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Abstract

This paper discusses the strategy of conducting variable reduction processes such that 
they contribute to optimise the performance of linear discriminant analysis (LDA). The 
variables selection technique with local searching algorithm is manipulated. The technique 
is proposed to choose useful variables that give minimum error rate on LDA. Meanwhile, 
principal component analysis is used to extract important information from the original 
variables. The behaviour of eigenvalue and total variation explained is studied to understand 
how these two indicators may give optimum performance of LDA. Performance of the 
proposed strategy and LDA with all variables was assessed in leave-one-out fashion to 
avoid biasness. This study discovers that LDA with backward elimination is competitive to 
the full model, but extra concern needs to be given to the PCA. 

Keywords   leave-one-out error, linear discriminant analysis, principal component analysis, 
variables reduction

Abstrak

Kajian ini membincangkan strategi menjalankan proses pengurangan pemboleh-ubah 
sebagaimana mereka menyumbang untuk mengoptimumkan prestasi analisis diskriminan 
linear (LDA). Teknik pemilihan pemboleh-ubah dengan algoritma carian tempatan 
dimanipulasikan. Teknik ini dicadangkan untuk memilih pemboleh-ubah yang berguna 
yang memberikan kadar kesilapan yang minimum pada LDA. Sementara itu, analisis 
komponen utama digunakan untuk mendapatkan maklumat penting daripada pemboleh-
ubah asal. Tingkah laku nilai eigen dan jumlah variasi dijelaskan dikaji untuk memahami 
bagaimana kedua-dua penunjuk ini boleh memberikan prestasi LDA yang optimum. 
Prestasi strategi yang dicadangkan dan LDA dengan semua pemboleh ubah telah dinilai 
dalam fesyen leave-one-out bagi mengelakkan bias. Kajian ini mendapati bahawa LDA 
dengan penghapusan ke belakang adalah kompetitif kepada model penuh, tetapi perhatian 
tambahan perlu diberikan kepada PCA.

Kata kunci   ralat leave-one-out, analisis diskriminan linear, analisis komponen utama, 
pengurangan pemboleh-ubah

Introduction

Linear Discriminant Analysis (LDA) is a well established statistical technique for 
classiication and discrimination which was originally developed in 1936 by R.A. Fisher. 
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It has been widely used in many classiication problems (Croux et al., 2008) and performs 
well in various applications including medicine, engineering, psychology, computer 
sciences, education and inance (see Pasiouras et al., 2005; Guliashki, 2006; Lu et al., 
2007). A related mathematical function in LDA called linear discriminant function has 
optimum performance when normality holds with homogeneous covariance matrix among 
groups. Also, this classiication rule performs well even in situations where the underlying 
properties like normally distributed data with constant covariance matrices over all groups 
are not met (Czogiel et al., 2007). Such behaviour has made the LDA becomes trusted and 
chosen by many practitioners.

However, the LDA can be seriously degraded if singularity covariance matrix occurs 
which often due to the measured variables exceeds the number of data points (Friedman, 
1989; Chen et al., 2000; Zhang & Jia, 2007) or limited sample size (Thomaz & Gillies, 
2005). The classiication in such circumstances is typically a critical issue (Liang et al., 
2007), indicates an over-itting rule (Kim et al., 2003) and makes LDA dificult to work 
(Nie et al., 2007). As a result, it generally shows poor classiication performance (Qiao 
et al., 2008). A common approach to deal with the singularity problem is to apply an 
intermediate variables reduction prior to construction the LDA by either (i) selecting the 
variables that are best discriminating the groups (Murray, 1977; Bishop, 1995) or  (ii) 
combining the variables (Zhu & Martinez, 2006; Zuo et al., 2006) in such a way that its 
combination optimizes some performance indicator, e.g. minimum error rate (Belhumeur 
et al., 1997; Li, 2006; Fearn, 2008) and give largest separation between the groups (Jeffers, 
1967; Héberger & Andrade, 2004; Huang et al., 2005; Dai et al., 2006).

The selection of variables that best discriminating the groups means that researchers 
are dealing with the process of determining a subset of measured variables. Then, use 
the chosen one to construct the linear discriminant function. Meanwhile, the combination 
of variables needs a systematic mechanism to join all measured variables through a 
mathematical function. Then, the new variables produced from the mathematical function 
are used for classiication purposes. Both techniques have been exercised in classiication 
task when researchers prefer to keep the number of variables at minimum. Most existing 
studies perform variables reduction process prior to LDA. Such independent processes 
are questionable because the aim of variable reduction process (to reduce the original 
variables) does not match with the aim of LDA (to split the groups).

Thus, this paper attempts to propose the idea of joining the two processes such that 
they are working at the same aim. The investigation covers some common data sets 
with different sizes of variables for two-group problem where the groups are assumed 
to have homogeneous covariance matrix. Section 2 overviews the concept of LDA and 
variables reduction techniques. Then, Section 3 gives the details about the proposed idea 
and investigations that were carried out. Results of the investigations are summarised in 
Section 4 and the inal section concludes the indings.

LDA with Many Variables

Linear Discriminant Analysis

Suppose there are two groups, 1π  and 2π , both consist of objects with large number of 
p continuous variables. We denote the vector of p continuous variables in group iπ  for  
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Commonly the parameters i
i 
, Ó and p

i 
are unknown and they have to be estimated 

from sample. The simplest estimation approach is based on the maximum likelihood but 
sometimes the estimation is not permissible if the size of observed variables (p) is bigger 
than the size of sample (n) relatively due to the occurrence of singular covariance matrix. 
In such a case, some adjustments need to be done to allow equation (2) to be computed. 
Common procedures that can be applied are either (i) choosing some important variables 
or (ii) projecting the data onto a low dimensional subspace by linear combination of its 
variables. 

LDA with variables selection technique

Selection of the most useful variables in discriminant analysis is an important but dificult 
task (Urbakh, 1971). There are two concerns in the variable selection technique: (i) the 
indicator to determine the best variables and (ii) the searching process of the variables. 
Previous studies have introduced some indicators in order to choose the best possible 
variables such as rule performance criteria (Ganeshanandam & Krzanowski, 1989), 
group separation criteria (McKay & Campbell, 1982; Daudin & Bar-Hen, 1999), model 
goodness-of-it criteria including AIC and BIC (Daudin, 1986) and other criteria such 
as R2, Hotelling’s T2, Wilk’s Λ (Rencher, 1993) and t-statistics (Weiner & Dunn, 1966). 
Different used of indicators may lead to different results hence the choice of indicator 
varies depending on the aim of the study and application.

The best searching process of the best set of variables is to seek for all possible subsets 
of combination variables and choose the best combination that gives the best performance 
(Krzanowski, 1987). However, this strategy is exhaustive for large number of variables. 
Alternatively, researchers use some systematic searching strategy based on local searches 
through the famous forward, backward and stepwise selection. The local search is easy to 
perform but the outcome may not contain all useful variables and may eliminate the useful 
ones.
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LDA with variables extraction technique 

Sometimes the number of useful variables is big and variables selection process may 
not suitable to be implemented.  In such a case, variable dimensionality reduction can 
be performed by projecting the original data into a low dimensional subspace through an 
extraction process (Liang et al., 2007). The extraction process assists to reduce the burden 
of data management and facilitates more accurate estimation of statistics (Nenadic, 2007). 
Thus, it helps to improve the recognition of accuracy and eficiency of the constructed 
rule (Li, 2006). Many possible variables extraction techniques are feasible to use such as 
principal component analysis, factor analysis, corresponding analysis, multidimensional 
scaling, Fourier analysis and much more. Different technique has different strengths and 
weaknesses and it is not the intention of this paper to review them all.

Over the past ten years, the principal component analysis (PCA) which introduced by 
Karl Pearson (1901) has received great attention as an extraction technique (Zuo et al., 
2006). PCA extracts the p original variables into q new uncorrelated components such that 
q < p with little missing information (Rao, 1964; Johnson & Wichern, 1992). PCA has been 
widely used as an exploratory multivariate data analysis and predictive models. In some 
studies that are swamped with many observed variables such as image processing, voice 
recognition, graphical information system and microarray, PCA becomes as an important 
tool to extract most of the variation in the original data (see Sirovich & Kirby, 1987; Turk 
& Pentland, 1991; Belhumeur et al., 1997; Wu et al., 2003; Liu & Chen 2006; Xu et 

al., 2009. The new extracted components from PCA allow more analyses to be done at 
convenience time and computational tasks.

Classiication problems sometimes are burden with many observed variables. The 
discussed two techniques namely variables selection technique and variables extraction 
technique have been implemented to reduce the burden. But, often researchers perform 
variable reduction process and construct classiication rule independently. So, this paper 
takes an effort to investigate the combination of these two processes simultaneously with 
an attempt to reduce biasness of choosing useful variables for classiication purpose.

Materials and Methods

Data sets

Three famous data sets were used in the investigation with vary sizes. The iris data set 
contains four variables with 50 random records of lowers from each species of setosa, 
versicolor and virginica (Anderson, 1935). The measured variables in this small sample 
size include sepal length, sepal width, petal length and petal width (all in centimetres). This 
paper limits the discussion for two species, versicolor and virginica, as the distribution of 
data of these two groups are overlapping.

The second data set is considered moderate sample size is based on the Pima Indian 
tribe by the intramural research program of the National Institute of Diabetes and Digestive 
and Kidney Diseases. The investigation aims to study the differences of patients who show 
a sign of diabetes based on criteria of World Health Organization. All patients are females 
at least 21 years old of Pima Indian heritage with eight measured variables: number of times 
pregnant, plasma glucose concentration a 2 hours in an oral glucose tolerance test, diastolic 
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blood pressure (mm Hg), triceps skin fold thickness (mm), two-hour serum insulin (mu U/
ml), body mass index (weight in kg/(height in m)2), diabetes pedigree function and age of 
patients (years) (see Hanson et al., 2007). 

The inal data set which is considerably big size of sample concerns about crime (see 
Hand et al., 1994) with 13 variables. The variables include crime rate, number of males 
of age 14-24 years old, education level, 1960 per capita expenditure, 1959 per capita 
expenditure, labor force, number of males per 1000 females, population size, number of 
non-whites, unemployment rate of urban males of age 14-24, unemployment rate of urban 
males of age 35-39, family income and income inequality (the number of families per 1000 
earnings below 1/2 the median income). The aim of the investigation on this data is to 
compare the crime rate between the southern parts of the United States with other regions, 
which consists of 19 states for each region.

Conceptual framework and assessment 

In general, the process of classiication with variables reduction can be performed with the 
following steps: (i) choose a set of useful variables from the original number of variables, (ii) 
use the chosen set of variables to construct a classiication rule, (iii) assess the constructed 
rule and (iv) use the accepted rule to classify future objects into one of the two groups. 
This study investigated two techniques for reducing the original variables namely variables 
selection and variables extraction. Variables selection was performed via stepwise selection, 
forward selection or backward elimination. Although there are many indicators available 
for choosing useful variables from the variables selection technique, this paper preferred to 
choose variables that contribute to minimise the assessment criterion, percentage of error 
due to misclassifying objects to groups. Meanwhile, variables extraction was performed 
using principal component analysis. In practice, common indicators for choosing the 
number of components are based on eigenvalue of greater than 1, total variation explained 
by the components and scree plot. Even so, these indicators do not promise to contribute 
small error rate in classiication process. Therefore, this paper examines error rate for each 
number of components in PCA.

In order to produce an unbiased rule, this study performed the classiication process 
in a leave-one-out fashion. First, the irst object from the sample was taken out as a test 
object. Then, the remaining n - 1 objects which act as training objects were used to choose 
useful variables either via (i) variables selection or (ii) extraction variables of PCA. Next, 
the useful variables were used to construct the linear discriminant function. The omitted 
object was classiied into either group 1 or group 2 using the constructed rule. Then, the 
omitted object was returned back to the sample and the second object in the sample was 
taken out as a test object. Then, the process of choosing useful variables, constructing 
linear discriminant function and assessing the constructed rule were performed. These 
steps were repeated until each object in the sample was taken out in turn. Finally, the error 
rate was computed by comparing the actual group with the predicted group, and divided by 
n number of objects. The value of result obtains from these strategies is known as leave-

one-out error rate. The framework of these steps is depicted in Figure 1.
This paper investigated the performance of LDA in three forms: (i) the construction 

of LDA without the process of reducing the original variables, (ii) the construction of 
LDA with variables selection and (ii) the construction of LDA with variables extraction. 
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Performance of the constructed models was assessed with leave-one-out error rate and the 
best model was the one with the lowest error rate. At the same time, this paper investigated 
the pattern of eigenvalues and total variation explains of PCA in relation to the error rate.
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Figure 1   Three forms of investigation of LDA in leave-one-out fashion

Results and Discussion

Table 1 shows the performance of LDA of the three forms for iris data set. Among the LDA 
with variables selection, LDA with backward elimination performs the best and as good 
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as the full model with three percent error rate. In fact, the backward elimination does not 
eliminate any variables at all hence it is an original iris data set. The stepwise selection and 
forward selection have greater error rate than the full LDA because they use one variable 
with little information to describe the classiication. Meanwhile, the LDA with variables 
extraction scores shows perfect classiication (0% error rate) except for LDA with two 
components. Such result indicates that LDA with principal component is the best compared 
to full LDA and LDA with variables selection. However, performance of LDA with four 
components is questionable as it performs better than the full model although the variations 
in the two models are the same.

Table 1   Percentage of misclassiications using Full-LDA and LDA with reduced variables for iris 

data set

Models Selected number of variables or components Error rate

Full LDA 4 0.03

LDA with variables selection
1.  Stepwise method
2.  Forward selection 
3.  Backward elimination

1 (Petal.Width*)
1 (Petal.Width*)

4 

0.06
0.06
0.03

LDA with variables extraction

1
2
3
4

0.00
0.01
0.00
0.00

*selected variables

Further analysis was carried on LDA with variables extraction. The scatter plot as in 
Figure 2 is used in order to visualise the differences between the original variables and the 
extracted components of PCA in discriminating the groups where “*” represents Group 
1 and “0” represents Group 2. The igure demonstrates that the original variables of iris 

data are capable to show clear separation between the two groups in linear fashion but 
with some overlapping. However, the extracted components show great redundancy of the 
two groups in random behaviour. Such results occurs as the components are uncorrelated 
hence may inluence the over performance of LDA. The investigations on the recorded 
eigenvalues and total variation explain of components (as tabulated in Table 2) show that 
the use of the irst component is capable to achieve common point of selected component 
(often eigenvalues greater than 1 are considered useful) with almost 74% variation of the 
original variables explained by the component. However, it is hardly to relate the behaviour 
of the obtained error rate with either eigenvalue and total variation explains for this data 
set.

Table 2   Eigenvalue and total variance explained based on components for iris data set

Number of components 1 2 3 4

Eigenvalue 1.72 0.74 0.64 0.28

Percent of total variance explained 73.97 87.83 97.98 100.00
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Figure 2   Scatter plot of original variables and PCA components scores of iris data set

The Pima Indians diabetes shows that the use of all variables in LDA contributes to 
perfect classiication task. This is explained by the zero mistakes in full LDA and eight 
components of LDA with variables extraction (see Table 3). Among the LDA with variables 
selection, backward elimination gives better result than the other searching procedures. 
However, it is the worst compared to the full LDA and LDA with variables extraction. 
These results indicate that the Pima Indians diabetes is best explained by using the all 
measured variables. If a set of reduced variables is a concern on this data set, then the PCA 
suggests either three or four components to remain (see Table 4) based on eigenvalues 
greater than 1. At these points, the total variation explained is 61% and 72% respectively 
with error rate equal to zero percent. 

Table 3   Percentage of misclassiications using Full-LDA and LDA with reduced variables for Pima 

Indians Diabetes data set

Models Selected number of variables or components Error rate

Full LDA 8 0.00

LDA with variables selection
1.  Stepwise method
2.  Forward selection 
3.  Backward elimination

2 (no. of times pregnant, diabetes pedigree*)
2 (no. of times pregnant, diabetes pedigree*)

8

0.05
0.05
0.01

LDA with variables extraction

1 
2 
3 
4 
5 
6 
7 
8

0.00
0.01
0.00
0.00
0.00
0.00
0.00
0.00

*selected variables

Plotting of Each Combinations of 

Original Variables

Plotting of Each Combinations of PCs 

Variables
-1 0 1 2 -0.5 0.0 0.5 

so ao 1.0 ao 3 4 5 6 7 
-4 -2 0 2 4 -1 .5 -0.5 0.5 
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Table 4   Eigenvalue and total variance explained based on components for Pima Indians Diabetes 

data set

Number of 

components
1 2 3 4 5 6 7 8

Eigenvalue 1.54 1.32 1.01 0.94 0.87 0.83 0.65 0.64
Percent of total 
variance explained

26.16 47.81 60.67 71.63 81.16 89.70 94.94 100.00

The performance on the crime data set is tabulated in Table 5. The full LDA makes no 
mistake in classifying the objects hence it tells us that all 13 variables are able to discriminate 
the objects correctly to their groups. The LDA with variables selection indicates that the 
best rule is to remain all the measured variables (see LDA with backward elimination) 
which it supports the result of full LDA. Finally, the LDA with extracted variables gives 
more choices. Nevertheless, keeping all 13 components gives slightly error rate. If a set of 
reduced variables is a concern, PCA suggests to remain four components (total variation 
explained = 86%) and it also give zero percent error rate.

Table 5   Percentage of misclassiications using Full-LDA and LDA with reduced variables for 
crime data set

Models Selected number of variables or components Error rate

Full LDA 13 0.00

LDA with variables selection
1.  Stepwise method
2.  Forward selection 
3.  Backward elimination

3 (crime, income inequality and education*)
3 (crime, income inequality and education*)

13

0.06
0.06
0.00

LDA with variables extraction

1
2
3
4
5
6
7
8
9
10
11
12
13

0.01
0.00
0.01
0.00
0.00
0.01
0.02
0.01
0.00
0.00
0.00
0.00
0.01

*selected variables

Table 6   Eigenvalue and total variance explained based on components for crime data set

Number of components Eigenvalue Percent of total variance explained

1
2
3
4

2.34
1.60
1.43
1.02

42.20
6.186
77.58
85.52

Note: Component with eigenvalue less than 1.0 is not presented 
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Conclusions and Recommendation

This paper is able to show that the proposed idea of performing variables reduction 
that contribute to minimise the error rate, either through variables selection or variables 
extraction, is competitive to the full LDA. Study on three data sets shows that LDA 
with backward elimination may replace the LDA with all measured variables. Also, if 
all measured variables are important, the backward elimination will not eliminate any 
of the variables hence it acts as a full model. The LDA with variables extraction can be 
considered as alternative if variables selection is not permissible. This study shows that 
LDAs with components which eigenvalue greater than 1 perform as good as the full model. 
The indicator which based on the total variation explained is too subjective as it is based 
on the choice of researchers. Therefore, there will be some obstacles to determine the best 
cutting point for this indicator.

The indings in this study cannot be used to generalise the behaviour of LDA in much 
wider context. But, these indings give a promising idea that the process of reducing 
variables needs to meet the overall aim of classiication. In future investigation, focus can 
be given out to PCA in classiication problems so that the chosen components from PCA 
are contributing to optimise the performance of LDA. Extensive investigations will be 
planned to study the LDA in much wider problems especially in dealing with variability 
of sample size.
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