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Abstract

This paper discusses the strategy of conducting variable reduction processes such that
they contribute to optimise the performance of linear discriminant analysis (LDA). The
variables selection technique with local searching algorithm is manipulated. The technique
is proposed to choose useful variables that give minimum error rate on LDA. Meanwhile,
principal component analysis is used to extract important information from the original
variables. The behaviour of eigenvalue and total variation explained is studied to understand
how these two indicators may give optimum performance of LDA. Performance of the
proposed strategy and LDA with all variables was assessed in leave-one-out fashion to
avoid biasness. This study discovers that LDA with backward elimination is competitive to
the full model, but extra concern needs to be given to the PCA.

Keywords leave-one-out error, linear discriminant analysis, principal component analysis,
variables reduction

Abstrak

Kajian ini membincangkan strategi menjalankan proses pengurangan pemboleh-ubah
sebagaimana mereka menyumbang untuk mengoptimumkan prestasi analisis diskriminan
linear (LDA). Teknik pemilihan pemboleh-ubah dengan algoritma carian tempatan
dimanipulasikan. Teknik ini dicadangkan untuk memilih pemboleh-ubah yang berguna
yang memberikan kadar kesilapan yang minimum pada LDA. Sementara itu, analisis
komponen utama digunakan untuk mendapatkan maklumat penting daripada pemboleh-
ubah asal. Tingkah laku nilai eigen dan jumlah variasi dijelaskan dikaji untuk memahami
bagaimana kedua-dua penunjuk ini boleh memberikan prestasi LDA yang optimum.
Prestasi strategi yang dicadangkan dan LDA dengan semua pemboleh ubah telah dinilai
dalam fesyen leave-one-out bagi mengelakkan bias. Kajian ini mendapati bahawa LDA
dengan penghapusan ke belakang adalah kompetitif kepada model penuh, tetapi perhatian
tambahan perlu diberikan kepada PCA.

Kata kunci ralat /eave-one-out, analisis diskriminan linear, analisis komponen utama,
pengurangan pemboleh-ubah
Introduction

Linear Discriminant Analysis (LDA) is a well established statistical technique for
classification and discrimination which was originally developed in 1936 by R.A. Fisher.
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It has been widely used in many classification problems (Croux et al., 2008) and performs
well in various applications including medicine, engineering, psychology, computer
sciences, education and finance (see Pasiouras et al., 2005; Guliashki, 2006; Lu et al.,
2007). A related mathematical function in LDA called linear discriminant function has
optimum performance when normality holds with homogeneous covariance matrix among
groups. Also, this classification rule performs well even in situations where the underlying
properties like normally distributed data with constant covariance matrices over all groups
are not met (Czogiel et al., 2007). Such behaviour has made the LDA becomes trusted and
chosen by many practitioners.

However, the LDA can be seriously degraded if singularity covariance matrix occurs
which often due to the measured variables exceeds the number of data points (Friedman,
1989; Chen et al., 2000; Zhang & Jia, 2007) or limited sample size (Thomaz & Gillies,
2005). The classification in such circumstances is typically a critical issue (Liang ef al.,
2007), indicates an over-fitting rule (Kim ez al., 2003) and makes LDA difficult to work
(Nie et al., 2007). As a result, it generally shows poor classification performance (Qiao
et al., 2008). A common approach to deal with the singularity problem is to apply an
intermediate variables reduction prior to construction the LDA by either (i) selecting the
variables that are best discriminating the groups (Murray, 1977; Bishop, 1995) or (ii)
combining the variables (Zhu & Martinez, 2006; Zuo et al., 2006) in such a way that its
combination optimizes some performance indicator, e.g. minimum error rate (Belhumeur
etal., 1997; Li, 2006; Fearn, 2008) and give largest separation between the groups (Jeffers,
1967; Héberger & Andrade, 2004; Huang et al., 2005; Dai et al., 2006).

The selection of variables that best discriminating the groups means that researchers
are dealing with the process of determining a subset of measured variables. Then, use
the chosen one to construct the linear discriminant function. Meanwhile, the combination
of variables needs a systematic mechanism to join all measured variables through a
mathematical function. Then, the new variables produced from the mathematical function
are used for classification purposes. Both techniques have been exercised in classification
task when researchers prefer to keep the number of variables at minimum. Most existing
studies perform variables reduction process prior to LDA. Such independent processes
are questionable because the aim of variable reduction process (to reduce the original
variables) does not match with the aim of LDA (to split the groups).

Thus, this paper attempts to propose the idea of joining the two processes such that
they are working at the same aim. The investigation covers some common data sets
with different sizes of variables for two-group problem where the groups are assumed
to have homogeneous covariance matrix. Section 2 overviews the concept of LDA and
variables reduction techniques. Then, Section 3 gives the details about the proposed idea
and investigations that were carried out. Results of the investigations are summarised in
Section 4 and the final section concludes the findings.

LDA with Many Variables

Linear Discriminant Analysis

Suppose there are two groups, 7, and 7,, both consist of objects with large number of
p continuous variables. We denote the vector of p continuous variables in group 7; for
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i=1,2asx"= (x, x,,..., xp) and the probability of being in 7; as p. The idea of linear
discriminant function in LDA is to use a linear combination of x of the n objects as f{x)
and choosing the coefficients so that the difference of the means of the linear combination
in the two groups to its variance is maximized. When both groups are multivariate normal
distributions having means i, and i, with a common covariance matrix 0, the density
function of x in 7, is

1 ) Y ()
f(x|7fi)=(27[),,ﬂwe2 (1)

Taking the logarithm of the ratio between f(x)|x, and f(x)|x, will give optimal
classification function and will assign x to 7, if

(i-1,) O [x=1(i-1,)] >log(&] 2)
b

Commonly the parameters i, O and p,are unknown and they have to be estimated
from sample. The simplest estimation approach is based on the maximum likelihood but
sometimes the estimation is not permissible if the size of observed variables (p) is bigger
than the size of sample (n) relatively due to the occurrence of singular covariance matrix.
In such a case, some adjustments need to be done to allow equation (2) to be computed.
Common procedures that can be applied are either (i) choosing some important variables
or (ii) projecting the data onto a low dimensional subspace by linear combination of its
variables.

LDA with variables selection technique

Selection of the most useful variables in discriminant analysis is an important but difficult
task (Urbakh, 1971). There are two concerns in the variable selection technique: (i) the
indicator to determine the best variables and (ii) the searching process of the variables.
Previous studies have introduced some indicators in order to choose the best possible
variables such as rule performance criteria (Ganeshanandam & Krzanowski, 1989),
group separation criteria (McKay & Campbell, 1982; Daudin & Bar-Hen, 1999), model
goodness-of-fit criteria including AIC and BIC (Daudin, 1986) and other criteria such
as R’, Hotelling’s 7%, Wilk’s A (Rencher, 1993) and ¢-statistics (Weiner & Dunn, 1966).
Different used of indicators may lead to different results hence the choice of indicator
varies depending on the aim of the study and application.

The best searching process of the best set of variables is to seek for all possible subsets
of combination variables and choose the best combination that gives the best performance
(Krzanowski, 1987). However, this strategy is exhaustive for large number of variables.
Alternatively, researchers use some systematic searching strategy based on local searches
through the famous forward, backward and stepwise selection. The local search is easy to
perform but the outcome may not contain all useful variables and may eliminate the useful
ones.
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LDA with variables extraction technique

Sometimes the number of useful variables is big and variables selection process may
not suitable to be implemented. In such a case, variable dimensionality reduction can
be performed by projecting the original data into a low dimensional subspace through an
extraction process (Liang et al., 2007). The extraction process assists to reduce the burden
of data management and facilitates more accurate estimation of statistics (Nenadic, 2007).
Thus, it helps to improve the recognition of accuracy and efficiency of the constructed
rule (Li, 2006). Many possible variables extraction techniques are feasible to use such as
principal component analysis, factor analysis, corresponding analysis, multidimensional
scaling, Fourier analysis and much more. Different technique has different strengths and
weaknesses and it is not the intention of this paper to review them all.

Over the past ten years, the principal component analysis (PCA) which introduced by
Karl Pearson (1901) has received great attention as an extraction technique (Zuo et al.,
2006). PCA extracts the p original variables into ¢ new uncorrelated components such that
q < p with little missing information (Rao, 1964; Johnson & Wichern, 1992). PCA has been
widely used as an exploratory multivariate data analysis and predictive models. In some
studies that are swamped with many observed variables such as image processing, voice
recognition, graphical information system and microarray, PCA becomes as an important
tool to extract most of the variation in the original data (see Sirovich & Kirby, 1987; Turk
& Pentland, 1991; Belhumeur et al., 1997; Wu et al., 2003; Liu & Chen 2006; Xu et
al., 2009. The new extracted components from PCA allow more analyses to be done at
convenience time and computational tasks.

Classification problems sometimes are burden with many observed variables. The
discussed two techniques namely variables selection technique and variables extraction
technique have been implemented to reduce the burden. But, often researchers perform
variable reduction process and construct classification rule independently. So, this paper
takes an effort to investigate the combination of these two processes simultaneously with
an attempt to reduce biasness of choosing useful variables for classification purpose.

Materials and Methods

Data sets

Three famous data sets were used in the investigation with vary sizes. The iris data set
contains four variables with 50 random records of flowers from each species of setosa,
versicolor and virginica (Anderson, 1935). The measured variables in this small sample
size include sepal length, sepal width, petal length and petal width (all in centimetres). This
paper limits the discussion for two species, versicolor and virginica, as the distribution of
data of these two groups are overlapping.

The second data set is considered moderate sample size is based on the Pima Indian
tribe by the intramural research program of the National Institute of Diabetes and Digestive
and Kidney Diseases. The investigation aims to study the differences of patients who show
a sign of diabetes based on criteria of World Health Organization. All patients are females
at least 21 years old of Pima Indian heritage with eight measured variables: number of times
pregnant, plasma glucose concentration a 2 hours in an oral glucose tolerance test, diastolic
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blood pressure (mm Hg), triceps skin fold thickness (mm), two-hour serum insulin (mu U/
ml), body mass index (weight in kg/(height in m)?), diabetes pedigree function and age of
patients (years) (see Hanson et al., 2007).

The final data set which is considerably big size of sample concerns about crime (see
Hand et al., 1994) with 13 variables. The variables include crime rate, number of males
of age 14-24 years old, education level, 1960 per capita expenditure, 1959 per capita
expenditure, labor force, number of males per 1000 females, population size, number of
non-whites, unemployment rate of urban males of age 14-24, unemployment rate of urban
males of age 35-39, family income and income inequality (the number of families per 1000
earnings below 1/2 the median income). The aim of the investigation on this data is to
compare the crime rate between the southern parts of the United States with other regions,
which consists of 19 states for each region.

Conceptual framework and assessment

In general, the process of classification with variables reduction can be performed with the
following steps: (i) choose a set of useful variables from the original number of variables, (ii)
use the chosen set of variables to construct a classification rule, (iii) assess the constructed
rule and (iv) use the accepted rule to classify future objects into one of the two groups.
This study investigated two techniques for reducing the original variables namely variables
selection and variables extraction. Variables selection was performed via stepwise selection,
forward selection or backward elimination. Although there are many indicators available
for choosing useful variables from the variables selection technique, this paper preferred to
choose variables that contribute to minimise the assessment criterion, percentage of error
due to misclassifying objects to groups. Meanwhile, variables extraction was performed
using principal component analysis. In practice, common indicators for choosing the
number of components are based on eigenvalue of greater than 1, total variation explained
by the components and scree plot. Even so, these indicators do not promise to contribute
small error rate in classification process. Therefore, this paper examines error rate for each
number of components in PCA.

In order to produce an unbiased rule, this study performed the classification process
in a leave-one-out fashion. First, the first object from the sample was taken out as a test
object. Then, the remaining n - / objects which act as training objects were used to choose
useful variables either via (i) variables selection or (ii) extraction variables of PCA. Next,
the useful variables were used to construct the linear discriminant function. The omitted
object was classified into either group 1 or group 2 using the constructed rule. Then, the
omitted object was returned back to the sample and the second object in the sample was
taken out as a test object. Then, the process of choosing useful variables, constructing
linear discriminant function and assessing the constructed rule were performed. These
steps were repeated until each object in the sample was taken out in turn. Finally, the error
rate was computed by comparing the actual group with the predicted group, and divided by
n number of objects. The value of result obtains from these strategies is known as leave-
one-out error rate. The framework of these steps is depicted in Figure 1.

This paper investigated the performance of LDA in three forms: (i) the construction
of LDA without the process of reducing the original variables, (ii) the construction of
LDA with variables selection and (ii) the construction of LDA with variables extraction.
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Performance of the constructed models was assessed with leave-one-out error rate and the
best model was the one with the lowest error rate. At the same time, this paper investigated
the pattern of eigenvalues and total variation explains of PCA in relation to the error rate.

included included
all data all data
Raw LDA‘ FS? . ¢ Raw Stepwise use
Data Analysis raining se Data Regression plus | training set

LDA Analysis

Projection:
LDA Model

Projection:
Selected Variables
plus LDA Model

use
Classify the | test set

Omitted Object . use
Classify the | test set

Omitted Object

(a) Traditional LDA Scheme
(b) Stepwise Regression plus LDA Scheme

included
all data

Raw PCA plus LDA |use
Data Analysis training set

Projection:
PCs plus LDA Model

. use
Classify the | {gst set

Omitted Object

(c) PCA plus LDA Scheme

Figure 1 Three forms of investigation of LDA in leave-one-out fashion

Results and Discussion

Table 1 shows the performance of LDA of the three forms for iris data set. Among the LDA
with variables selection, LDA with backward elimination performs the best and as good
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as the full model with three percent error rate. In fact, the backward elimination does not
eliminate any variables at all hence it is an original iris data set. The stepwise selection and
forward selection have greater error rate than the full LDA because they use one variable
with little information to describe the classification. Meanwhile, the LDA with variables
extraction scores shows perfect classification (0% error rate) except for LDA with two
components. Such result indicates that LDA with principal component is the best compared
to full LDA and LDA with variables selection. However, performance of LDA with four
components is questionable as it performs better than the full model although the variations
in the two models are the same.

Table 1 Percentage of misclassifications using Full-LDA and LDA with reduced variables for iris

data set
Models Selected number of variables or components  Error rate
Full LDA 4 0.03
LDA with variables selection
1. Stepwise method 1 (Petal. Width*) 0.06
2. Forward selection 1 (Petal. Width*) 0.06
3. Backward elimination 4 0.03
1 0.00
. . . 2 0.01
LDA with variables extraction 3 0.00
4 0.00

*selected variables

Further analysis was carried on LDA with variables extraction. The scatter plot as in
Figure 2 is used in order to visualise the differences between the original variables and the
extracted components of PCA in discriminating the groups where “*” represents Group
1 and “0” represents Group 2. The figure demonstrates that the original variables of iris
data are capable to show clear separation between the two groups in linear fashion but
with some overlapping. However, the extracted components show great redundancy of the
two groups in random behaviour. Such results occurs as the components are uncorrelated
hence may influence the over performance of LDA. The investigations on the recorded
eigenvalues and total variation explain of components (as tabulated in Table 2) show that
the use of the first component is capable to achieve common point of selected component
(often eigenvalues greater than 1 are considered useful) with almost 74% variation of the
original variables explained by the component. However, it is hardly to relate the behaviour
of the obtained error rate with either eigenvalue and total variation explains for this data
set.

Table 2 Eigenvalue and total variance explained based on components for iris data set

Number of components 1 2 3 4
Eigenvalue 1.72 0.74 0.64 0.28
Percent of total variance explained 73.97 87.83 97.98 100.00
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Figure 2 Scatter plot of original variables and PCA components scores of iris data set

The Pima Indians diabetes shows that the use of all variables in LDA contributes to
perfect classification task. This is explained by the zero mistakes in full LDA and eight
components of LDA with variables extraction (see Table 3). Among the LDA with variables
selection, backward elimination gives better result than the other searching procedures.
However, it is the worst compared to the full LDA and LDA with variables extraction.
These results indicate that the Pima Indians diabetes is best explained by using the all
measured variables. If a set of reduced variables is a concern on this data set, then the PCA
suggests either three or four components to remain (see Table 4) based on eigenvalues
greater than 1. At these points, the total variation explained is 61% and 72% respectively
with error rate equal to zero percent.

Table 3 Percentage of misclassifications using Full-LDA and LDA with reduced variables for Pima
Indians Diabetes data set

Models Selected number of variables or components  Error rate
Full LDA 8 0.00
LDA with variables selection
1. Stepwise method 2 (no. of times pregnant, diabetes pedigree*) 0.05
2. Forward selection 2 (no. of times pregnant, diabetes pedigree*) 0.05
3. Backward elimination 8 0.01
1 0.00
2 0.01
3 0.00
. . . 4 0.00
LDA with variables extraction 5 0.00
6 0.00
7 0.00
8 0.00

*selected variables
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Table 4 Eigenvalue and total variance explained based on components for Pima Indians Diabetes
data set

Number of
components

Eigenvalue 1.54 1.32 1.01 0.94 0.87 0.83 0.65 0.64

Percent of total
variance explained

1 2 3 4 5 6 7 8

26.16  47.81 60.67 71.63 81.16 89.70 94.94 100.00

The performance on the crime data set is tabulated in Table 5. The full LDA makes no
mistake in classifying the objects hence it tells us that all 13 variables are able to discriminate
the objects correctly to their groups. The LDA with variables selection indicates that the
best rule is to remain all the measured variables (see LDA with backward elimination)
which it supports the result of full LDA. Finally, the LDA with extracted variables gives
more choices. Nevertheless, keeping all 13 components gives slightly error rate. If a set of
reduced variables is a concern, PCA suggests to remain four components (total variation
explained = 86%) and it also give zero percent error rate.

Table 5 Percentage of misclassifications using Full-LDA and LDA with reduced variables for
crime data set

Models Selected number of variables or components  Error rate
Full LDA 13 0.00
LDA with variables selection
1. Stepwise method 3 (crime, income inequality and education®) 0.06
2. Forward selection 3 (crime, income inequality and education®) 0.06
3. Backward elimination 13 0.00
1 0.01
2 0.00
3 0.01
4 0.00
5 0.00
6 0.01
LDA with variables extraction 7 0.02
8 0.01
9 0.00
10 0.00
11 0.00
12 0.00
13 0.01

*selected variables

Table 6 Eigenvalue and total variance explained based on components for crime data set

Number of components Eigenvalue Percent of total variance explained
1 2.34 42.20
2 1.60 6.186
3 1.43 77.58
4 1.02 85.52

Note: Component with eigenvalue less than 1.0 is not presented
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Conclusions and Recommendation

This paper is able to show that the proposed idea of performing variables reduction
that contribute to minimise the error rate, either through variables selection or variables
extraction, is competitive to the full LDA. Study on three data sets shows that LDA
with backward elimination may replace the LDA with all measured variables. Also, if
all measured variables are important, the backward elimination will not eliminate any
of the variables hence it acts as a full model. The LDA with variables extraction can be
considered as alternative if variables selection is not permissible. This study shows that
LDAs with components which eigenvalue greater than 1 perform as good as the full model.
The indicator which based on the total variation explained is too subjective as it is based
on the choice of researchers. Therefore, there will be some obstacles to determine the best
cutting point for this indicator.

The findings in this study cannot be used to generalise the behaviour of LDA in much
wider context. But, these findings give a promising idea that the process of reducing
variables needs to meet the overall aim of classification. In future investigation, focus can
be given out to PCA in classification problems so that the chosen components from PCA
are contributing to optimise the performance of LDA. Extensive investigations will be
planned to study the LDA in much wider problems especially in dealing with variability
of sample size.
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