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Abstract

In this article, micropolar nanofluid boundary layer
flow over a slanted stretching surface with Soret and
Dufour effect is studied. The inclined stretching
surface in this study is considered permeable and
linear. In this problem, the Buongiorno model is
considered for thermal efficiencies of fluid flow in the
existence of Brownian movement and thermophor-
esis properties. The nonlinear problem for Micropolar
Nanofluid flow over the slanted channel is developed
to think about the heat and mass exchange phe-
nomenon by incorporating portent flow factors to
strengthened boundary layers. In this study, non-
linear partial differential equations are converted to
nonlinear ordinary differential equations by utilizing
appropriate similarity transformations then eluci-
dated the numerical outcomes by the Keller-Box
technique. An examination of the set-up results is
performed with accessible outcomes and perceived in
a good settlement without involved impacts. Nu-
merical and graphical outcomes are additionally
displayed in tables and charts.
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1 | INTRODUCTION

Dynamics of fluid flows induced by stretchable surface has achieved much consideration. It is
because of their broad applications in designing and industrial processes. Especially, the
boundary layer flow toward a slanted extending surface has gotten perceptible thought of the
ongoing scientists in view of its modern and building utilizes, including material fabricated by
expulsion, paper making, hot moving, production of plastic, and versatile expulsion. Sakiadis'
initiated the investigation on the laminar boundary layer flow on a continuous moving surface.
Later, Crane” enhanced the discussion on the linearly extending surface. Noor et al” explained
the thermophoretic flow on a slanted sheet. Tshehla” discussed the flow of the fluid on a slanted
plate. Besides, non-Newtonian fluid flow through slanted sheet was investigated by Bognar
et al.” Moreover, Hamza et al” examined the flow over an inclined surface by using the finite
difference technique. Recently, Raju’ studied the non-Newtonian fluid flow on an inclined
sheet by incorporating the thermal radiations. Non-Newtonian fluid flow over the vertically
slanted plate is investigated by Reddy et al.” Singh” studied the flow of viscous liquid over the
slanted sheet.

Nanofluids are a mix of metallic particles that are drenched in regular fluids that have low
thermal conductivity. Thermal properties of the base liquid significantly improved, when na-
noparticles are included the convectional liquids Das et al'’ and Buongiorno'' distinguished
two slip systems out of seven, which assume key job to improve the thermal conductivity of
base fluids are Brownian movement and thermophoresis. Nanoparticles slam into one another
in the base liquid because of the Brownian movement. In fact, thermal conductivity improved
because of the impacts of nanoparticles. Ultrahigh-execution cooling is a standout among the
most fundamental needs of various mechanical developments. However, the low thermal
conductivity of conventional fluid put fundamental limitation in emerging energy-efficient heat
exchange liquids that are necessary for ultrahigh-performance cooling. Sandeep and Kumar'”
examined the dusty nanofluid flow over an extending slanted sheet. Rashad'” studied the flow
of nanofluid over an inclined sheet. Govindarajan'" discussed nanofluid flow over an inclined
sheet by considering the surface temperature. Suriyakumar and Devi'” studied the nanofluid
flow through inclined sheet by taking suction in account. Khan et al'® investigated Carreau
nanofluid flow on the stretching sheet. Chakraborty et al'’ calculated the heat influence on
nanofluid flow on the slanted sheet. A similarity solution of nanofluid flow over slanted surface
was discussed by Ziaei-Rad et al.'"® Afify'” investigated the non-Newtonian fluid flow over
inclined sheet by incorporating the chemical reaction. Halim et al’’ studied the Williamson
nanofluid flow over stretching and shrinking sheet. In addition, Sher Akbar’' discussed
boundary condition effects on flow of nanofluids. Latest work on energy and mass transport of
nanofluid flow over an inclined surface was done by Rafique et al.”

Soret and Dufour effects have gotten significant attention of numerous investigators. These
effects play key roles in the areas, for example, hydrology, petrology, geosciences, and so forth.
Bég et al”” considered the Newtonian fluid on a slanted sheet. Pal and Chatterjee’* studied the
Soret and Dufour effects on a nonlinear inclined sheet. Balla and Naikoti”” scrutinized the Soret
and Dufour impacts on inclined cavity. Sravanthi’® studied the homotopy analysis of micropolar
fluid on slanted sheet by incorporating the Soret and Dufour effects.

The idea of the micropolar liquid has accomplished incredible significance as the regular
Newtonian fluids cannot exactly signify the features of fluid flow in various mechanical uses, in
particular, polymeric liquids, science, colloidal arrangements, and paints. Micropolar liquids are
physically described liquids in which the twisting of the components excluded in the liquids
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and containing a suspension of inflexible, round molecules in a viscid medium. Eringen®’ was
the first who introduced the hypothesis about micropolar liquid and covering in both model and
applications than the ordinary one. By considering the variable fluid properties the micropolar
fluid flow on a slanted sheet discussed by Rahman et al.”” Uddin’’ investigated the micropolar
fluid flow by incorporating the electrical conductivity on the inclined surface. Heat and mass
exchange of micropolar liquid stream along a slanted sheet examined by Das™. Anwar et al’’
scrutinized the micropolar nanofluid stream on extending sheet by the Keller-Box scheme.
Hazbavi and Sharhani’® analyzed the micropolar fluid flow among two inclined sheets by
considering pressure gradient constant. Effect of double dispersion on micropolar fluid flow on
inclined sheet studied by Srinivasacharya et al.”* Srinivasacharya and Bindu®* discussed the
micropolar fluid flow in slanted channel numerically. Shamshuddin et al®® studied the mi-
cropolar fluid flow by considering the Joule heating. Noor et al’® investigated micropolar
nanofluid flow toward a vertical surface. Recently, Rafique et al’’ discussed the energy and
mass exchange phenomenon of micropolar nanofluid flow over a slanted surface.

In view of the above-cited literature, no study yet conducted to investigate heat and mass ex-
change of micropolar type nanofluid flow by incorporating Soret and Dufour effects over a permeable
stretching inclined surface. To fill this gap in literature, we are considering the study under concern
for numerical simulation via the Keller-Box scheme, which is the novelty of current problem.

2 | PROBLEM FORMULATION

A steady, two-dimensional boundary layer flow of micropolar nanofluid over a linear inclined
extending surface by considering an angle y. The extending and free stream velocities are taken
as, Uy, (x) = ax and uy (x) = 0. Where, x is the coordinate dignified in the direction of extending
surface with a suppose constant. An external transverse magnetic field is assumed normal to
the flow path. It is supposed that the electric and magnetic field properties are very insignificant
as the magnetic Reynolds number is less.” The micropolar finite-size particles along with
nanoparticles are constantly distributed in the base fluids. The fluid particles have extra space to
travel about formerly hitting to the other fluid particle, where these particles revolve in the fluid
field and fallouts for spinning effects in the micropolar nanofluid. The Brownian motion and
thermophoresis impacts are incorporated. The temperature T and nanoparticle fraction C at the
wall take the constant values T,, and C,,, while the ambient forms for nanofluid mass and
temperature fractions C,, and T, are accomplished as y approaches to immensity shown in
Figure 1.

Concentration boundary layer
Thermal boundary layer

<—— Momentum boundary layer

u=u,(x) =ax, v=V,, T:TW,N'Z—%S—:,C:CW at y=0,
U US(X)=0,v>20,T>T, N -0, C>C, at y— oo,

FIGURE 1 Physical
geometry and coordinate system
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The flow equations for this study are given as

ou ov
4 =0, 1
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where u and v are the components of velocity in x and y directions, respectively, g is the
acceleration due to gravity, By is the uniform magnetic field strength, odenotes the electrical
conductivity, u is the viscosity, o, is the density of the base fluid, p, denotes the density of the
nanoparticle, k;* is the vortex viscosity, g, is the coefficient of thermal expansion, 8, denotes the
coefficient of concentration expansion, y* is the spin gradient viscidness, the microinertia per
unit mass is denoted by j*, the angular velocity is denoted by N*, Dg denotes the Brownian
diffusion coefficient and Dy denotes the thermophoresis diffusion factor, k is the thermal
conductivity, (oc), denotes the heat capacitance of the nanoparticles, (oc); represents the heat
capacitance of the regular liquid, thermal diffusivity parameter is denoted by a = % and the
relation among the effective heat capacity of the nanoparticle and heat capacity of the liquid is
represented by 7 =
The subjected bour{dary conditions are as follows:

u:uw(x):ax,v:Vw,T:TW,N*:—mOZ—u C=C, aty=0,u—> Uy(x)=0,v—>0,
y

T—-> T, N*->0,C—>C, aty— oo. (6)

Here, the stream function 1 = ¥ (x, y) is demarcated as

azp _op
“= ay e’ ™

where equation of continuity in Equation (1) is fulfilled. The similarity transformations are
defined as

U= axf’(n).v = —@f (7). 7 = y\/?
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T-T,
6 = —=,
() T T
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On substituting Equation (8), system of equations (2) to (5) are converted to

A+ k)f" +ff" —f"? + kh' + (G0 + Geep)cosy — Mf' = 0, ©)
k n ! ! "
1+5h + M —f'h—kQh+f")=0, (10)
(Pi)@” + f0' + Nbg'0' + Nt6'> + Dy¢” = 0, (11)
-
@” + Lefp’ + SrLe6” = 0, (12)
where
B2 D (Cy — Cy) D (T, — To,)
M=221e=" pr=2 N, = v N ,
ap Dg o v V1,
T, — Too)x 7t Cp — Ceo)x! -
G& — gﬁ[( w ) ,Re — uwx’ GCx — g,gc( w ) ,Df — DTKT(CW Coo),
a? v a? vCCp (T — Teo)
Sr = DTKT(TW - Too) (13)

VT (Cw — Co)

Here, primes denote the differentiation with respect to 7, M denotes the magnetic factor
called Hartmann number, v denotes the kinematic viscosity of the liquid, Pr denotes the
Prandtl number, Lewis number is denoted by Le, the permeability parameter is represented by
K, Dy is the Dufour factor, and Sr indicates the Soret factor. In addition, G¥, signifies the local
Grashof number, Gc, denotes the local modified Grashof number, in order to make local
Grashof number and local modified Grashof number free from x the coefficient of thermal
expension f, and coefficient of concentration expension f, are proportional to x'. Hence ac-
cording to Makinde and Olanrewaju’ and Rafique et al,”’ we assume that

B = nx', B, = mx'. (14)
Here, n and n; are constants, thus Gr, and Gc, become

Ty — T
_ el — T) 4,

az — gnl(cz - Coo). (15)

Gr 3
The corresponding boundary settings are changed to

JFM=S8fm=1,h(n)=0,6(n)=1,¢(1n) =1, at n =0,f'(n) - 0,h(n) — 0,
() — 0,6(m) — 0 as n - oo. (16)
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It is found that by eliminating the vertex viscosity, that is, K =0, it agrees to a nanofluid
model deprived of micropolar effects. The skin friction, Sherwood number, and Nusselt number
for the current study are defined as

Xw X, tw
Nu, = , Shy, = ,Cr = , 17
k(G- T T DeCe— G T L a7

The related expressions for the skin-friction coefficient Cy (0) = f”(0), the reduced Sher-
wood number —¢’(0), and the reduced Nusselt number —6’(0) are demarcated as

’ — Nux A _S_hx —_
—6(0)_@, ¢(0)_m,cﬁc_chR_e, (18)

where Re = % is the local Reynolds number.

The converted nonlinear differential equations (9) to (12) with the boundary settings (16)
are elucidated by the Keller-Box scheme consisting of the steps as, finite-differences technique,
Newton's procedure, and block elimination scheme clearly explained by Anwar et al.”' In this
study, step size Ay = 0.01 with boundary layer thickness 7., = 10 is considered. In addition,
convergence criteria in this investigation depend on difference between current and previous
iteration. The iteration process was terminated when convergence criterion 10~° is satisfied for
all points in 7 direction. The complete numerical scheme for this problem presented in
Appendix A.

3 | RESULTS AND DISCUSSION

This bit of study deals with the determined consequences of changed over nonlinear ordinary
differential equations (9) to (12) with boundary settings (16) elucidated by means of Keller-Box
technique. For numerical outcome of physical parameters of our concern including Brownian
motion parameter Nb, thermophoresis parameter Nt, magnetic factor M, local Grashof number
Gr, local modified Grashof number Gc, inclination factor y, Prandtl number Pr, Lewis number
Le, Dufour effect Dy, Soret effect Sr, and material factor K, several figures and tables are
prepared. In Table 1, in the deficiency of Dufour effect Dy, Soret effect Sr, buoyancy parameter
A, solutal buoyancy constraint §, magnetic factor M, suction or injection parameter S, and

TABLE 1 Comparison of the reduced Nusselt number —6’(0) and the reduced Sherwood number —¢’(0)
when M, K, Sr, Dy, Gr, Gc =0, Pr=, Le=10, and y =90°

Khan and Pop™®’ Present results
Nb Nt —6'(0) —¢'(0) —6'(0) —¢'(0)
0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.2 0.3654 2.5152 0.3654 2.5152
0.3 0.3 0.1355 2.6088 0.1355 2.6088
0.4 0.4 0.0495 2.6038 0.0495 2.6038

0.5 0.5 0.0179 2.5731 0.0179 2.5731
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TABLE 2 Values of the reduced Nusselt number —6’(0), the reduced Sherwood number —¢’(0), and the
skin-friction coefficient Cy(0)

Nb Nt Pr Le M K Gr Gc Sr Dy S ¥ —6'(0) —¢'(0) Cu(0)
0.1 0.1 6.5 50 0.1 1.0 0.1 0.9 1.0 1.1 0.1 45°  0.5160 0.4916 0.9221
0.5 0.1 6.5 50 0.1 1.0 01 09 1.0 11 01 45° 0.5892 0.4004 0.8758
0.1 0.5 6.5 50 0.1 1.0 01 09 1.0 11 0.1 45°  0.3881 0.4191 0.9338
0.1 0.1 10.0 50 0.1 1.0 01 09 1.0 11 01 45° 0.5131 0.5016 0.9314
0.1 0.1 6.5 10.0 0.1 1.0 01 0.9 1.0 11 0.1 45°  0.5658 0.4918 0.9097
0.1 0.1 6.5 50 0.5 1.0 01 09 1.0 11 01 45° 0.4930 0.4707 1.1749
0.1 0.1 6.5 50 0.1 50 01 09 1.0 1.1 0.1 45° 0.5548 0.5265 1.6817
0.1 0.1 6.5 50 0.1 1.0 0.5 09 1.0 11 01 45° 0.5297 0.5041 0.7499
0.1 0.1 6.5 50 0.1 1.0 0.1 2.0 1.0 11 0.1 45°  0.5472 0.5201 0.4678
0.1 0.1 6.5 50 0.1 1.0 01 09 50 11 01 45° 0.2062 0.4121 0.9471
0.1 0.1 6.5 50 0.1 1.0 01 0.9 1.0 50 0.1 45°  0.5854 0.2741 0.7506
0.1 0.1 6.5 50 0.1 1.0 01 09 1.0 11 0.5 45° 0.3668 0.3328 0.7235

01 0.1 6.5 50 01 10 01 09 10 11 01 90° 04725 0.4520 1.3852

material factor K with y =90° outcomes of reduced Nusselt number —6’(0), reduced Sherwood
number —¢’(0) are equated by existing outcomes of Khan and Pop.”’ The consequences are
established brilliant settlement. The effects of —6'(0), —¢'(0), and Cx (0), beside changed values
of involved physical parameters Nb, Nt, M, K, Gr, Gc, y, S, Le, Dy Sr, and Pr are shown in
Table 2. From Table 2, it is clearly seen that —8’(0) declines for growing the values of Nt, M, Le,
Pr, Sr, S, 7, and increased by enhancing the numerical values of Nb, Le, Gr, Dy, Gc, and K.

1 T T T

09~ S=Nt=Gr=Nb=01,5r=K=10,Df=11, Gc =09, Le=50,7 =45’ Pr=65| |

0.8 b

0.6 - b

0.5~ b

M=01,030507
0.4

4

£ ()

0.1+ b

FIGURE 2 Variations in velocity profile for different values of M [Color figure can be viewed at
wileyonlinelibrary.com]
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0.12 ‘

‘S=Nt=Gr=Nb=0,l,Sr=K=l,0,D/=1,l, Gc=0,9,Le=5.0,7=450,Pr=6,5

011 4

0.08 -

M=0.1,05 10,15

0.04

0.02

FIGURE 3 Variations in angular velocity profile for different value of M [Color figure can be viewed
at wileyonlinelibrary.com]

Moreover, it is perceived that —¢’(0) enhanced with the larger values of Gr, Gc, Le, Pr, and
drops for bigger values of Nt, Nb, M, S, K, Dy, Sr, and y. Physically, due to the increment in
Brownian motion factor Nb thermal boundary layer thickness increases affecting a large extent
of fluid. While, Nusselt number and Sherwood number suppressed due to thermophoretic
effects reason behind thermal boundary layer thicker due to deeper diffusion penetration into
the fluid. On the other hand, Cs (0) rises with the growing values of Nt, M, K, Pr, Sr,y, and
drops with the higher values of, Le, Nb, Gr, Gc, S, and Dy.

A picture of the effect of factor M on velocity profile is portrayed in Figure 2.
According to Figure 2 by improving the constraint M, the velocity outline reduces. Since
magnetic field produces Lorentz force, by means slow down the speed of the liquid. The

09- §=Nt=Gr=Nb=M=01,5=10,Df= L1, Ge=0.9, Le =50,y =45, Pr=6.5 | |

0.8~

0.7+

0.6 -

0.5~

£

0.4+
03+~
02+

/
K=10,1520,25

0! 1

0.1+~

FIGURE 4 Variations in velocity profile for different values of K [Color figure can be viewed at
wileyonlinelibrary.com]
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0.12 ‘ ‘

§=Nt=Gr=Nb=M=0.1,5r= L0, Df= 1.1, Ge = 0.9, Le = 5.0, 7=45”,Pr=6.5‘

0.1

0.08

0.04

0.02

FIGURE 5 Variations in angular velocity profile for different values of K [Color figure can be viewed
at wileyonlinelibrary.com]

parallel outcome has gotten in the instance of angular velocity against changed values of
M in Figure 3. The velocity profile upturn by improving the values of K is exposed in
Figure 4. Besides, Figure 5 points out that the angular velocity profile upsurge by growing
factor K. Physically, viscidness of the boundary layer losses by improving the values of K.
The impact of Gr on velocity profile is displayed in Figure 6. It demonstrates that the
velocity contour enhanced for changed values of Gr. Physically, increment in buoyancy
forces decreases the viscous force, which is favorable to the fluid motion. Figure 7 por-
trayed the effect of Gc on velocity profile. It is noted from Figure 7 the velocity profile

09 S=Nt=M=Nb=0.,Sr=K=10,Df= L1, Ge=09, Le =50,y =45',Pr=65 | |

0.8+ q

0.6 4

0.5+ q

()

0.4 / 4
0.3+ b
4
0.2+ / 4

0.1+ Gr=01,0.510,15 4

0 I I I -
0 1 2 3 4 5 6 7 8 9

FIGURE 6 Variations in velocity profile for different values of Gr [Color figure can be viewed at
wileyonlinelibrary.com]
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09 ‘ S=Nt=Gr=Nb=M=01,5r=K=10,Df=11,Le=50,y=45,Pr=65|

0.8 -

0.7

0.6 -

0.5+

£ ()

0.4+
0.3+
Ge=10,1520,25

0.2~

0.1+

FIGURE 7 Variations in velocity profile for different values of Ge [Color figure can be viewed at
wileyonlinelibrary.com]

upturn by enhancing the constraint Ge. Physically, the viscosity of the liquid falls with the
growth of Gc, and the concentration upturns, which reasons the enhancement in velocity
contour. Figure 8 interprets the significance of inclination factor y on velocity outline. It is
perceived from Figure 8 that velocity outline runs down by enhancing the values of y.
Moreover, the circumstances indicate that the maximum gravitational force act on flow in
the case of y = 0 because in this state, the sheet will be vertical. On the other hand, for
y = 90°, the sheet will be horizontal, which causes the decline in velocity profile as the

1 1
09k §=NtGr=M=Nb=0.1,5r=K =10, Df=11, Ge=0.9, Le =50, Pr=6.5 | |
0.8+ —
0.7+ il
0.6 - q

~
Sos- J
:
04 -
/
0.3+ =
/
/
02+ —
'4
0.1+ il
0 - I
0 1 2 3 4 5 6

FIGURE 8 Variations in velocity profile for different values of y [Color figure can be viewed at
wileyonlinelibrary.com]
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1 T T T T T
09 Nt=Gr=Nb=M=0.,8r=K = 1.0,Df= L1, Ge = 0.9, Le = 5.0,y =45, Pr = 6.5 ‘,
0.8+ b
0.7+ B
0.6 - B
-
Sost i
~ 1
04 / .
: /
0.3 il
0.2+ / B
0.1+ B
0 | | | |
0 1 2 3 4 5 6 7 8

FIGURE 9 Variations in velocity profile for different values of S [Color figure can be viewed at
wileyonlinelibrary.com]

power of the bouncy forces drop. Whereas Figure 9 presented that the velocity profile
enhanced against large values of suction or injection parameter S reason behind lessening
the boundary layer thickness. The impact of Figure 10 shows that the temperature profile
falls against growing values of Dy. Physically, the boundary layer thickness decreases with
the effect of Dufour number on nanofluid motion due to which the heat exchange en-
hanced. Whereas, concentration profile turns up for higher values of Sr in Figure 11. On
the other hand, concentration profile falls down in Figure 12 for large values of Le because
Lewis number diminishes the boundary layer thickness.

FIGURE 10 Variations in 1 \ T T T \
temperature profile for different 09l S=Ne=Gr=M=Nb=01, Sr=K =10,Ge =09, Le =50,y =4 Pr=65| |
values of Dy [Color figure can
be viewed at
wileyonlinelibrary.com] 07F

0.8~

0.6 -

0.5+

9 (n)
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096 ‘ S=Nt=Gr=M=Nb=01,K=10,Df=11,Gc=09, Le=50,y =45, Pr=65 | |

0.8 - 1
0.7+ 1
0.6 - 1
0.5+ 1

0.4 Sr=0.2,0.3 05,07

0.3+ / 4

0.2 4
/
0.1+ 4
¥
0 I I I I ! I I I I

0 1 2 3 4 5 6 7 8 9 10

#(7)

FIGURE 11 Variations in concentration profile for different values of Sr [Color figure can be viewed
at wileyonlinelibrary.com]

1 1
090 S=Nt=Gr=M=Nb=01 Sr=K=10,Df= 1.1, Ge=0.9,y =45, Pr=65 | |
0.8 g
0.7+ g
0.6 .

~
2
S 05 8
AN
04 .
7
03+ s ]
’
02+ ]
’
01 .
Le=5.0,7.0, 10.0, 15.0
0 \ ‘ ‘ ‘ ———
0 1 2 3 4 5 6 7 8 9 10

FIGURE 12 Variation in concentration profile for different values of Le [Color figure can be viewed
at wileyonlinelibrary.com]

4 | CONCLUSIONS

This study explored the heat and mass exchange of micropolar nanofluid flow over a linear
permeable inclined extending sheet. The Brownian motion and thermophoresis effects are
taken into account. The numerical results are obtained via the Keller-Box scheme and com-
pared with already published literature.”’ In this problem, heat and mass transfer phenomenon
was discussed numerically. The main findings of this study are as follows.

Energy and mass transfer rates decrease with the increment in inclination factor.

The concentration profile decreases with the growth of the Soret effect.

Dufour effect diminishes temperature profile.

Table 2 presented that Nusselt and Sherwood numbers reduce by increasing the magnetic
effect.

Ll
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5. The velocity profile increases with enhancement in local Grashof number and local modified
Grashof number.
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APPENDIX A
see: Figure Al

FIGURE A1l Net rectangle for
difference approximations
;

nj-1/2

A.1 | Numerical procedure

ear Tnsrer WSV

A known

B unknown

@ centering

The numerical formulation of the Keller-Box method for the problem considered for micropolar
nanofluid is explained for the finite-difference method, block-elimination method.

A.2 | The finite difference method

As described by Anwar et al,”’ Equations (9) to (12) subject to the boundary conditions (17) are
written in a system of first-order differential equations. For this purpose, new dependent
variables are introduced for f(n), u(n), v(n), gn), p(n), q(n), and s(n). Also, 6(n) and ¢(n) are
replaced with g(n) and q(n), respectively, which represent the fluid temperature and con-
centration respectively. Therefore, in the following first-order equations are

f'm) =u@m),u'@ =vm),g'm =pMm),q"n =sm), 19)
1+ kv + fo —u?+ kl + (Grg — Geg)cos y — Mu = 0, (20)
(1+§)l’+ﬂ—ut—k(2t+v):0, (21)

(%)p’ + fp + Nbsp + Ntp? + Dys’ = 0, (22)

s’ + Lefs + SrLep’ = 0. (23)

The boundary conditions in terms of new dependent variable 7, become

fM=8Sum=1,h(1n)=0,¢g0n)=1,q9(n) =1 at n=0u) - 0,h(n) =0,

gn) » 0,q(n) - 0 as n - oo.

(24)
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The net rectangle is considered in the x-7 plane as shown in Figure A1 and the net points are
defined as

xX0=0,x =x"' + kyi=1,2,3,..1, (25)

N =0, n =M+ hj,j=1,2,3,.J,9 = Moo (26)

where k; is the Ax-spacing and h; is the Azn-spacing. Here, i and j are just sequence of numbers
that indicate the coordinate location, not tensor indices or exponents.

The derivatives in the x-direction are given by finite difference, for example

ou u —u!

— =, 27
ox ki ( )
while the derivatives in the n-direction are replaced by finite difference, for example
Vi — Vi
\)/:a—vzi‘] J 1’ (28)
677 ]’lj
for any points
o 11 .
057 = 2[0j + 07"} (29)
and
i 1r i
Of1r2 = 5[0 + 0ja (30)

The difference equations, which are to approximate equations (a) are written by considering
one mesh rectangle as shown in Figure Al. Using centered-difference derivatives, the finite
difference approximations of the ordinary differential equations (a) are written for the midpoint
(mj1/2) of the segment P1P,. This process is called “centering about (7);.1/2)” written as
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At x= ¥, the subjected boundary conditions (24) in terms of the dependent variable (1)
become

fé:O,ué:l,gé:l,qé:l, (32)

up =0,8 =0,q, =0. (33)
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A.3 | Newton's method

If f -1 l Ly l. L gj , PJ ,qj ,s}‘l are assumed to be known for 0 < j < J, then the solution
of the unknown (f’ gj pj qj ’), 0 <j <J, have to be obtained. For the simplicity
of notations’’ and dropplng the quadratic and higher order terms in

5f;‘, 5uj , 6vj , ng , 6p}‘, éq;‘, and 5sJ'-‘ as well as the superscript i gives

h; h;
o, — &y — é(auj = 8uy_1) = (n);_18u; — Suj_y — j(avj — 8vj_1)
h
= (rz)j_%é‘tj - 5tj_1 - ?(56 - 5lj_1)
h
(”3),_,581 5gj_1 - ?(513] - 5pj_1)

= ();_18g; - 8q;_, — ﬁ(c?sj — 88j_1)
(rS)J_f(al)Jév] + (ap)dvj—1 + (a3)15f + (a4)j5fj 1 + (as);0u;
+ (a6);0uj—1 + (a7)i6l; + (as)idli—1 + (ag)j5gj + (am)jégj_1
+ (an)oq; + (a12);0q;_, = (r6)j_%(b1)jélj + (b2);0l; 1
+ (ba);df; + (ba)idf;_; + (bs)ou; + (be)iSuj—1 + (b7);6v;
+ (bg)jdvj_1 + (by);idtj + (b10);Stj—1
(r7)]_7(cl)15p] + (02)15pj 1+ (63)]5f + (c4)15fj 1 + (cs)05;
+ (c6)j08j—1 = (rg)]_f(dl)]és] + (dp);6sj—1 + (ds);6f;

+ (da)i6f;_; + (ds);i8p; + (de);Sp;_; = (7’9)1-_%, (34)
where
h; h;
(@) =1+k+ —f L (@) =—-1+k)+ E’ 1, (@) = E -1 » (@) = (ag)), (as);

kh;
= hjuj_% - ]’le, (as)j = (aﬁ)j7 (a7)j = 7, (a7)j = (aS)j’ (a9)j

= (Gr)h;j cosa, (aq); = (ar0)j(a); = (Ge)h; cos a, (a11); = (a12);(by);

14K b A by = 11 (b ba);, (b
=1+ 50 By ) A1 )+ Ly Gy = 1 6y = G )

—h; —h;
= — -1 = Ky, (bs)y = (b, (b = —=1;1, (b7 = (bw);, (bo)y = —khy, (bo),

NbPrh;

]Sj—% + ]’letPij_%, (Cz)j = (Cl)j - 2, (C3)j

h.
= (blo)j(cl)j =1+ Pr?Jf]_% +
hy NbPrh;
= Pr;pj_%, (c3)j = (ca)j, (cs)y = — b1 (cs); = (ce)j» (&) = Drhy, (cs)y = —();(dy);

]’lee Lehj
=1+ Tfj_%, (dy) = (dv); — 2, (da); = Tsj_%’ (d3); = (da);, (ds); = LeSr, (ds);

= —LeSr.
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The boundary conditions are

fy :0,5u0:O,5h0:O,5go:O,5q0:O,5uj:0,5h0:0,5gj:0,5qj:0.

A.4 | The block-elimination method

ear rnsrer WSV

(35)

The linearized differential equations of the system (34) have a block-tridiagonal structure.’’ In
vector-matrix form, it can be written as

where

[Bo1] (A [Goi]

B] (G

s

5]

[61]
[62]

[6_.]

[&]

[r]

(36)
(1]
[1]
: (37)
[rr-1]
[r7]

The block-tridiagonal structure are commonly consisting of variables or constants, but here,
an interesting feature can be observed that is, for the Keller-Box method, it consists of block
matrices. By taking K = 1, M = 1, the elements of matrices are defined as follows:

—h
where e; = Tl

(axh
(bs)
0
0

(=)
(=)
(=)
(=)

R
2
o 2 o o
2
0 o 2 o
2
(aghi O 0 (ash
(b2 O 0 (bah
0 (e (ce)r (e3n
0 (deh () (dah

(@)
(b7
0
0

(arh
(bih
0
0

>

(38)
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g 0 0 0 1 0 0 0 O
-1 0 0 0 0 ¢ 0 0 0
0 -1 0 0 0 0 ¢ 0 0
0 0 -1 0 0 0 0 ¢ O
A]=| 0 0 0o -1 0 0 0 0 ¢ | (39)
(ag)j 0 (@) (@) (@3); (@) (a7); O 0
(be); (bro); O 0 (b3); (by) (by); O 0
0 0 0 0 (33 0 0 (c) (cs)
[0 0 0 0 (&) 0 0 (dy) (d)
[0 000 -1 0 0 0 0 ]
0000 0 ¢ O 0 O
0000 0O O ¢ O O
0000 0O O O ¢ O
[B]]zoooo 0 0 0 0 ¢ |5y (40)
0000 (a) () (@agy O O
0000 (by) (bg)y (b)) O O
0000 (cay 0 0 (e (cv)
0000 () 0 0 (do) (do)]
[ ¢ 0 0 0 0000 O]
1 0 0 0 000O0O
0o 1 o0 0 00000
0o o0 1 0 00000
[cl=[ 0 0 o0 1 0000 O0]| (41)
(as) O (ag) (an)j 0 0 0 0 O
(bs); (bg); O 0 000O0O
0 0 0 0 00000
0 0 o0 0 000O0 O]
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