decomposing K, into r cycles of lengths m;, m,, ..., m, or into r cycles of
lengths my, m,, ..., m, and perfect matching. Thus, the Alspach’s problem

has been settled which was posed in 1981 [1]. More recently, it has been
extended to this decomposition for the complete multigraph AK,, in [4].

A k-factor of a graph G is a spanning subgraph whose vertices have a
degree k. While a near-k-factor is a subgraph in which all vertices have a
degree k with exception of one vertex (isolated vertex) which has a degree

Zero.

Moreover, in [7], Matarneh and Ibrahim introduced the decomposition of
a complete multigraph 2K, when v = 0(mod 12), by combination of cyclic
(mqy, my, ..., m,.)-cycle system and near-two-factor. In our paper, we propose
a new design for decomposing a complete multigraph 4K, when v =
2,10(mod 12). This is obtained by merging a cyclic (my, ..., m,)-cycle
system and near-four-factors that is called a near cyclic (my, ..., m,.)-cycle
system denoted by NCCS(4K,, 8). Thus, we present NCCS(4K,, 8) as a

(vx|8|) array satisfying the following conditions:
e the cycles in row 7 and column i form a near-four-factor with focus 7,
o the cycles associated with rows contain no repetitions.
The main result of this paper is the following:

Theorem 1.1. There exists a full simple cyclic (my, ..., m,.)-cycle system

of 4K, NCCS(4K,, 8), when v = 2, 10(mod 12).
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2. Preliminaries

Throughout this paper, we use difference set method that will be clarified
in this section to obtain the main results.

Let G =K, for a,beV(K,) and a # b, the difference d of pair
{a, b} is |a—b| or v—|a—b|, whichever is smaller. We define the

difference d of any edge ab € E(K,) as min{|a —b|, v—|a—b|}. So, the
difference of any edge in E(K,) is not exceeding %, (1<d <|v/2]). Let
C, =(ag, ay, ..., a,_1) (respectively, B, = [ag, a1, ..., a,_1]) be an n-cycle
(respectively, n-path) of X,,, the list of differences from C, is a multiset
D(C,) ={min{|a; —a;_1 |, v—|a; —a;_1 |}|i =1, 2, ..., n}, where g = a,
(respectively, D(B,) = {min{|a; —a;_1 |, v—|a; —a;1]i =1, 2, ..., n —1}}).
The list difference from & ={C,,, ... C,, } is the multiset D(C)=

U, D(Cy).

Definition 2.1. Given a complete multigraph AK,, when v even. A set

8 ={Cpys s Cpy, } of cycles of XK, is (AK,, d)-difference system if

D(3) = U;zl D(C;) covers each element of Z; =Z, - {0} exactly A times
2 2

and the middle difference (%) appears {%} times.

As a particular result of the theory developed in [5], we have:

Proposition 2.1. 4 set § = {C}, ..., C;} of m;-cycles, where i=1,2,...,t
is a starter set of a cyclic (my, ..., m,)-cycle system of 4K, if and only if &
is a (4K, 8)-difference system.

The orbit of cycle C,, denoted by orb(C,), is the set of all distinct
n-cycles in the collection {C, +i|i € Z,}. The length of orb(C,) is its

cardinality, i.e., orb(C,) = k, where k is the minimum positive integer such
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that C,, + k = C,. A cycle orbit of length v on AK, is said to be full and

otherwise short.
3. A Near Cyclic (my, m,, ..., m,.)-cycle System

In this section, we present new definitions and results of a near cyclic

(my, my, ..., m,)-cycle system, that are useful for our proof.

Definition 3.1. A near cyclic (my, ..., m,)-cycle system of 4K,
NCCS(4K,, 8), combining a near-four-factor and cyclic (my, ..., m,.)-cycle
system that is generated by the starter set 8. In addition, NCCS(4K,,d) is a

(vx|8]) array that satisfies the following conditions:

o the cycles in row 7 and column i form a near-four-factor with focus r,
o the cycles associated with rows contain no repetitions.

Undoubtedly, for presenting the NCCS(4K,,8), it is sufficient to
provide a starter set O that satisfied a near-four-factor.

We present here some of new definitions which will be needed in the
sequel.

Definition 3.2. Two m-cycles H and F of a graph G of order v are said to
be parallel if they have the same difference set.

Definition 3.3. Let H and F be two m-cycles of a graph G of order v.
If the sum of each two corresponding vertices of them is v, then it is called
adjoined m-cycles, i.e., for H = (hy, hy, ..., h,) and F = (f1, f2, e, fy) if

h + f; =v,i=1, .., m, then H and F are adjoined cycles.

Corollary 3.1. Any two adjoined cycles are parallel cycles.

Throughout the paper, we shall sometimes use superscripts to

identify the number of the cycles in a set. So, let us consider o =
{C}Z}l, C;?z, . C::l’r} to be the set comprised of n; cycles of length m;, for

i=1,2, ..., r. In addition, we consider that le_ is the ith m-cycle in starter
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set 8. Therefore, it is convenient to provide an example here to clarify the
above discussion.

Example 3.1. Let G = 4Ky, and & = {C3, C{|} be a set of cycles of G
such that

Cyy = (1,21,12,10), Gy, =(2,20,13,9), Cy, = (3,19, 14, 8),
Cy, =(4,18,7,15), Cy, = (517,16, 6),

Ciy, =(2,11,3,10, 4,9, 6,8, 7,17, 21),

iy, =(20,11,19,12,18, 13,16, 14, 15, 5, 1).

Firstly, we note that each nonzero element in Z,, occurs twice in the cycles

of 8. So every vertex has a degree 4 except zero element (isolated vertex)
has degree zero. So, it satisfies the near-four-factor. Secondly, the difference
sets for the cycles in & are listed in Table 3.1 and Table 3.2 for 4-cycles and
11-cycles, respectively.

Table 3.1
4-cycle  |(1,21,12,10)| (2,20,13,9) | (3,19, 14,8) | (4,18,7,15) | (5, 17, 16, 6)
Difference set | {2,9,2,9} | {4,7,4,7} | {6,5,6,5} | {8, 11,8, 11} |{10,1, 10, 1}

Table 3.2
11-cycle 2,11,3,10,4,9,6,8,7,17,21) | (20,11, 19, 12, 18, 13, 16, 14, 15,5, 1)
Difference set {9,8,7,6,5,3,2,1,10,4, 3} {9,8,7,6,5,3,2,1, 10, 4, 3}

As clearly shown, we observe that D(8) = D[Uf:1C4iJUD(Ui2:1 Clll_j

covers each element of Z;| four times while the middle difference 2—22 =11

appears exactly twice. Therefore, the set & = {C3, C{|} is a (4Kyy, 8)-
difference system. Then an NCCS(4K55, 8) is (22 x 7) array and the starter

set & ={C3, C3;} generates all the cycles in (22 x7) array by repeated
addition of 1 (mod 22) as shown in Table 3.3.
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Table 3.3
Focus| NCCS(4K,, 8)
0 (1 21 1210(2 2013 9|3 1914 8|...{20 11 1912 18 1316 14 15 5 1
1 12 0 13113 21 1410{4 2015 9...|121 1220131914 171516 6 2
20 (21 1910 8|0 18 11 7|1 17 12 6 |...|18 9 17 10 16 11 14 12 13 3 21
21 {0 2011 9|1 1912 8|2 1813 7(...|1910 18 11 17 12 151314 4 0

As usual, any m-cycle has been written as a permutation
((11)1, ceey alyn, (12’1, cees az,r, (1371, ceey (1391),

where n +r + [/ = m. For the sake of simplicity, it can be represented as

connected paths, we mean that C,, = (R ,, P, ,, Ps;) such that A , =
(@115 s a1 ), Py =la s s a2 ] Py =lasy, n a3 7]

We will define the difference between any two paths H and K, denoted
by D(H, K), as the difference between the last vertex in the path H and

the first vertex in the path K. Thus, for the cycle C,, = (B ,, P> . B ),
we findthat D(R_,,, P, ) = D([ay . ay 1]), D(Py,,, Ps;) = D([ay,,, a31])
and D(P; ;, B ,) = D([a3,;, a1 1]). Subsequently,
D(Cy) = D(R ,)UD(P,y ,)U DB ) )UD(R . P, )
UD(R,,, B )UDP; 1, R ,)
and V(Cp,) = V(R ,)UV (P, )UV(P; ).

Now we are ready to present the proof for Theorem 1.1, the main aim of
our paper. We distinguish two cases according to the congruence class of
v = (mod12).

Case 1. There exists a full near cyclic (my, ...

4K 3,410, NCCS(4K12,110, ).

, m,.)-cycle system of
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Proof. We have two subcases:

Subcase 1. n is odd.

Suppose & = {Cﬁ’”z, C62n+5} is the starter set of 4K;,,,1¢ such that the

list of 4-cycles is:

3n+2
Cy, = U . (c1.i» €2,i> €3,15 Ca, 1)
i¢5n+3
2

3n+2
-U (1214107, 60+ 5 +0, 6n+5 i),

1=
i¢5n+3
2

when i = w, let

5n+3,12n+10—5n2+3,6n+5—5n2+3,6n+5+5n2+3j.

While we consider Cj,,s and Cg,,s that are adjoined (6n + 5)-cycle such

that an+5 = (Pl*: PZ*’ P3*)’ CZZ+5 = (Pl**’ P2**= PS**)’ where {B*s B**
|1 <i < 3} are paths as follows:

B =[2,6n+53 6n+4,..2n+2,4n+5], Py =[3n+3,3n+5,3n+4],
P =[9n+8,9n+4,9+9,9+3,..,81+6,10n+7,12n +9],

B =[12n+8,6n+512n+7,6n+6, ..., 10n +8, 8n + 5],

P =[9n+7,9+5,9n+ 6],

P3**=[3n+2,3n+6,3n+1,3n+7,...,4n+4,2n+3,l].

We will divide the proof into two parts as follows:
Part 1. In this part, we prove that & is a near-four-factor. To do this, we

need to calculate the vertices
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3n+2
V(U " C4ij = Cl,i Uc2,i UC3,i UC4)I~, 1<i<3n+2

i=1

suchthat ¢ ; =4, ¢ ; =12n+10—1i, 3, =6n+5+1, ¢4 ; =6n+5-1,

l<i<3n+2,iz 5”;3. Then
o= {123, .., 3n+2} - {5”; 3},
e =12n+9,12n+8, ..., 9n + 8} — {%},
c3;=16n+6,6n+7,..,9n+7} - {w},
Chg={6n+4 6n+3, ., 3n+3) - {7”; 7}.
While, if i = 5”—;3 then

Sn+3 19n+17 Tn+7 17n+13
V(C4l)={ 2 > 2 2 2 9 2 }-

Observe that the vertices of all 4-cycles cover every nonzero elements

of {Z15,110 — {6n + 5}} exactly once, whereas we provide the vertices of

(6n + 5)-cyclesas V(P )UV(P™), i =1,2,3 as follows:
V(F')=12,3,4,..,2n+2}U{6n+5,6n+4, .. 4n+5},
V(Py)={3n+3,3n+5,3n+ 4},
V(PY)={9n+8,9+9, .., 10n+ 7}

U{9n+4,9n+3,..,8n+6}U{12n+9},

VIB™)={12n+8,12n+7,..,10n + 8} U {6n + 5, 61 + 6, ..., 8n + 5},
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V(P")=1{9n+ 17, 9n + 5, 9n + 6},

V(B ) =08n+2,3n+1..,2n+3U{Bn+6,3n+7, ... 4n+4 U1}
Then the vertices of (6n + 5)-cycles cover each nonzero element of
Zion+10 €xactly once except {6m + 5} twice. Then the vertex set of the
cycles in &, V(8), covers each element of Zj5, ;o twice. Consequently, it

satisfies near-four-factor (with isolated zero element).

Part 2. In this part, we prove that & ={C;"*2, C?,.s} is the
(4K12,410» 8)-difference system. So, we will check the difference as

follows:

3n+2 3n+2 .
U Dcy,j5 €345 €3,i> C4.1) = Uizl D(cjiscipi) 1S <4,

i=1

where ¢5 ; = ¢y ;,

3n+2 3n+2
U"" Dleean=J" @)=04 . 6n+4-{sn+3},
1= ’ ’ =

i¢5n+3 i¢5n+3
2 2
3n+2 3n+2
U o Dley i e3) = . (6n+5-20)
1= 4 ’ 1=
i¢5n+3 i¢5n+3
2 2

={6n+3,6n+1,..,3, 1} —{n+2},

3n+2 3n+2
| |".+1 D(es v cq ;) = | |".+1 (2i) = 12, 4, ..., 6n + 4} — {5n + 3},
= ? ’ =

i¢5n+3 i¢5n+3
2 2
3n+2 3n+2
U\ Plewran=U" ©r+5-2)
1= 4 2 1=
.¢5n+3 .¢5n+3
) )

={6n+3,6n+1,..,3, 1} —{n+2}
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Whenz’zsn+3

, then D(Cy,) ={5n+3, 6n +5, 5n+3, 6n + 5}.

Then the list of difference set of 4-cycles covers every element

of {Zg,.s —(n+2)yU{6n+5} exactly twice. Similarly, we compute

D(Cgpss5)U D(Cinys) as follows:

D(Ceuis)=D(R)UDP)UDF)U DR, )UDP, P)U DR, R),
D(P)={6n+3,6n+2,..,2n+4 2n+3}, D(P) =121},
D(P)=14,5,..,2n+1,2n+2},

D(P', PY) = D(4n +5,3n +3) = {n + 2},

D(Py, P{) = D(3n + 4, 9n + 8) = {6n + 4},

D(F, B')=D(12n+9, 2) = {3}.

Relying on adjoined cycles Cg,,s and Cg,.s, we find the same
difference set by Corollary 3.1. Then D(Cg,,5)UD(Cgnys) covers each
element of Zg,,s exactly twice except {n + 2} four times. From the above
discussion, we deduce that D(8) covers each element in Zg,,s four times
and the middle difference {61 + 5} twice.

This assures that & = {C3""2, C2,.s} is (4Kjz,410, O)-difference
system, n is odd. Therefore, & = {C3""2, CZ,.{} is starter set for the

NCCS(4K19y410> ) when n is odd. O

Subcase 2. n is even.

Suppose & = {C3""2, C2,. 5} is the starter set of 4K{5,,10 such that the

list of 4-cycles is:
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3n+2
Cy;, = Ul-zl (c1,i> 2,15 €345 €4,1)

i¢n
2

3n+2
-U 120410 -0, 6n 5 +0, 60+ 5 ).

=
izt
2

. n n n n n
When l—z, then C4l,—[5,6n+5—§,12n+10—§,6n+5+§)

whereas Cg,,s and Cg,,s are adjoined (6n+5)-cycles such that

an+5 = (Pl*= PZ*’ P3*)’ Cg;lk+5 = (Pl**’ PZ**’ P3**)’ where {})l*’ Pl** |1 <
i < 3} are paths as follows:

P =[2,6n+5236n+4,.,2n+2 4n+5],

Py =[3n+5,3n+3,3n+4]

P =[9n+89n+4,9m+9,9n+3,..,81+6,10n+7,12n +9],
B =[12n+8,6n+5,12n+7,6n+6, .., 10n +8, 8n + 5],

P =[9n+5, 9n+7,9n+6],

P =[B3n+2,3n+6,3n+1,3n+7,..,4n+4,2n+3,1].
In similar way for the Subcase 1, one may easily verify that

V(8) = (V(Ufz;rz C4l.j UV (Cgpis) UV (Conys )j covers each element in

Zir,+10 exactly twice. Now, we are going to calculate the difference set of
4-cycles as follows:

3n+2 3n+2 .
LJZ.:1 D(cy > €3,i> €345 C4.1) = LJI.:1 D(cj i cjpih 17 <4,

. n . n

l#i l¢§

where ¢5 ; = ¢y 4,
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3n+2 3n+2 .
U~ " Dleineri) = Ui:1 (2i) = {2, 4, ..., 6n + 4} — {n),

i=l1

'iﬁ ';ﬁﬁ

1 2 i 2
3n+2 3n+2 )
Ui:l D(cy,is ¢3,4) = Uizl (6n+5—2i)

i iz

2 2

={6n+3,6n+1,..,3,1} — {52+ 5},

3n+2 3n+2 .
U Dlesican=J " @)=124 .. 6n+4-n,

i=1

i»2 izt

2 2
3n+2 3n+2 . .
Ui:l D(cq ;> c1,4) = Ui:l (2i6n + 5 — 2i)

izl iz

2 2

= {6n+3,6n+1,..,3,1}— {5n+5}.

When i =%, D(Cy) ={5n+5,6n+5,5n+5, 6n+5}.

Then the list of difference set of 4-cycles covers each element
of {Zgyss —(n)}U{6n +5} exactly twice. Correspondingly, the list of

difference set of (6n + 5) -cycles calculates as follows:
D(Cguys5) = D(R) U D(Py)U D(F)U D(R", P})
UD(#, B)UDPF, R),
D(P)={6n+3,6n+2,..,2n+4 2n+3}, D(P) =121},
D(P)=1{4,5,...,2n+1,2n+ 2}, D(B’, P5) = D(4n + 5, 3n + 5) = {n},

D(Py, P;)=DBn+4,9n+8)={6n+4}, D(A, B')=D(12n+9,2) = {3}

As clearly shown, in the previous equation, the vertices of 6n + 5-cycles

cover every element of Zg,.s exactly twice except {n} four times. Thus,
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we realize now that &={C3""2, C2 .5} is (4Kis,.10, O)-difference

system, n is even. Then &={C3""2, CZ,,s} is starter set for the
NCCS(4K72y410, ©) when n is even. O

Case 2. There exists a full cyclic (my, ..., m.)-cycle system of

4K12,42, NCCS(4K 242, d).

Proof. We also have two subcases:

Subcase 1. 7 is even.

When n=2 v=26, let §={CS,C?, C?} be the starter set of
NCCS(4K ¢, 8) as follows:

Cyy = (1,25,14,12), Cy, = (2, 24,15, 11), Cy, = (3, 23,16, 10),

Cy, =(4,22,17,9), Cyg = (5, 21,18,8), Cy, = (6,19, 7, 20),
C7 =(13,2,12,3,11, 4,10), C7° = (13, 24, 14, 23, 15, 22, 16),

Ce =(6,1,5,17,19, 18), C¢* = (20, 25, 21,9, 7, 8).
It is straightforward to check that & is actually a starter set of

NCCS(4K 5, 5).

When n >4, suppose & = {C3", C3,.,, C3. 1} is the starter set of
NCCS(4K1,42, 8) such that the list of 4-cycles is:

3n
C4i - U i=1 (CLi’ cz,i’ C3ai’ 04’1')

[¢5n+4
2

3n
=U", Grams2-iensivione1-i),
1=

#5n+4
2

Sn+4

when i = let
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Cy, =($,6n+1—5”2+4,12n+2—5”2+4,6n+1+5”2+4).

While we consider Cy,_; and Cy,_; that are adjoined (4n —1)-cycles
such that

Cipy =(6n+1,2,6n3, 6n—1,4,..,2n—1,4n+3, 2n, 4n + 2),
Cap_y =(6n+1,12n,6n+2,12n—1,6n+3,..,10n+3,8n—1,10n + 2, 8n).

As well, we consider that C3,,, and C,, ., are adjoined (21 +2)-
cycles such that
*
Cons2
=(2n+2,1,2n+1,8n+1,10n—1,8n+2,10n -2, ..., 9n+ 2,92 —1,9n + 1, 9n),
ek
Cons2
=(10n,12n+1,10n+1,4n+1,2n+3,4n,2n+4, ..,3n,3n+3,3n+1,3n + 2).

Similarly, it will be following the same manner of the previous case to

prove that the set & is the starter set of 4K,,,,2. We will divide the proof

into two parts as follows:

Part 1. In this part, we prove a near-four-factor. So, we need to calculate

the vertices V(Uffl C4l,) =c¢;Ucy;Ucs;Uey ;5 1<i<3n such that

c,i=i6¢C;=12n+2—i,c3; =6n+1+1i,

Cq i :6n+1—i,1£ig3n+2’i¢5n2+4.
a,; =123, .., 3n} - {Sn; 4}, ¢y ={12n+1,12n, .., 9n + 2} - {197”}
€3, = {6n+2,6n+3,.., 9+ 1}_{17n2+ 6}’



1686 Mowafaq Alqadri and Haslinda Ibrahim

cq i =16m, 6n—1, .., 3n+1} - {7”2_ 2}.

S5n+4
2

And when i =

Sn+4 Tn-2 19n 17n+6
,thenV(C4l_)={ T ) }

At the same time, the vertex set of remaining cycles can be written as

follows:
V(Chpy)=12,3,4, ... 20} U{dn+2,4n+3, ..., 6n+1},
V(Can_y) =1{6n+1,6n+2, .. 82 U{10n+2,10n +3, .., 121},
V(Copin) =1L, 2n+1,2n+2}U{8n+1,8n+2,8n+3,..,10n - 2,10n -1},
V(Copin)={12n+1,10n, 10n +1}U{2n + 3, 2n+ 4, 2n +5, ..., 4n, 4n +1}.
Simply we can note that ¥(8) covers {Z},.,} exactly twice.

Part 2. In this part, we prove that & = {C3", C4,_1, C3,.0} is the

(4K15,42, 8)-difference system. So, we check the difference as follows:

The list of difference set of all 4-cycles (U?jl D(Cy, )) is determined as

follows:

3n 3n .
LJI.:1 D(Cy,) = Uile(cjsi’ Cipt,ih 1< j <4, where ¢s5; = ¢y ;,

3 3
U" . Dlaien=J"  @)={2.4 .. 6n}—{5n+4},
i=l > ’ i=1

i¢5n+4 l,¢5n+4
2 2
3n 3n
U Denan=U", ©n+1-2)
1= ’ ’ 1=
i¢5n+4 i¢5n+4
2 2

={6n+3,6n+1,..3,1}—{n-3},
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3n 3n .
U, plesiean=U"_ @)=24..6n-isn+4,

i¢5n+4 i¢5n+4
2 2
3n 3n
U - D(C4iacli):U _, (6n+1-2i)
1= ’ 2 1=
i¢5n+4 ii5n+4
2 2

={6n+3,6n+1,.., 3,1} —{n—-3}

Sn+4

Also, when i = 5

,D(C4l,)={n—3, 6n+1,n-3,6n+1}.

Then the list of difference set of all 4-cycles (D(Cg” )) covers each
element of {Z¢, .| — (57 + 4)} U {6n + 1} precisely twice. Correspondingly,

the list of difference set of remaining cycles {C3,,,2, Cans2s Can_1> Can_1}

is computed as below:
D(Cy,_1)=D{(6n+1,2,6n,3, 6n—1,4,..2n—1,4n+3, 2n, 4n + 2)},
D(Cyp_y)={6n-1,6n-2,6n-3,..,2n+3,2n+2}U{2n—1}.
Since Cj,_; and Cj,_; are adjoined cycles in 4Kj5,.», D(Ci,_;) =
D(Cip1)-
We also have:
D(C3yin)=D{2n+2,1,2n+1,8n+1,10n — 1, 8n + 2,
10n—2,..,9n+ 2,92 —1,9n + 1, 9n)}
={2n+1,2n,6n,2n—-2,2n-3,2n-4,..,3,2, 1} U {5n + 4}.

Since C3,,, and C,,,, are adjoined cycles in 4K|5,,2, D(Chyin)=

D(C;n+2)'



1688 Mowafaq Alqadri and Haslinda Ibrahim

Thus, each element in the multiset Zg,,; is covered by D(Cy,_;)U
D(Cyy_)U D(C3,.2)U D(C5y.n) twice except {Sn+ 4} four times. In
view of previous observation, we conclude that & = {C3", C22,, 425 Cfn_l} is

(4K2,,42, 8)-difference system, n is even. n

Subcase 2. n is odd.

Suppose & = {C3", C3,.,, C2,_{} is the starter set of cycles of

NCCS(4K1,42, 8) such that the list of 4-cycles is:

3n
Cy, =U - (c1,i» €2,i> €3,15 Ca, i)
l.¢5n+1
2

3n
=U - (i, 12n+2—i,6n+1+i, 6n+1-1i),
i=

i¢5n+1
2
wheni=5n+1,let
S5n+1 S5n+1 S5n+1 S5n+1
C4l,_( > , 12n+ 2 — 3 ,n+1- > ,n+1+ > j

whereas that Cy,_; and Cy,_; are adjoined (4n — 1)-cycles such that
Cayy =(6n+1,2,6n3 6n—1,4,..,2n-1,4n+3, 2n, 4n + 2),
Can_y =(6n+1,12n, 6n+2,12n—1,6n+3, ..., 10n +3, 81— 1, 10n + 2, 8n).

Also, we consider that C5,,, and C5,,, are adjoined (27 + 2)-cycles
such that C;n+2 = (Pl*’ PZ*)’ C;Z-&—Z = (Pl**’ PZ**)’ where {Pl*a Pz** 1<

i < 2} are paths as follows:

B =[2n+2,1,10n +1],
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Py =[4n+1,2n+3,4n, 2n+4,..,3n,3n+3,3n+1,3n+2],
B =[10n, 12n + 1, 2n + 1],

P =[8n+1,10n-1,82+2,10n -2, .., 9n + 2, 9n — 1, 9n + 1, 9n].

Obviously, as the Subcase 1, it can be found that ¥(8) covers each
element of Z}5,,, exactly twice and the list of difference set of all 4-cycles
(D(C3")) covers each element of {Z;,,; —n} precisely twice, whereas the

difference set of (4n —1)-cycles (D(Cy,_;)U D(Cy,_;)) contains elements
{n—1,6n—-2,6n-3,..,2n+3,2n+2}U{2n -1} twice. Now, we calculate

the difference set of (2n + 2)-cycles as follows:

D(Cyp42) = DIR)U D) U D(R', 1)U D(FS, ),

D(PR")={2n+1,2n}, D(P)={2n—-2,2n-3,2n—4, .., 3, 2,1},

D(P, Py) = D(10n +1, 4n + 1) = {6n}, D(P}, B") = D(2n + 2, 3n + 2) = {n}.
Then all elements in the set {1, 2, 3, ..., 2n — 3, 2n — 2, 2n, 2n + 1, 6n}

appear in D(C5,,,) exactly once except {n} twice. Therefore, the multiset

of D(Cy,_1)UD(Cy,_1)UD(C5,,7)U D(C5,.,) covers each element of

{Zg 11} exactly twice except {n} four times.

Hence, & ={C3", C3,.2, C3,_1} is (4K{2,42, O)-difference system,

nis odd. Then & = {C3", C3,,,, C3,_;} is starter set of NCCS(4K{5,12, 8).

O
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