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,e Brownian motion and thermophoretic impacts attained a noticeable intention of the recent researchers because these
factors trigger the thermal conductivity of the nanofluid. In this study, we focus on radiation and Soret effects on a slanted
stretchable sheet. Buongiorno’s model is taken into account with Brownian motion and thermophoretic effects. Compatible
transformations are implemented to attain the nonlinear differential equation from the boundary value PDE’s. ,e physical
quantities of practical interest are treated by graphically as well as numerically. For numerical results, the Keller box technique
is applied. ,e numerical outcomes through tabulated magnitudes performed a good settlement with already existing results.
Energy transfer rate against involved factor exhibited via graphs. Energy and mass transport rates enhance against increment in
Soret factor while skin friction diminishes. Moreover, Nusselt number and Sherwood number decrease on improving in-
clination while skin friction increases.

1. Introduction

Due to the ideal potential of heat and mass exchange impacts,
the nanofluids have pulled in consideration of analysts
worldwide. ,ese fluids are the mixture of nano-sized par-
ticles along with base fluids. ,e main purpose to mix the
nanoparticles into base fluids is to enhance the thermal
conductivity. Brownian motion and thermophoretic effects
are two principal ideas for an abnormal upgrade of thermal
conductivity. ,is model is becoming more widely used since
it empowers us to efficiently explore different applications in
the marvels of science and technology. Recently, the flow of
the Casson nanofluid over an inclined surface was discussed
numerically by Rafique et al. [1]. Moreover, the flow of Casson
nanofluid on a slanted rotating disk was probed by Saeed et al.

[2]. In addition, Rani and Govindarajan [3] investigated the
nanofluid flow through an inclined plate numerically.
Nowadays, many investigators discussed the flow of nanofluid
by considering different geometries [4–10].

,ermal radiations are an active part of the research
which is very valuable in the latest technology, cancer cure,
missiles, and nanotechnology. Pal and Roy [11] discussed the
numerical impact of thermal radiation on the flow of
nanofluid along the sheet. More recently, Ghadikolaei et al.
[12] scrutinized Casson nanofluid flow along permeable
slanted surface via a famous numerical technique. Saidulu
et al. [13] considered an exponentially slanted sheet for
examining the radiation influences on nanofluid flow. For
further details about the literature on the flow of nanofluid
by considering different geometries, see [14–24].
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,e behavior of the flow of non-Newtonian fluid is a
study of keen interest of scholars and practical significance.
,ere is a little regular and mechanical utilization of such
fluids, for occasion volcanic magma, molten polymers,
penetrating mud, oils, certain paints, liquid suspensions,
food products, and cosmetic and numerous others. In the
literature, there exist numerous numerical models with
various constitutive conditions including a distinctive set of
exact parameters.,emicropolar liquid model is suitable for
exotic oils, animal blood, fluid crystals with rigid atoms,
certain organic liquids, and colloidal or suspensions solu-
tions. ,e micromotion of liquid constituents, spin inertia,
and the influences of the couple stresses are very noteworthy
in micropolar liquids. Eringen [25] offered the philosophy of
micropolar fluids based on constitution equations. Uddin
[26] studied the variable electrical conductivity on the flow
of micropolar liquid. Recently, Shamshuddin and ,umma
discussed the flow of micropolar fluid on an inclined sheet
numerically [27]. Nandhini and Ramya [28] studied the flow
of micropolar fluid by incorporating the radiation effects.
For some recent investigations on micropolar fluids with
different impacts, see [29–34].

,is work focuses on establishing the basis for a novel
study on thermal investigation in solar magnetohydrody-
namic nanotechnology. ,e approach empowers us with
great flexibility to dissect the Brownian motion and ther-
mophoretic impact on the flow of micropolar nanofluid with
thermal radiations and Soret impacts on the inclined ge-
ometry. ,e physical quantities of practical interest such as
energy exchange, velocity, skin friction, and concentration
species are elaborated in graphical and tabulated form. It is
worth stating there is no investigation assumed for the study
under concern and all the results are new and contrast to the
current outcomes with already available literature [35]. In
this article, we employed the Keller box technique for nu-
merical results. Moreover, the current results can be ob-
tained via another numerical technique, but the Keller box
method is more easier to program, friendly, and flexible. For
complete detail about Keller box scheme, see [36].

2. Problem Formulation

Our main aim in this analysis is to examine the radiations
and Soret impacts on MHD flow of micropolar nanofluid. A
uniform external magnetic field of strength B0 is considered
perpendicular to the inclined surface in this study, while
induced magnetic field is neglected [37]. ,e slanted sheet
here is stretched with a stretching rate “a” due to which the
flow is generated. Moreover, ω is the angle taken with the
vertical direction of the stretching sheet. Brownian motion
and thermophoretic impacts are considered. In addition,
suction or injection impacts on heat and species exchange
rates are discussed via graphs.

,e Lorentz force in momentum equation is expressed
by J × B where

J represents the current density,
B denotes the total magnetic field:
B � B0 + b,

B0 denotes the applied magnetic field,
b is the induced magnetic field,
J � σ(E + V × B) (Ohm’s law),
σ is the electrical conductivity,
E � 0 is the polarization charge effect,
J � σ(V × B),
J × B � σ(V × B) × B (cross product with B),
J × B � σ(V · B)B − (B · B)V (vector identity),
Using Afify [38] × B � σB2

0u.

,e governing equations for the study under concern are
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,e Rosseland approximation is described by
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By employing Taylor expansion, approximate value of
T4 is given as
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By employing (6) and (7), equation (4) becomes
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,e subjected boundary conditions are
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u � uw(x) � ax

v � Vw,

T � Tw,

N
∗

� − m0
zu

zy
,

C � Cw, aty � 0,

u⟶ u∞ � 0,

v⟶ 0,

T⟶ T∞,

N
∗ ⟶ 0,

C⟶ C∞, aty⟶∞.

(9)

,e stream function ψ � ψ(x, y) for the concerned study
are in the following form:
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zψ
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,
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,e converted form of equations (2)–(5) given by
employing equation (8) is
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where in order to make local Grashof number and local
modified Grashof number free from x, the coefficient of
thermal expansion βt and coefficient of concentration ex-
pansion βc are proportional to x1. Hence, we assume that
(see references [39–41])

βt � nx
1
,

βc � n1x
1
.

(14)

where n and n1 are the constants; thus Grx and Gcx become
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,e corresponding boundary conditions are

f(η) � S,

f′(η) � 1,

h(η) � 0,

θ(η) � 1,

ϕ(η) � 1, at η � 0,

f′(η)⟶ 0,

h(η)⟶ 0,

θ(η)⟶ 0,

ϕ(η)⟶ 0, as η⟶∞.

(16)
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,e related expressions for the skin friction coefficient
Cfx(0) � f″(0), the reduced Sherwood number − ϕ′(0), and
the reduced Nusselt number − θ′(0) are demarcated as
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���
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3. Results and Discussion

,e objective behind this section is to elaborate on the
numerical results along with graphically results via tables
and graphs. In order to check the validity of our numerical
values with already published results (Table 1), we managed
the deficiency of Gr, Gc, M, N, Sr, K, and S, taking factor
Pr � Le � 10, with ω� 90°. ,e variations in − θ′(0),
− ϕ′(0)∞, andCfx(0) for physical factorsNb, Nt,M, N,Gr,
Gc, ω, Pr, Le, Sr, S, and K are presented in Table 2. Table 2
demonstrates that the energy flux slows down by improving
the Brownian motion effect. Moreover, the mass flux in-
creases with the effect of the Brownian factor for large values.
Moreover, the exchange rate of heat reduces with improving
Brownian motion factor, and mass exchanges enlarge on
enhancing the thermophoretic impacts. Physically, the en-
hancement in the Brownian motion causes the boundary
layer to get thicker. Besides, skin friction shows a direct
relation with Brownian motion thermophoretic effects. ,e

magnetic effect factor boosts the skin friction against im-
proving magnetic field magnitude. Consequently, the fluid
applies a drag force on the solid boundary layer. In addition,
the Nusselt number along with Sherwood number and skin
friction reduces for increasing the suction parameter. ,e
Soret effect improves the mass exchange and reduces the
skin friction on enhancing the Soret impact on the mass
flow.

Figures 1–8 are exhibited to demonstrate the perfor-
mance of incorporated constraints that impact on the ve-
locity sketch. Figure 1 indicates that the impact of the
magnetic field creates resistance in the path of fluid flow
because of the Lorentz force which reduces the velocity
profile. Moreover, the angular velocity presents opposite
behavior against the magnetic field factor in Figure 2.
Figure 3 shows that the velocity contour upsurges against
material factor K. Physically, increment in factor K declines
the viscosity and upturns the velocity. On the contrary,
against a higher magnitude of the factor K, the angular
velocity upturns (Figure 4). ,is demonstration corresponds
with the outcomes of Rafique et al. [42]. Figure 5 represents
as we enhance, the buoyancy force the velocity increases.
Besides, the velocity profile shows the direct relation with Gc

in Figure 6. In addition, the velocity field and inclination
parameter correspond to an inverse relation drawn in
Figure 7. Physically, by considering ω � 0, the gravitational
force reaches its maximum value. On the contrary, in the
case of ω � 90°, the sheet will be in horizontal position, and
that is why the power of the bouncy forces declines which is
the reason behind the reduction in the velocity profile.
Moreover, in Figure 8, the velocity profile enhances against
the higher values of S.

Table 1: Contrast of − θ′(0) and − ϕ′(0) against ω� 90°, M, K, Gc, N, S, Sr, and Gr � 0, with Pr� Le� 10.

Nb Nt
Khan and Pop [35] Present results

− θ′(0) − ϕ′(0) − θ′(0) − ϕ′(0)

0.1 0.1 0.9524 2.1294 0.9524 2.1294
0.2 0.2 0.3654 2.5152 0.3654 2.5152
0.3 0.3 0.1355 2.6088 0.1355 2.6088
0.4 0.4 0.0495 2.6038 0.0495 2.6038
0.5 0.5 0.0179 2.5731 0.0179 2.5731

Table 2: Values of − θ′(0), − ϕ′(0), and Cfx(0).

Nb Nt Pr Le M K Gr Gc Sr N S ω − θ′(0) − ϕ′(0) Cfx(0)

0.1 0.1 6.5 5.0 0.1 1.0 0.1 1.1 1.0 1.0 0.5 45° 0.4102 0.8426 0.6211
0.5 0.1 6.5 5.0 0.1 1.0 0.1 1.1 1.0 1.0 0.5 45° 0.2823 1.1278 0.6508
0.1 0.5 6.5 5.0 0.1 1.0 0.1 1.1 1.0 1.0 0.5 45° 0.2421 1.0143 0.6805
0.1 0.1 10.0 5.0 0.1 1.0 0.1 1.1 1.0 1.0 0.5 45° 0.3728 1.2044 0.6129
0.1 0.1 6.5 10.0 0.1 1.0 0.1 1.1 1.0 1.0 0.5 45° 0.4060 1.2567 0.6412
0.1 0.1 6.5 5.0 1.0 1.0 0.1 1.1 1.0 1.0 0.5 45° 0.3668 0.7444 1.1470
0.1 0.1 6.5 5.0 0.1 3.0 0.1 1.1 1.0 1.0 0.5 45° 0.4202 0.8715 0.9926
0.1 0.1 6.5 5.0 0.1 1.0 1.0 1.1 1.0 1.0 0.5 45° 0.4285 0.8711 0.3154
0.1 0.1 6.5 5.0 0.1 1.0 0.1 2.0 1.0 1.0 0.5 45° 0.4393 0.9002 0.2286
0.1 0.1 6.5 5.0 0.1 1.0 0.1 1.1 2.0 1.0 0.5 45° 0.4783 1.1029 0.4321
0.1 0.1 6.5 5.0 0.1 1.0 0.1 1.1 1.0 3.0 0.5 45° 0.3929 0.5100 0.6444
0.1 0.1 6.5 5.0 0.1 1.0 0.1 1.1 1.0 1.0 0.7 45° 0.2461 0.8347 0.5748
0.1 0.1 6.5 5.0 0.1 1.0 0.1 1.1 1.0 1.0 0.5 60° 0.3971 0.8152 0.7807
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3.1. Temperature. ,e impacts of incorporated factors in our
current study against temperature profile are demonstrated in
Figures 9–12. ,e temperature profile boosts against a stronger
magnetic field because the boundary layer thickness upsurge
corresponds to a higher magnetic effect (Figure 9). ,e Prandtl
number triggers the temperature profile shown in Figure 10.

,e thermal boundary layer becomes thinner, and the thermal
diffusivity becomes weaker on improving the Prandtl number
steadily. ,e large values of the radiation effect accelerate the
temperature profile as shown in Figure 11. Physically, the
conductive heat exchange is greater than the radiative heat
exchange, which causes reduction in boundary layer thickness
and buoyancy force. ,e recovered outcome is the affirmative
proof of the relation qr � − (4σ∗/3k∗)(zT4/zy). ,e temper-
ature profile relates directly proportional to the Brownian
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motion effect as shown in Figure 12. Physically, the Brownian
motion constraint improves the boundary layer heat which
leads to rises in the fluid temperature. ,e variation between
reference temperature and wall temperature is enhanced by
growing the thermophoresis influence which corresponds the
enhancement in temperature profile (Figure 13).

3.2. Concentration. Figures 14 to 18 indicate concentration
profiles against different incorporated parameters. ,e con-
centration profile improves on strengthening the magnetic
impact as shown in Figure 14. An increment in Brownian
motion parameter declines the concentration profile and the
boundary layer thickness (Figure 15). Figure 16 presents more
nanoparticles that pass away from the hot surface on enhancing
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the thermophoretic effects which cause the improvement in the
concentration contour. ,e boundary layer viscosity decreases
against the Lewis number which relates to a drop in the
concentration profile (Figure 17). ,e concentration profile
corresponds to a direct variation with the Soret factor drawn in
Figure 18.

3.3.Heat andMass Exchange. In order to check the behavior
of dimensionless heat and mass exchange rates at the wall
along with skin friction against the involved parameters, i.e.,
Nb and ω, Figures 19 to 21 are drawn. Figure 19 reveals the
impact of the Brownian motion factor against different
inclination parameters. It is noted that − θ′(0) inversely
relates the Brownianmotion factor and inclination factor. As
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we improve the inclination and the Brownian motion factor,
the heat transfer rate decreases. ,e same impacts of the
Brownian motion factor along with the inclination pa-
rameter on the mass exchange rate have been noticed in
Figure 20. However, Cfx(0) enhances for higher magnitudes
of Brownian motion and inclination depicted in Figure 21.

Figures 22 to 24 reveal the variations in − θ′(0), − ϕ′(0), and
Cfx(0) versus Nt and ω. On the contrary, heat exchange
declines on the higher values of thermophoretic effect and
inclination (Figure 22). Moreover, the mass exchange rate
shows similar behavior like heat transfer rate against altered
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Figure 14: Concentration profile for several values of M.
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Figure 16: Concentration profile for several values of Nt.
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Figure 18: Concentration profile for several values of Sr.
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Figure 20: Variations of reduced Sherwood number with Nb for
different values of ω.
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Figure 22: Variations of reduced Nusselt number with Nt for
different values of ω.
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Figure 23: Variations of reduced Sherwood number with Nt for
different values of ω.
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Figure 24: Variations skin friction withNt for different values ofω.

1 ω = 1°, 30°, 45°, 60°, 90°

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.50.1
Nb

0.2

0.4

0.6

0.8

1.2

C f
x (

0)

Le = 5.0
Nt = 0.1
M = 0.1
Gr = 0.1

Sr = 1.0
N = 1.0
K = 1.0
S = 0.5

Gc = 1.1
Pr = 6.5

Figure 21: Variations skin friction with Nb for different values of ω.
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values of inclination and thermophoresis impacts in
Figure 23. In addition, skin friction is improved by en-
hancing the magnitudes of inclination and thermophoretic
impacts (Figure 24).

4. Conclusions

,e article presents numerical simulations of the micropolar-
type nanofluid flow over a slanted surface. Similarity results
for velocity, temperature, and concentration are recovered
through the Keller box technique.,e statistical outcomes are
compared with the already available literature. In research
field, some notable points from this study are as follows:

(i) ,e irregular movement of particles boosts with the
increment in Brownian motion; and as a result
energy and species exchange rate diminish, whereas
the skin friction is enhanced.

(ii) ,e temperature field is more influenced by in-
creasing thermal radiation.

(iii) ,e concentration profile enhances with the
growing magnitude of Soret impact.

(iv) ,e boundary layer viscosity decreases against
Lewis number which relates to a drop in the con-
centration profile

(v) ,e conductive heat exchange is greater than the
radiative heat exchange, which causes reduction in
boundary layer thickness and buoyancy force.

Nomenclaure

C: Fluid concentration
Sr: Soret effect parameter
N: Radiation parameter
Cf: Skin friction coefficient
S: Suction/injection
Rex: Reynolds number
C∞: Nanoparticle volume fraction
Le: Lewis number
Sh: Sherwood number
Cw: Surface volume fraction
Nb: Brownian motion parameter
T: Fluid temperature
cp: Specific heat at constant pressure
Nt: ,ermophoretic parameter
Tw: Wall temperature
DB: Brownian diffusion coefficient
Nu: Nusselt number
T∞: Ambient temperature
DT: ,ermophoretic diffusion coefficient
Pr: Prandtle number
uw: Wall velocity
f: Similarity function for velocity
g: Gravitational acceleration
u∞: Ambient velocity
ρcp: Volume heat capacity
μ: Kinematic viscosity
]: Dynamic viscosity

φ: Dimensionless solid volume fraction
w: Condition at the wall
∞: Ambient condition
Gr: Local Grashof number
βt: ,ermal expansion coefficient
βc: Concentration expansion coefficient
σ: Electric conductivity
c∗: Spin gradient viscosity
k∗1 : Vertex viscosity
j∗: Microinertia per unit mass
c: Inclination parameter

′: Differentiation with respect to η
u: Velocity in x direction
v: Velocity in y direction
x: Cartesian coordinate
ρ: Fluid density
a: Stretching rate
k: ,ermal conductivity
K: Material parameter
Gc: Modified local Grashof number
B0: Uniform magnetic field strength
θ: Dimensionless temperature
η: Similarity independent variable
α: ,ermal diffusivity
N∗: Nondimensional angular velocity.
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