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Abstract  

The location model is a familiar basis for discrimination dealing with mixed 
binary and continuous variables simultaneously. The binary variables create cells 
while the continuous variables are information that measures the difference between 
groups in each cell. But, if some of the created cells are empty, the classical location 
model rule is biased and sometimes infeasible. Interestingly, the analyses of previous 
studies have revealed that non-parametric smoothing approach succeeded in 
reducing the effects of some empty cells immensely. However, one practical drawback 
to the use of discrimination methods based on the location model is that the 
smoothing approach employed, its performance is severe when there are outliers in 
the data sample. The purpose of this paper is to extend these limitations of the 
location model with the presence of outliers and empty cells. Accordingly, a new 
location model rule called Winsorized smoothed location model is developed through 
the combination of Winsorization and non-parametric smoothing approach to address 
both issues of outliers and empty cells at once. Results from simulation manifests the 
improvement of the new rule as the rates of misclassification are dramatically 
declined even the data contains outliers for all 36 different simulation data settings. 
Findings from real dataset, full breast cancer, also clearly show that the newly 
developed Winsorized smoothed location model achieves the best performance 
compared to over than 10 existing discrimination methods. These revealed that the 
newly derived rule further enhanced the applicability range of the location model, as 
previously it was limited to the non-contaminated datasets to achieve tolerable 
performance. The overall investigation verifying the new rule developed offers 
practitioners another potential good methodology for discrimination tasks, as the rule 
very favourably compared to all its competitors except only one.  

Keywords : Outliers, Winsorization, Non-Parametric Smoothing, Location Model 
Rule, Misclassification Rate 
 
I.    Introduction 

Classification of observations is a statistical task to assign new observations into 
respective groups (Keogh, 2005; Holden et al., 2011). Classification has been applied 
widely, for example, in business and finance to predict the bankruptcy of a corporate 
(Altman, 1968; Eisenbeis, 1977). The concept of classification also has been 
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employed in medical to provide diagnostic information such as prediction of the 
patients’ future condition (Maclaren, 1985; Takane et al., 1987; Poon, 2004). Apart 
from this, classification is performable in the field of business marketing to forecast 
the purchase intention of the consumers (Whitlark et al., 1993).  

In statistic, classification falls under discriminant analysis. Discriminant analysis 
is a statistical method used to classify observation into relative known groups. 
Discriminant analysis is also known as classification analysis, which is a predictive 
analysis to find a discrimination rule that can be used to allocate a new observation 
correctly (Knoke, 1982). Thus, this method can be called predictive discriminant 
analysis which is able to describe the  
group separation and to predict the group membership (Zhang, 2000; Birzer et al., 
2008). 

In real world, it is more practical to carry out discrimination with mixed variables 
rather than single type of variable. It is in fact insufficient to make any decision based 
on only one or two variables. As the data collection often involves different types of 
variables, ranging from categorical to continuous variables in general (Little & 
Schluchter, 1985; Daudin, 1986; Bar-Hen & Daudin, 1995). For example, 
discrimination for diagnostic research especially in medical science which always 
deal with mixed variables to classify patients into healthy or unhealthy groups 
(Berchuck et al., 2009; Kim et al., 2009). It is therefore essential to utilise all 
available variables simultaneously to obtain the most accurate discrimination rule. As 
such, this paper is focussing on mixed variables discrimination analysis.   

 
The Issues Concerned 

Location model is a natural discriminant rule used for mixed variables. 
Unfortunately, location model only performs well for non-contaminated datasets that 
restrict its application in the presence of outliers. Studies conducted by Hamid (2014, 
2018) showed that the misclassification rate for the datasets with outliers is higher 
compared to those without outliers.   

Undoubtedly, discrimination rule is highly affected by outliers (Chen & Muirhead, 
1994; Van Ness & Yang, 1998). An outlier is an observation that lies an abnormal 
distance from other values in a random sample from a population, often found in 
mixed variables and hence may have a disproportionately strong influence on the 
estimated parameters (Tabachnick & Fidell, 1989; Becker & Gather, 1999). Outliers 
have deleterious effects on statistical analysis. It usually serves to increase error 
variance and reduce the power of statistical tests. In addition, if non-randomly 
distributed it can decrease normality, altering the possibilities of making both Type I 
and Type II errors. Outliers can seriously bias or influence estimates that may be of 
substantive interest (Schwager & Margolin, 1982; Rasmussen, 1988; Zimmerman, 
1994). 

Therefore, handling outliers is a challenge and need to be solved in order to build 
an accurate rule. Dealing with outliers using robust techniques is the most popular 
strategies (Basak, 1998; Van Ness & Yang, 1998; Tadjudin & Landgrebe, 2000; Basu 
et al., 2004; Alqallaf et al., 2009; Farcomeni & Ventura, 2010) and hence, it is a 
critical stage involved in the building of a discrimination rule.  
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To conduct a reliable analysis more practically, adoption of robust technique is a 
need to resist possible outliers in parameters estimation (Hubert & Van Driessen, 
2004; Ekezie & Ogu, 2013). Robust technique is important to reduce the effects of 
outliers on the estimated parameters and the associated classification error rate, which 
indirectly destroy the conclusions of the study (Farcomeni & Ventura, 2010). Past 
studies have demonstrated that the adoption of robust techniques in the discrimination 
rule is a common practice. For example, robust linear discriminant analysis achieved 
lower misclassification rate compared to the classical linear discriminant analysis 
under conditions of non-normal distribution and heterogeneous covariance matrices 
(Hawkins & McLachlan, 1997; Basu et al., 2004; Hubert et al., 2008).  

In addition to outlier issue, this paper also considers the problem of empty cells 
which high possibly to occur in the location model in many situations. The presence 
of empty cells limits the utilization of maximum likelihood estimation for the 
estimation of unknown parameters of the location model. Thus, Asparoukhov and 
Krzanowski (2000) have suggested the use of smoothed location model where a non-
parametric smoothing estimation is used to estimate parameters for the location 
model in order to solve the problem of empty cells. 

Thus, in order to minimize the effect of outliers and at the same time to handle the 
crisis of empty cells of the location model, this paper develops a new discrimination 
rule called Winsorized smoothed location model through the integration of 
Winsorization and non-parametric smoothing approach to address both issues of 
outliers and empty cells concurrently.  

 
The Methodology Implemented   

This paper involves six steps in order to develop a new discrimination rule named 
Winsorized smoothed location model.  

Step 1: Handling Outliers using Winsorization and Trimming Procedure 
As discussed, in order to obtain a good parameter estimation of the location 

model, we need to overcome the outliers issue first. It was proved in the studies 
conducted by Lix and Keselman (1998) as well as by Yusof et al. (2013) that 
trimming of outliers can be beneficial in terms of robustness. Trimming can be done 
by using a symmetric trimming or asymmetric trimming. Symmetric trimming is 
trimming the same amount of trimming percentage from both tails of distribution. 
This procedure is very simple and convenience for data analyzing. Meanwhile, 
asymmetric trimming allows for different amount of trimming percentage from each 
tail of distribution. 

Difference researchers suggested different amount of trimming. For example, 
Babu et al. (1999) suggested that 15% is a good amount of trimming percentage to 
control Type I error. However, Wilcox (2003) recommended 20% of trimming to 
control Type I error and at the same time could maintain the statistical power. 
Another recommendation of good trimming percentages is from 20% to 25% by 
Rocke et al. (1982).     

Due to this reason, this paper chooses to use Winsorization in the form of 
symmetric trimming with two different percentages of 10% and 20%, as this is the 
first attempt of this procedure implemented in the location model tested on both 
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simulation and real datasets. In order to execute trimming, we sort the dataset in 
ascending order to easily recognize outlier observations. Thus, let  

     imjrimjimj yyy  21  represent the ordered observation of jth continuous variable 

in cell m of group iπ . Then, the Winsorized scores are obtained by replacing the 
trimmed observations (10% and 20% of the lower and upper tails) with the lowest 
and highest untrimmed observations, respectively. With this, the dataset is free from 
outliers’ contamination.   

Step 2: Estimating Winsorized Mean Vectors using Non-parametric Smoothing 
Approach  

The dataset from Step 1 is used to estimate Winsorized mean vectors of jth 
continuous variables of each cell m of group iπ  using non-parametric smoothing 
approach by 
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where w
imjμ  is known as Winsorized mean vectors based on the ordered and trimmed 

observations of each jth continuous variable in cell m of iπ  computed using 
Winsorization and smoothing approach, while  
    ..., 2, 1,     and  2 1,      ; ..., ,2 ,1     , cjiskm   
  ikn = the number of observations in cell k of iπ  

  ikjr
wy )( = the jth continuous variable of the ordered 

   and trimmed observation in cell m of iπ   
   after Winsorization.  
   km,wij  = the weight with respect to the 

   continuous variable j and cell m of all ordered  
   and trimmed observations of iπ  that fall in cell k  
   after Winsorization.  

Some possible functions of weights  km,wij    are available, but this paper focuses 

only on the exponential function (Mahat et al., 2009) because of less complexity on 
the designed rule and easy in the process of selecting the smoothing parameter as  

 λ)  ,( ) ,( kmd
ijij kmw 

                   (2) 

where }10{)( , ..., q,   m, kd   is the dissimilarity coefficient between the mth cell and 
the kth cell of the binary vectors, which measured using the distance function 

)()()( km
T

kmkm , d xxxxxx  . All cells that have equal dissimilarity with respect to 
cell m will thus have equal weight in the estimation of the cell means. Meanwhile, the 
degree of smoothing represented by ijλ  is chosen from the interval [0, 1] that 
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maximizes the leave-one-out pseudo-likelihood function following Asparoukhov and 
Krzanowsk (2000) 
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where ) ,D|( Λzy rrp   is the probability density of ry  if observation r falls in cell m 
of iπ  and rD z  is the training set of 1π  and 2π  with observation r excluded.                                                                                  

Step 3: Computing Winsorized Pooled Covariance Matrix using Winsorized Mean 
Vectors   

The Winsorized pooled covariance matrix is computed using the estimated 
Winsorized mean vectors through  
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where  
 in =  the number of observations of iπ  

 w
rimy = the vector of continuous variables of the  

  ordered and trimmed observation in cell m  
  of iπ after Winsorization  

  ig =  the number of non-empty cells from iπ  
 
Step 4: Calculating Smoothed Cell Probabilities  

       Finally, we consider the weighted maximum likelihood estimator to estimate imp  
in the form of 
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where the weight )( k s,w  follows the exponential function as in the equation (2) and 
standardized it in each group obtaining                                                                              
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Step 5: Developing New Location Model Rule 
Through Step 1 to Step 4, it rectifies the problems of outliers and empty cells 

which then capable to provide convincing estimators although the data is 
contaminated with outliers. With this, a new location model rule called Winsorized 
smoothed location model as expressed in Equation (7) is produced based on those 
derived estimators. Thus, a new observation )  ,(z ttt yx  is classified into 1π  if  
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otherwise zt  will be classified to 2π .     
Step 6: Evaluating the Newly Developed Rule   
The performance of the newly developed rule is evaluated using the 

misclassification rate through the leave-one-out fashion where the rule with the 



International Conference on Applied Science, Technology and Engineering 
J. Mech. Cont.& Math. Sci., Special Issue, No.-4, November (2019)  pp 90-108 

Copyright reserved © J. Mech. Cont.& Math. 
Hashibah Hamid 

95 
 

lowest error is considered the best. A simulation study is conducted to encompass 
several different conditions to investigate the strengths and the weaknesses of the new 
rule developed. This paper also assesses the effectiveness of the rule developed in 
real applications, by comparing with two forerunner methods and with many other 
popular discrimination methods, using a real medical dataset as discussed in the next 
section.  

Simulation Investigations and Some Practical Examples   

Different sample sizes, number of binary, levels of contamination and percentages 
of trimming are designed to create various conditions to highlight the strengths and 
the weaknesses of the newly developed Winsorized smoothed location model rule. To 
test the effects of sample size on the new rule, this paper generates two different 
samples (n) as 40 and 100 with balanced size for each group. The number of 
continuous variables (c) is set at 10, while 2 and 4 are set for the binary variables (b).    

To assess the impacts of the Winsorized implemented on outliers that occur in the 
dataset, different levels of contamination    are considered with shift in the mean 
vectors  imμ . This paper sets two dissimilar trimming percentages with 10% and 
20%. However, trimming at 0% (does not perform trimming at all) is also included in 
the investigation. Contamination levels    are set at 10%, 20% and 40% for all 
trimming percentages and data conditions. Meanwhile, imμ  is set as a vector of sizes c 
with shift in mean by three. From all the settings designed, it produces a total of 36 
different data conditions as displayed in Table 1.  

To test the effectiveness of the new rule developed, and to show how this rule 
performs on real applications, as well as whether it will give better results than any 
other discrimination methods that previously available. To investigate these, a 
medical data was obtained, compared and evaluated based on two different situations; 
(1) with many other discrimination methods available as well as (2) with two pioneer 
discrimination methods (classical location model and smoothed location model), 
which are popular in discrimination problems involving mixed variables.      

A well-known medical dataset with various types of variables namely full breast 
cancer (Krzanowski (1975, 1980) was used to achieve these goals. The full breast 
cancer data consists of 19 variables from 137 women with breast tumors where 59 of 
them being malignant ( 1π ) and 78 being benign ( 2π ). It contains two continuous 
variables, six ordinal variables each score in range 0-10, four nominal variables with 
three states each and three binary variables. Following Mahat et al. (2007) and Hamid 
et al. (2018), the ordinal variables are transformed into continuous form and the 
nominal variables are transformed into binary values which then give a new set of 
data with eight continuous variables and eleven binary variables. 
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Table 1. 36 Different Data Conditions 

Sample 
Size / 

Variables 
Size 

Trimmed = 0% Trimmed = 10% Trimmed = 20% 

Levels of Contamination 
(%) 

Levels of Contamination 
(%) 

Levels of Contamination 
(%) 

Θ=10 Θ=20 Θ=40 Θ=10 Θ=20 Θ=40 Θ=10 Θ=20 Θ=40 

For n = 40          
c = 10, b = 

2 
SET 

1 
SET 2 SET 3 

SET 
13 

SET 
14 

SET 15 
SET 
25 

SET 26SET 27 

c = 10, b = 
4 

SET 
4 

SET 5 SET 6 
SET 
16 

SET 17 SET 18 
SET 
28 

SET 29SET 30 

For n = 
100 

         

c = 10, b = 
2 

SET 
7 

SET 8 SET 9 
SET 
19 

SET 20 SET 21 
SET 
31 

SET 
32 

SET 33 

c = 10, b = 
4 

SET 
10 

SET 11 SET 12 
SET 
22 

SET 23 SET 24 
SET 
34 

SET 35 SET 36 

 
 

         

II.   Results and Discussion 

Results from Simulation Studies 

Due to outliers’ issue, this paper introduces a new methodology for addressing this 
problem in location model, and at the same time empty cells problem is handled 
simultaneously. In order to achieve this aim, we combine Winsorization and non-
parametric smoothing approach to handle both outliers and empty cells problems 
before building a new rule called Winsorized smoothed location model. 

The results of analysis through simulation study are shown in Table 2. At first, we 
demonstrate the rule performance relating to the binary size considered in the study. 
We discovered that the misclassification rate is smaller for a smaller binary size 
compared to the greater ones in all data conditions tested. The performance of the 
developed Winsorized smoothed location model rule is dropped for all cases when 
the size of the binary variables getting larger, from two to four, for both sample sizes 
examined. This is because location model is failed, and sometimes it is infeasible if 
the dimension of the binary variables becomes large as the multinomial cells in the 
location model grow exponentially with its dimension. If one chooses b binary 
variables, then the number of multinomial cells to be solved is 2b. This will create 
many multinomial cells and many parameters that need to be estimated which 
eventually lead to disappointing of rule performance, as happened in this study if 
comparing the rule performance between b=2 and b=4.  

Next, this paper presents the results in terms of sample size considered. The 
performance of the newly developed rule shows an improvement in all cases when 
the sample is increased from n=40 to n=100, except for data SET 14 and SET 27. 
This outcome is consistent as found by Knoke (1982), location model is obviously 
optimal when parameters are estimated using large sample sizes. Explorations in 
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large samples will typically result in better outcomes as demonstrated and obtained 
by this study as recorded in Table 2.   

The following findings demonstrate the rule performance in relation to outliers’ 
issues. This paper examines three levels of contamination, 10%, 20% and 40%, in 
order to measure the robustness of the new rule developed against outliers contained 
in the datasets. The robustness of the new rule also inspected through trimming with 
10% and 20% cutting on the lower and upper tails of the datasets. However, this 
paper still investigates the situation when no trimming is done (0% trimming) for 
those three contamination levels.     

For the first situation where the data is contaminated with outliers, but we do not 
perform trimming at all (for the case of 0% trimming). The results in Table 2 showed 
that the misclassification rate is higher when the percentage of contamination getting 
larger. The performance of the rule is gradually dropped when the data polluted with 
a higher percentage of outliers. Overall, the misclassification rate is rising for all 
datasets when the percentage of outliers increases from 10% to 40%. This finding 
sounds reasonable as the misclassification rate is higher for data that has more 
outliers.    

 
Table 2. The Performance of Winsorized Smoothed Location Model with Different 

Contamination Levels and Trimming Percentages 

Sample 
Size / 

Variables 
Size 

Trimmed = 0% Trimmed = 10% Trimmed = 20% 

Levels of 
Contamination (%) 

Levels of 
Contamination (%) 

Levels of 
Contamination (%) 

Θ=10 Θ=20 Θ=40 Θ=10 Θ=20 Θ=40 Θ=10 Θ=20 Θ=40 

For n = 
40 

         

c = 10, b 
= 2 

0.25 0.275 0.3 0.025 0.0 0.05 0.025 0.025 0.0 

c = 10, b 
= 4 

0.5 0.525 0.6 0.075 0.05 0.15 0.125 0.125 0.075 

For n = 
100 

         

c = 10, b 
= 2 

0.11 0.16 0.21 0.01 0.02 0.01 0.02 0.01 0.01 

c = 10, b 
= 4 

0.27 0.3 0.34 0.07 0.05 0.05 0.06 0.05 0.05 

 
In the second situation where this paper examines the performance of the newly 

developed rule by conducting 10% trimming over all datasets with three 
contamination levels which are 10%, 20% and 40%. This means that we implement 
Winsorization using 10% trimming on each lower and upper tails of the data 
distribution. Results of analysis show the lowest misclassification rate for cases when 
the amount of trimming is the same as the number of outliers exists in the datasets. 
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This revealed that the new developed rule demonstrates the best performance when 
the amount of trimming is equal to the amount of outlier occurs. These findings can 
be seen in Table 2, for 10% trimming case and when n=40, the rule performed the 
best under a contamination of 20  (eight observations are outliers). A 10% 
trimming means that eight observations will be pruned, four on each tail. Then, we 
compare the performance of the Winsorized smoothed location model rule between 

10  and 40 , as the rule performance is twice better under 10  compared to 
40 . However, it is very different for the rule performance when n=100 as almost 

identical for all levels of data contamination.  
Next, the performance of the newly developed rule is analyzed through the 

handling of 20% trimming on the datasets, applied to all levels of contamination, 
10 , 20  and 40 . Similar pattern of results are obtained as in the case of 

10% trimming. For n=40, the best achievement is obtained under 40  case where 
the number of trimmed observations (20% from n=40 which means 16 observations 
have been trimmed out from both tails) is equal to the number of outliers occurring in 
the datasets ( 40 % from n=40, implying that 16 observations are outliers). 
Meanwhile, if comparing the rule performance between 10  and 20 , it revealed 
exactly similar results. Again when n=100, all outcomes showed comparable 
performance. These findings tell us that sample size plays a very important role, 
which can improve the accuracy of a rule.                   

We subsequently compare the performance of the new rule developed across 
different amount of outliers appearing in the datasets as 10 , 20  and 40  
with three different trimming percentages i.e. 0% (do not perform trimming), 10% 
and 20% on both n=40 and n=100. The overall outcomes in Table 2 clearly 
demonstrated that the rule performance is improved for all the contaminated data 
when conducting a 10% trimming compared to those datasets that either do not trim 
outliers at all (far superior) or performing trimming at 20% (slightly better). In 
particular, for the case of n=40, the new rule’s performance is declining in three 
datasets and one data is unchanged through 20% trimming of outliers rather than 
10%. On the other hand, when n=100, its performance is almost the same where it is a 
bit worse in just one dataset, three data are unchanged and another two datasets 
performed a little better.  

Results from Real Examples   

In order to assess the performance of the newly developed Winsorized smoothed 
location model rule, we compared it with many other existing discrimination methods 
including linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), 
logistic discrimination (logistic), linear regression model (regression) and 
classification tree using a real medical dataset i.e. full breast cancer. There are also 
rules of smoothed location model with variable selections using forward and 
stepwise, and with variable extractions using principal component analysis (PCA) and 
two types of multiple correspondence analysis (MCA).   

Table 3 displays the performance of the studied discrimination methods. The first 
three rules are full models where they use all the original variables. There are also 
regression rules, performed using the famous forward selection, backward elimination 
and stepwise selection as well as two rules from smoothed location model using 
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forward and stepwise to select important variables. Comparisons also were made 
from another three rules of smoothed location model with PCA and MCA. We 
include our developed discrimination rule that uses Winsorization and non-parametric 
smoothing approach to correct outliers and empty cells problems before estimating 
parameters and constructing a new rule. We rank the performance of the rules in 
ascending order based on misclassification rate to give a better view of the 
performance of those compared rules.  

The smoothed location model with PCA and Burt MCA showed the best 
performance, following by the new rule produced by this study; Winsorized 
smoothed location model, using 10% and 20% with misclassification rates of 0.2492 
and 0.2565. The fourth ranking was the smoothed location model with double PCA, 
and then logistic discrimination in the fifth place that includes all measured variable 
in its model development. Meanwhile, LDA and regression (using either backward or 
stepwise selection) gave similar performance as in the sixth ranking and QDA 
performed the worst among all the methods compared.   

Results in Table 3 discovered that the discrimination rules with variable 
extractions are better than the rules that include all variables except QDA. 
Furthermore, the difference between the rules with variable extractions and the rules 
with variable selections is obvious where the former showed great improvement from 
the latter. This revealed that variable extraction was better technique to manage large 
variables involved before performing discrimination tasks. The discrimination rules 
that include some of the variables, i.e. smoothed location model with variable 
selections and classification tree, also showing bad performance. This further 
affirmed that all variables contribute in discriminating benign and malignant patients.  

The findings in overall proved that the new developed rule by this study is among 
the best methods. This may be due to full breast cancer data comprising several 
outliers from three variables; age of menarche, paranoid hostility and guilty. One 
observation in age of menarche, 14 in paranoid hostility and three in guilty have been 
identified as outlier observations (further see Hamid, 2018).   

Furthermore, this breast cancer data has 11 binary variables and hence producing 
211 = 2,048 cells per group. But, unfortunately the distribution of data is only 78 for 

1π  and 59 for 2π , thus too many of the created cells are empty. From an 
investigation, there is 2003 of 1π  and 2001 of 2π  are empty cells. It is equivalent to 

97.80% and 97.71% of cells each from 1π  and 2π  is unoccupied, which demonstrate 
a very high percentage of cells with no observation. This situation refers to high 
sparsity problem.  

The last two paragraphs have revealed the breast data has outliers and empty cells 
problems, but the newly developed rule named Winsorized smoothed location model 
has successfully managed both issues simultaneously. These are the concrete reasons 
for the new rule to perform superior than the other methods, where Winsorization has 
been used to correct outliers and non-parametric smoothing was used to rectify empty 
cells problem. 
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Table 3. Comparison and Evaluation of the Winsorized Smoothed Location Model with

Other Existing Discrimination Methods for Full Breast Cancer 

Discrimination Methods  
Selection Strategy / 

Embedded Techniques 
 
Misclassification

Rate 
 
 

Performance 
Ranking 
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DA 
 
 

QDA 
 
 

Logistic 
 
 

Regression 
 
 
 
 
 
 

Tree 
 
 

Fairly New Location 
Models (LM) :- 

 
(i)  Smoothed LM with 

variable selections 
 
 
 
 
 
 

(ii) Smoothed LM with 
double PCA 

 
 
 

(iii) Smoothed LM with 
PCA and MCA 

 
 
 
 
 
 

New Rules of Location 
Model (LM) developed 

by this study :- 
 

  

 
Include all variables 

 
 

Include all variables 
 
 

Include all variables 
 
 

Forward selection 
 

Backward elimination 
 

Stepwise selection 
 
 

Auto termination 
 
 
 
 

LM + Smoothing 
estimation + Forward 

selection 
 

LM + Smoothing 
estimation + Stepwise 

selection 
 
 
 

LM + Smoothing 
estimation + 

PCA + PCA (2PCA) 
 
 

LM + Smoothing 
estimation + 

PCA + Indicator 
MCA 

 
 

LM + Smoothing 
estimation + 

PCA + Burt MCA 
 

 

 
0.2920 

 
 

0.4453 
 
 

0.2847 
 
 
 

0.3139 
 

0.2920 
 

0.2920 
 
 

0.3139 
 
 
 
 

0.3139 
 
 
 

0.3139 
 
 
 
 

0.2774 
 
 
 

0.3066 
 
 
 
 
 

0.2336 
 
 
 
 

 

 
6 
 
 
9 
 
 
5 
 
 
 
8 
 
6 
 
6 
 
 
8 
 
 
 
 
8 
 
 
8 
 
 
 
4 
 
 
 
7 
 
 
1 
 
 
 
 
 
 
2 
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(i) Winsorized 
Smoothed LM with 

10% trimming 
 
 
 

(ii) Winsorized 
Smoothed LM with 

20% trimming 
 

 
 
 

LM + Smoothing 
estimation 

+ Winsorized 
estimation (10% 

trimming) 
 
 

LM + Smoothing 
estimation 

+ Winsorized 
estimation (20% 

trimming) 
 

 
 

0.2492 
 
 
 
 

0.2565 
 

 
 
3 
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Next, this paper compares the newly developed rule with the founder of the 

location models as displayed in Table 4. Comparing the new rule developed by this 
study termed Winsorized smoothed location model with two pioneer of the location 
models, classical and smoothed models. The outcomes obviously verified better 
performance for the new rule produced by this study. The results exhibited that the 
Winsorized smoothed location model rule with 10% trimming is a winner in 
classifying benign and malignant patients. It is then followed by a new rule developed 
with 20% trimming on the sample.  

Location model with non-parametric smoothing approach (does not perform 
Winsorization) is in the third ranking while classical location model (using Maximum 
likelihood to estimate parameters) has no result as the rule cannot be constructed 
(does not apply any modifications to the data). This is because the breast cancer data 
has 11 binary variables, thus producing 2,048 cells per group. As clarified at the end 
of the results section, 11 binary variables created cells with no observation mostly. 
Accordingly, the classical location model cannot be built as most of the cells formed 
are empty. Consequently, it is unable to estimate parameters of those empty cells, 
which lead to impractical to construct the rule.   

Although the new rule developed showed the best achievement, still the non-
parametric smoothing approach has solved the dimness of the classical location 
model. It proved that the smoothing approach works well in addressing the problem 
of empty cells. This is align with the main purpose of introducing smoothing as to 
deal with empty cells which is often and highly possible to occur in location model. 
Nonetheless, its performance continues improved for the newly developed rule. 
Winsorization is very helpful in this regard as it has successfully managed and 
overcame outliers’ issue. Consequently, the newly developed rule is free from outliers 
through Winsorization, and at the same time the empty cells problem has been solved 
with non-parametric smoothing approach. This is the main reason why the 
Winsorized smoothed location model is the winner in discriminating the group of this 
breast cancer data as it has both outliers and empty cells problems.  
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Table 4. Comparison and Evaluation of the Winsorized Smoothed Location Model with
Two Pioneer Location Models for Full Breast Cancer 

 

Discrimination Methods  Embedded Techniques  
Misclassification

Rate 
 
 

Performanc
e 

Ranking 

 
Two Pioneer Location 

Models :- 
 

(i) Classical location 
model 

 
 

(ii) Smoothed location 
model 

 
 

New Rules of Location 
Model (LM) developed 

by this study :- 
 

(i) Winsorized 
Smoothed LM with 

10% trimming 
 
 
 
 

(ii) Winsorized 
Smoothed LM with 

20% trimming 
 

  

 
 
 

LM + Maximum 
likelihood  
estimation 

 
LM + Smoothing 

estimation 
 
 
 
 
 
 
 

LM + Smoothing 
estimation + 
Winsorized 

estimation (10% 
trimming) 

 

LM + Smoothing 
estimation + 
Winsorized 

estimation (20% 
trimming) 

 

 

 
 
 

No result 
 
 

0.2920 
 
 
 
 
 
 
 
 

0.2492 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

0.2565 
 

 

 
 

- 
 
 
3 
 
 
 
 

 
1 
 
 
 
2 
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III.    Conclusions 

As a whole, it can be inferred that the implementation of outliers trimming at 10% 
achieves better performance for the newly developed rule rather than using trimming 
at 20% if n=40. Meanwhile when n=100, the rule performance is somewhat similar 
either using 10% or 20% trimming. Thus, we come to the decision that 10% trimming 
is capable of producing better rule performance for the datasets with outlier’s 
contamination up to 40% and sample size up to 100. We believe that both 
approaches, Winsorization and non-parametric smoothing, play important roles as 
part of the modeling strategy when dealing with mixed variables containing outliers 
and many variables involved primarily categorical (binary). 
     The strength of the new rule developed is proven when it was successful improved 
the performance of the location model compared to the original rules introduced, 
classical location model and smoothed location model, as well as with a range of 
other existing discrimination methods. From all the revealed findings, it can be 
concluded that the combination of Winsorization and non-parametric smoothing in 
the location model is a great methodology in fixing outliers problem as well as some 
or even many empty cells that may arise jointly. Hence, it can be claimed that this 
methodology is robust and the applicability of the location model thereby greatly 
increased. 
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