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Abstract

In this paper we discuss a type of factorization called a compatible
factorization. We introduce an invariant, the number of k-fold edges,
and use it to enumerate isomorphism classes of these factorizations on
seven points.

1 Introduction

We assume the standard ideas and definitions of graph theory. We denote
the complete graph on n vertices by Kn.

A one-factor is a set of disjoint edges in a graph that together contain
all the vertices, and a one-factorization of a graph G is a set of edge-disjoint
one-factors that together contain all the edges of G. If G has an odd number
of vertices, a near-one-factor consists of one vertex (the focus) and a set of
disjoint edges that contain every other vertex, while a near-one-factorization
is a set of edge-disjoint near-one-factors that together contain all the edges.
Given the near-one-factor

N = x ab cd . . . yz

it will be convenient to refer to

{xab} {xcd} . . . {xyz}
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as the (set of) triples associated with N . A comprehensive discussion and
bibliography of the literature concerning one-factorizations can be found in
[7], [5] and [8].

The paper [9] introduces some designs whose blocks are ordered triples,
or triads, subject to certain restrictions. We wish to discuss in detail one
of the designs in that paper, namely design B. This is a design with 7
treatments, whose blocks are the 35 triples on the treatments. The blocks
are arranged in seven rounds, such that:

(i) each round contains the same number of blocks;

(ii) each block occurs exactly once in the design;

(iii) each treatment occurs either twice or three times in each round;

(iv) no two treatments occurs together in two or more blocks in any round.

We shall refer to a design satisfying (i) through (iv) as a triad design on 7
points. (In the original application, it was required that the blocks be or-
dered so that no treatment occurs twice in the same position in any round.
However, this condition can obviously be met by any triad design.) It fol-
lows immediately that each round of such a design contains five blocks; one
treatment occurs in three of the blocks and the others in two each. If we
refer to the treatment of frequency 3 as the focus of the round, then each
treatment is the focus of exactly one round. It is convenient to label the
treatments as 1, 2, 3, 4, 5, 6, 7, and to order the rounds so that treatment
i is the focus of round i. From property (iv), round i is of the form
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3} is a permutation of {1, 2, 3, 4, 5, 6, 7}. The first

three triples in round i are the triples associated with the near-one-factor

Ni = {i xi
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i
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3y
i
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Table 1 shows the example given in [9]. This is a highly structured
example. The seven near-one-factors Ni associated with the rounds form



127 316 451 532 674
231 427 562 643 715
342 531 673 754 126
453 642 714 165 237
564 753 125 276 341
675 164 236 317 452
712 275 347 321 563

Table 1: A design for seven treatments

the near-one-factorization

1 27 36 45
2 31 47 56
3 42 51 67
4 53 62 71
5 64 73 12
6 75 14 23
7 12 25 34

but that is not necessary for the design.

The seven near-one-factors must satisfy the conditions that each treat-
ment occurs as a focus exactly once and the totality of triples associated with
them contains no repetition. To discuss this we define such a set of near-
one-factors to be a compatible factorization or CF. This name derives from
the following consideration: if we form a multigraph whose vertices are the
treatments, and whose edges are the union (with multiplicities preserved)
of the factors in a CF, then the factors can be viewed as a factorization of
this multigraph. We shall call the multigraph the graph of the compatible
factorization.

It is natural to ask whether there exist compatible factorizations more
general than near-one-factorizations, and how common they are. In the
following sections we formally define compatible factorizations and examine
the number of non-isomorphic examples for the case of 7 treatments. The
number of possibilities is surprisingly large.



2 Preliminaries and Definitions

Consider the following combinatorial problem: we are given v vertices and
we wish to construct an array from a certain set of triples of these vertices;
each triple must occur at most once in the array. We must arrange the
elements in rows and columns such that in each row no pair of vertices is
repeated and the number of rows equals the number of given vertices. For
example say v = 7 and we want to produce the following triples:

{123}, {124}, {136}, {134}, {125}, {126}, {137},
{145}, {167}, {236}, {235}, {245}, {345}, {367},
{267}, {257}, {347}, {467}, {567}, {456}, {457}

We have 21 different triples with seven vertices and each vertex appears
precisely nine times, but each pair of elements does not appear a constant
number of times. Since we have seven elements, we shall have seven rows,
and consequently three columns. One construction is:

F1 : 1 23 45 67
F2 : 2 14 36 57
F3 : 3 16 25 47
F4 : 4 13 25 67
F5 : 5 12 34 67
F6 : 6 12 37 45
F7 : 7 13 26 45

C1 C2 C3 C4

In this case we have 7 rows and 4 columns. Now in order to form a triple, we
append C1 with C2, C1 with C3, and C1 with C4, obtaining 3 triples in each
row. For instance in F1 we have triples {123},{145} and {167}; continuing
in the same fashion in F2 through F7 we produce the desired triples. Any
solution to this problem will be called a compatible factorization of order v
and will be denoted by CF (v).

Definition. A compatible factorization of order v, or CF (v), is a v × v−1
2

array that satisfies the following conditions:

(i) The entries in row i form a near-one-factor with focus i.

(ii) The triples associated with the rows contain no repetitions.



Note that the triples are unordered. For example {456} and {546} are
considered the same triple.

An obvious necessary condition for the existence of a CF (v) is that v
must be odd.

Theorem 2.1. There exists a compatible factorization for every odd order
v > 3.

Proof. Suppose v = 2t + 1 > 3. The near-one-factor from the patterned
starter, with i-th factor

i (i + 1)(i − 1) (i + 2)(i − 2) . . . (i + n)(i − n) mod v,

is a compatible factorization.

No CF (3) can exist: with the three symbols 1, 2, 3 the only possible near-
one-factor with focus 1 is 1 23, the only possible near-one-factor with focus
2 is 2 13, and these two have a common associated triple.

3 Isomorphism classes of compatible factorizations

We wish to discuss variability of triad designs. It is clear that isomorphic
triad designs have isomorphic compatible factorizations. So we wish to dis-
cuss isomorphism classes of compatible factorizations. It is easy to see there
is a unique CF (5) up to isomorphism. In order to discuss the case v = 7 we
introduce some definitions.

Definition. A compatible factorization has a k-fold edge if there is an edge
common to k of the factors.

Definition. The 2-factor intersection or 2-fi of a CF (7) is the graph whose
vertices are the factors, where two vertices are joined by an edge when the
two factors have a common edge.

Theorem 3.1. There are no 4-fold edges or 5-fold edges in compatible fac-
torizations of order seven.



Proof. Suppose (67) is a 4-fold edge in a CF (7). The factors in the com-
patible factorization must look like

1 -- -- 67
2 -- -- 67
3 -- -- 67
4 -- -- 67
5 -- -- --
6 -- -- x7
7 -- -- y6

for some x and y in {1, 2, 3, 4, 5}. Observe that x cannot equal 1, for then
factor 6 would contain triple 167 which already occurred in factor 1. Sim-
ilarly x cannot be 2, 3, or 4 because triples 267, 367 or 467 would appear
twice. So x = 5. If we consider factor 7, a similar argument shows that
y = 1, 2, 3, or 4 is impossible. However, if y = 5, then 567 appears twice.
So the factorization cannot be completed, and a 4-fold edge is impossible.
As a 5-fold edge is also 4-fold, this proof also shows there can be no 5-fold
edge.

By theorem 3.1, we can categorize an analysis of isomorphism classes of
CF (7)s into three parts: CF s with 3-fold edges, CF s with 2-fold edges but
no 3-fold edges, and CF s without multifold edges. We shall outline the case
of 3-fold edges, and state the results for the other two cases; details of those
are left to the reader, or can be found in [4].

4 The case of 3-fold edges

Lemma 4.1. There are exactly sixty-five isomorphism classes of compatible
factorizations of order seven that contain 3-fold edges.

Proof. Consider a compatible factorization of order seven with vertices {1, 2,
3, 4, 5, 6, 7}. We denote the factors by A, B, C, D, E, F, G and take them in
that order (so that 1 is the isolate in A, 2 is the isolate in B, 3 is the isolate
in C, etc.). Without loss of generality we can assume that the 3-fold set is
{A, B, C} and write



A = 1 23 45 67
B = 2 14 35 67
C = 3 15 24 67.

There are exactly six possible fourth factors:

D1 = 4 13 26 57 D4 = 4 16 27 35
D2 = 4 13 27 56 D5 = 4 17 25 36
D3 = 4 16 25 37 D6 = 4 17 26 35

We can eliminate three of these cases from the consideration of isomorphism
classes by carrying out the permutation (67):

(A, B, C, D1)(67) = (A, B, C, D2)
(A, B, C, D3)(67) = (A, B, C, D5)
(A, B, C, D4)(67) = (A, B, C, D6)

So we can complete the set of possible compatible factorizations that start
{A, B, C} by considering factors D1, D3 and D4.

Case D = D1.

The possible candidates for E, F and G are:

E1 = 5 12 37 46 F1 = 6 12 34 57 G1 = 7 12 34 56
E2 = 5 16 24 37 F2 = 6 12 35 47 G2 = 7 12 35 46
E3 = 5 16 27 34 F3 = 6 13 25 47 G3 = 7 13 24 56
E4 = 5 17 24 36 F4 = 6 15 23 57 G4 = 7 13 25 46
E5 = 5 17 26 34 F5 = 6 15 23 47 G5 = 7 14 23 56

G6 = 7 15 23 46

From these possible factors, we can generate fifty-three different combina-
tions of CF (7) with a 3-fold edge as shown in Table 2.

As a first step in classifying these compatible factorizations, we calculate
the 2-factor intersection of each factorization. The size (number of edges)
of this graph is shown in Table 2 after the name of the factorization, in
parentheses. If the graphs of two factorizations have different sizes, the
factorizations will certainly be non-isomorphic. If they are the same size, but
not isomorphic, the factorizations are again non-isomorphic. If the graphs



5 12 37 46 5 12 37 46 5 12 37 46 5 12 37 46 5 12 37 46 5 12 37 46
6 12 34 57 6 12 34 57 6 12 35 47 6 12 35 47 6 12 35 47 6 13 25 47
7 13 25 46 7 15 23 46 7 12 34 56 7 13 24 56 7 14 23 56 7 12 34 56

F1(7) F2(8) F3(7) F4(7) F5(7) F6(5)

5 12 37 46 5 12 37 46 5 12 37 46 5 12 37 46 5 12 37 46 5 12 37 46
6 13 25 47 6 13 25 47 6 14 23 57 6 14 23 57 6 15 23 47 6 15 23 47
7 13 24 56 7 14 23 56 7 13 25 46 7 15 23 46 7 12 34 56 7 13 24 56
F3a(7) F7(6) F2a(8) F8(9) F7a(6) F5a(7)

5 12 37 46 5 16 24 37 5 16 24 37 5 16 24 37 5 16 24 37 5 16 24 37
6 15 23 47 6 12 34 57 6 12 34 57 6 12 35 47 6 12 35 47 6 12 35 47
7 14 23 56 7 13 25 46 7 15 23 46 7 12 34 56 7 13 24 56 7 14 23 56

F9(8) F10(6) F11(7) F12(6) F13(8) F14(7)

5 16 24 37 5 16 24 37 5 16 24 37 5 16 24 37 5 16 24 37 5 16 27 34
6 13 25 47 6 13 25 47 6 13 25 47 6 14 23 57 6 14 23 57 6 12 34 57
7 12 34 56 7 13 24 56 7 14 23 56 7 13 25 46 7 15 23 46 7 12 35 46
F15(5) F16(9) F17(7) F18(8) F19(10) F20(7)

5 16 27 34 5 16 27 34 5 16 27 34 5 16 27 34 5 16 27 34 5 16 27 34
6 12 34 57 6 12 35 47 6 12 35 47 6 12 35 47 6 13 25 47 6 13 25 47
7 15 23 46 7 12 34 56 7 13 24 56 7 14 23 56 7 12 34 56 7 13 24 56
F21(7) F22(6) F23(6) F24(6) F25(5) F26(7)

5 16 27 34 5 16 27 34 5 16 27 34 5 17 24 36 5 17 24 36 5 17 24 36
6 13 25 47 6 14 23 57 6 14 23 57 6 12 34 57 6 12 34 57 6 13 25 47
7 14 23 56 7 12 35 46 7 15 23 46 7 12 35 46 7 13 25 46 7 12 34 56
F27(6) F28(7) F29(9) F30(7) F31(6) F32(6)

5 17 24 36 5 17 24 36 5 17 24 36 5 17 24 36 5 17 24 36 5 17 24 36
6 13 25 47 6 13 25 47 6 14 23 57 6 14 23 57 6 15 23 47 6 15 23 47
7 13 24 56 7 14 23 56 7 12 35 46 7 13 25 46 7 12 34 56 7 13 24 56
F33(9) F34(7) F35(10) F36(8) F37(6) F38(9)

5 17 24 36 5 17 26 34 5 17 26 34 5 17 26 34 5 17 26 34 5 17 26 34
6 15 23 47 6 12 34 57 6 12 34 57 6 12 35 47 6 12 35 47 6 12 35 47
7 14 23 56 7 12 35 46 7 13 25 46 7 12 34 56 7 13 24 56 7 14 23 56
F29a(9) F39(8) F40(7) F41(7) F42(7) F43(7)

5 17 26 34 5 17 26 34 5 17 26 34 5 17 26 34 5 17 26 34
6 14 23 57 6 14 23 57 6 15 23 47 6 15 23 47 6 15 23 47
7 12 35 46 7 13 25 46 7 12 34 56 7 13 24 56 7 14 23 56
F44(8) F45(8) F46(7) F47(8) F48(9)

Table 2: Possible CF when D = D1



are isomorphic, this often helps to prove the factorizations are isomorphic.
We illustrate by looking at cases with size 5 2-fi and size 6 2-fi.

Size 5 2-factor intersection.

There are precisely three factorizations with size 5 2-fi, namely F6, F15,
and F25. The graphs are shown in Figure 1.
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Figure 1: The size 5 2-fi

The graphs of F6 and F25 are isomorphic, so we test whether the factor-
izations isomorphic or not. It is easy to see in this case that they are not
isomorphic. An isomorphism from F6 to F25 must carry {1, 2, 3} to {1, 2, 3}
and {{4, 6}, {5, 7}} to {{4, 6}, {5, 7}}. As 123 is a triple in factor A, any
isomorphism must map factor A of F6 to factor A of F25, so 1 → 1. If 2 → 2
and 3 → 3 the only possibility is the identity map, and if 2 ↔ 3 the only
possibility is (23)(45)(67), neither of which maps F6 to F25.

Size 6 2-factor intersection.

There are exactly eleven compatible factorizations with 2-fi of size 6;
their graphs are shown in Figure 2.

The graphs of F7, F7a, F27, and F32 are isomorphic so we consider these
factorizations together. For the same reason we consider F10 together with
F31, F12 with F23 and F24 with F37; F22 is not isomorphic to any of the
others.

First consider F7 and F7a. There are exactly four permutations that
carry the 2-fi of F7 to that of F7a. They are (23)(45)(67), (23)(4765),
(132)(45)(67), and (132)(4765). On testing we find that F7(23)(45)(67) =
F7a, so F7 is isomorphic to F7a.

Next consider F7 and F27. The graphs look exactly the same, but the
compatible factorizations are not isomorphic, There are eight possible per-
mutations, of the form (12)α(37)β(46)γ (where α, β, γ can be 0 or 1), and
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Figure 2: Size 6 2-fi

none is an isomorphism.

Now consider F7 and F32. Any isomorphism from F7 to F32 must map
1 to 2 or 3. If 1 maps to 2, then 2 must map to 3, and factor 2 cannot
map correctly. If 1 maps to 3, then 2 must map to 5, which is impossible.
Thus they are not isomorphic. A similar argument shows that F31 is not
isomorphic to F36. We can also show that F10 and F31 are different, as are
F12 and F23, and also F24 and F37.



From this discussion we see that only F7 and F7a are isomorphic. We
carried out similar computations for all 2-fi of size 7, size 8, size 9 and size 10.
We found that for size 7, F3 is isomorphic to F3a and F5 is isomorphic to F5a;
for size 8, F2 is isomorphic to F2a; and for size 9, F29 is isomorphic to F29a.
Thus for D1, we only have forty-eight cases left. It will be observed that we
cunningly labeled Table 2 so that those cases numbered with numbers alone
— no letters appended — form a representative set.

Case D = D3.

We have thirty-six CF ; after classifing up to isomorphism we have nine
CF left as listed in table 3.

5 16 27 34 5 16 27 34 5 16 27 34 5 16 27 34 5 17 26 34
6 12 34 57 6 12 34 57 6 12 35 47 6 12 35 47 6 12 34 57
7 12 35 46 7 15 23 46 7 13 24 56 7 14 23 56 7 12 35 46

F49 F50 F51 F52 F53

5 17 26 34 5 17 26 34 5 17 26 34 5 17 26 34
6 12 34 57 6 12 35 47 6 12 35 47 6 13 24 57
7 13 25 46 7 13 24 56 7 14 23 56 7 12 35 46

F54 F55 F56 F57

Table 3: Possible CF when D = D3

Case D = D4.

In this case if we enumerate all the possible cases, we also find that we
have thirty-six possible combinations. Using a similar argument we reduce
to eight different compatible factorizations as displayed in table 4.

So there are sixty-five nonisomorphic classes of CF (7) with 3-fold edges.

5 The case of 2-fold edges without 3-fold edges

Lemma 5.1. There are exactly 164 compatible factorizations which contain
a 2-fold-edge but no 3-fold-edge.

Proof. Suppose factors A and B form a 2-fold edge. Without loss of gener-



5 16 24 37 5 16 24 37 5 16 24 37 5 16 24 37
6 12 34 57 6 12 34 57 6 12 35 47 6 12 35 47
7 13 25 46 7 15 23 46 7 12 34 56 7 14 23 56

F58 F59 F60 F61

5 17 24 36 5 17 24 36 5 17 24 36 5 17 24 36
6 12 34 57 6 12 34 57 6 13 25 47 6 13 25 47
7 12 35 46 7 13 25 46 7 12 34 56 7 14 23 56

F62 F63 F64 F65

Table 4: Possible CF when D = D4

ality we can take

A = 1 23 45 67
B = 2 14 35 67

Now factor C cannot have edge (67) otherwise A, B, C will contain a 3-fold
edge. There are six possible factors C:

C1 = 3 14 26 57 C5 = 3 16 24 57
C2 = 3 14 27 56 C6 = 3 16 27 45
C3 = 3 15 26 47 C7 = 3 17 24 56
C4 = 3 15 37 46 C8 = 3 17 26 45.

The permutation (67) leaves factor A and B fixed and reduce factor C to
only four possible combinations, namely C1, C3, C5 and C6.

We now proceed as before (for details, see [4]). There are 164 isomor-
phism classes, labeled F66 to F229; to save space, these are listed online at
[10].

6 The case of no multiple edges

Lemma 6.1. There are exactly two compatible factorizations of order seven
with no multiple edge.

Proof. A compatible factorization with no multiple edges is a near-one-factor
for which the totality of associated triples contains no repetitions. It is easy



to see that there are exactly six isomorphism classes of near-one-factors on
seven points; of these, there are two have no repeated triples. They are
shown in Table 5.

1 23 45 67 1 23 45 67
2 14 36 57 2 14 36 57
3 16 25 47 3 15 27 46
4 17 26 35 4 17 26 35
5 12 37 46 5 16 24 37
6 15 27 34 6 13 25 47
7 13 24 56 7 12 34 56

F230 F231

Table 5: All CF with no multiple edge

7 Triad designs

It is now a simple matter to test whether each compatible factorization can
be embedded in a triad design. A complete search shows that precisely six
of the designs can be embedded. Not surprisingly, each factorization can
be embedded in exactly one way. (It is not inconceivable that the unused
triples could be allocated in more than one way, but this does not occur
in the case of seven symbols.) So there are precisely six triad designs on
seven treatments, up to isomorphism. The six triad designs are shown in
Table 6. Each is labeled with the name of the corresponding compatible
factorization.

8 Summary

From lemmas 4.1, 5.1 and 6.1 we have:

Theorem 8.1. There are precisely 231 nonisomorphic compatible-factorizations
of order seven.

From Section 7 we have:



123 145 167 257 346 123 145 167 256 347
214 235 267 156 347 214 235 267 157 346
315 324 367 147 256 315 324 367 146 257
413 426 457 127 356 413 426 457 127 356
512 537 546 136 247 512 537 546 136 247
614 623 657 137 245 615 623 647 137 245
715 723 746 126 345 714 723 756 126 345

F8 F9

123 145 167 247 356 123 145 167 256 347
214 235 267 156 347 214 235 267 136 457
314 326 357 125 467 314 326 357 127 456
417 423 456 136 257 417 426 435 125 367
517 526 534 146 237 517 524 536 146 237
612 634 657 137 245 612 634 657 135 247
712 736 745 246 135 713 725 746 156 234

F154 F183

123 145 167 247 356 123 145 167 356 247
214 235 267 137 456 214 236 257 137 456
315 326 347 146 257 315 327 346 126 457
413 426 457 125 367 417 426 435 125 367
516 524 537 127 346 516 524 537 134 267
613 625 647 157 234 613 625 647 157 234
714 723 756 126 345 712 734 756 146 235

F189 F231

Table 6: All triad designs on seven treatments



Theorem 8.2. There are precisely six nonisomorphic triad designs of order
seven.
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