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Abstract

The change in collateral price is one of the challenges in modeling
mortgage insurance. Current work mostly considers collateral price
similar to addressing risky asset modelling, in which geometric
Brownian motion is being used to model its underlying processes.
This assumption has been heavily criticized due to its lack of
fundamental dependencies in its distribution. This work provides
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memory, mortgage insurance, risk mitigation.
empirical investigation towards valuing of loss in mortgage insurance

while taking into account the dependency, i.e., memory in its
underlying model. Findings suggest that the model with memory and
stochastic volatility significantly affects the calculation of loss in

mortgage insurance.
1. Introduction

Mortgage insurance aims to protect lenders in the event when the
borrower defaults on payments, dies, or are unable to meet the contractual
obligation of the mortgage. It mitigates exposure of risk among lenders as
this risk is transferred from lenders to insurers. A good mortgage insurance
model will contribute to the growth in house financing. Among challenges
faced by mortgage insurance models include heavy dependency toward
inflation, other risk faced by insurer and unexpected change in collateral

prices.

Change in collateral (risky asset) price plays a critical role in the pricing
of mortgage insurance contracts since the amount that the insurer has to pay
lender significantly depends on the price of collateral. Current literatures
assume the changes in collateral prices to follow a geometric Brownian
motion (GBM) model, such as in Bardhan et al. [5] and Chen et al. [6],
as GBM is known to mimic movement that reflects as likely as possible
the dynamics of these prices. However, GBM essentially stems from the
random movement of stationary increments in its distribution, thus, fails to
acknowledge the presence of any dependencies and correlation (memory) in
its dataset. As such, this assumption is appropriate only when the changes in

the price of collaterals follow normal distribution with stationary increments.

Scholars such as Mandelbrot and Van Ness [13], Ross [14], Bakshi et al.
[4], Chronopoulou and Viens [7, 8], Wang and Zhang [18] and Wang et al.
[19] had showed that the use of fractional Brownian motion (FBM) is more
suitable to model financial environments. This is because the correlation

between the increments that varies consistently with Hurst parameter H that
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represents memory helps to capture the correlation dynamics (memory) of
data and therefore produce better forecasting results. Thus, it is natural to
extend the assumption of GBM to GFBM in order to adapt theoretical
advantages of such a property.

In this article, we consider GFBM model as underlying process for
collateral prices in mortgage insurance model. We also make use of long
memory stochastic volatility (LMSV) in GFBM’s parameter, which is an
additional improvement to constant volatility that is normally used in the
literature for easy calculation for GBM/GFBM model. Note that LMSV is
considered since GBM model with constant volatility has been under heavy
criticism by many empirical studies such as in Bakshi et al. [4], Ait-Sahalia
and Lo [1] and Stein [17], as they argue that financial entities considered

under this model failed to reflect financial environment.

In response to this drawback, researchers such as Scott [15], Hull and
White [12], Stein and Stein [16], Heston [11], Hagan et al. [10], Comte and
Renault [9], Chronopoulou and Viens [7, 8] and Wang and Zhang [18] have
been cooperating SV in GBM model, while recently, Alhagyan et al. [2, 3]
have successfully developed GFBM model with stochastic volatility.

To date, no work is available that investigates collateral prices
that follows GFBM model with stochastic volatility, and LMSV. In the
following, we provide comparative study among models that are able to

produce different results for the calculation of collateral prices.
2. Mortgage Insurance Modeling

In standard mortgage insurance contract, insurer has to pay lender
certain amount (Loss) if standard default occurs at time ¢ by following the

model:

Loss(t) = max{0, min(B(t — 1) = V'(c), LgB({t — 1)}, 1)

where B(t) = 2l1- % is a loan balance with installment y and
c (I+c) ™
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mortgage rate ¢ during period 7. Lp represents loss ratio while V' (z) is a
collateral (risky asset) price. Equation (1) implies that if the collateral value
is greater than the remaining loan balance, then the insurer will not pay to
the lender and then the /oss is zero, while if the value of the collateral is less

than the loan balance, then the maximum /oss is equal to LpB(t —1).

In this work, we compute collateral values by using four models
including of GBM with constant volatility assumption (GBM-Con), GBM
with stochastic volatility assumption (GBM-STO), GFBM with constant
volatility assumption (GFBM-Con), and GFBM with stochastic volatility
assumption (GFBM-STO). Also, we assume that the stochastic process
obeys fractional Ornstein-Uhlenbeck (FOU) process (see Table 1). Thus, we
make use of long memory stochastic volatility properties to be included in
this empirical study and investigate further the expected loss to lenders. The

comparison for insurer’s loss is further investigated.

Table 1. The models under consideration

Model Formula

GBM-Con dVy = uV,dt + oV,dB(t)
dVy = wVidt + o(Y;)V,dB(1)
dY, = o(m = Y;)dt + BdBy, (1)

GBM-STO

GFBM-Con  dV; = wVdt + oV;dBy, (t)

dV, = uVydi + o(¥,)V,dByy, (1)

GFBM-STO
dY, = o(m - Y;)dt + BdBp, (1)

In Table 1, {V;; ¢t € [0, T]} represents collateral price process, p is mean
of return, o is constant volatility, o(Y;) represents stochastic volatility of
stochastic process Y; that obeys fractional Ornstein-Uhlenbeck process (one

of LMSV models). a, B and m represent mean reverting of volatility,

volatility of volatility, and mean of volatility, respectively. B(f) is a
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Brownian motion, By, (¢) and By, (¢) are two independent FBM processes

where H| and H, > 0.5.

a. Data

For investigation purposes, we use available data online at http://
www.nationwide.co.uk. This data represents total house price index in UK.
The quarterly house price indices from fourth quarter of 1973 (4Q73) to first
quarter of 2017 (1Q17) are considered with total observation of 174 quarters.
These data reveal long time dependency with Hurst parameter of H = 0.85.
The return series are calculated in logarithm to avoid high volatility in the
data. Figure 1 and Figure 2 show the house price index and its return series,
while Table 2 represents the parameters’ values considered in this empirical

investigation.

Table 2. Involved parameters’ values
Parameter u a m B H) Hy 5 o(Y;)
Value 0.01782  0.6936  0.00066 0.00115  0.8538 0.8541 0.02586  0.000659
o: constant volatility o(Y;): stochastic volatility
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Figure 1. Quarterly house price index in UK from 4Q73 to 1Q17.
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Figure 2. Quarterly return of house price index in UK from 4Q73 to 1Q17.
The annual insurer’s potential loss is computed by following parameters:
insured property, V;, = £100000; annual installment, y = £15000;
mortgage rate, ¢ = 0.042; loss ratio, Lp = 0.75; and time period, 7 =15

years.
b. Valuing insurer’s potential loss

Table 3 shows the computed values of loan balance, collaterals via
different models in Table 1 and their corresponding insurer’s potential loss
in equation (1). Figure 3 illustrates the level of computed potential losses for
the first six years. Potential losses after six years happen to be zero.
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Figure 3. Comparison between the levels of potential losses in the first six

years.
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Table 3. Collateral values and their corresponding potential loss

Time: B(r-1) W(@) V(1) V3(t) Va(t) Lossi(t) Lossy(t) Loss3(t) Lossy(t)

1 164467 108997 101976 103242 101835 554703 62491.3 61225.1 62632.1

2 156375 110920 103810 105063 103666 45455.3 52565.4 51311.6 52708.8

3 147943 112876 105676 106917 105530 35066.5 42266.7 41026.1 42412.7

4 139156 114868 107576 108803 107428 24289.0 31580.3 30353.8 31728.9

5 130001 116894 109510 110722 109359 13107.4 20490.7 19279.1 20642

6 120461 118956 111479 112675 111325 1505.47 8981.84 7786.13 9135.82

7 110520 121054 113484 114662 113327 0 0 0 0

8 100162 123189 115524 116685 115364 0 0 0 0

9 89369.1 125362 117601 118743 117439 0 0 0 0

10 78122.7 127574 119715 120838 119550 0 0 0 0

11 66403.8 129824 121868 122969 121699 0 0 0 0

12 54192.8 132114 124059 125139 123888 0 0 0 0

13 41468.9 134444 126290 127346 126115 0 0 0 0

14 28210.6 136816 128560 129592 128383 0 0 0 0

15 14395.4 139229 130872 131878 130691 0 0 0 0
71(¢): collateral computed by GBM-Con Loss)(t): potential loss corresponding to ¥7(¢)
V5(t): collateral computed by GBM-STO Loss;(t): potential loss corresponding to ¥ (t)
V3(t): collateral computed by GFBM-Con Loss3(t): potential loss corresponding to V3(¢)
V4(¢): collateral computed by GFBM-STO Loss4(t): potential loss corresponding to V4(t)

B(¢ —1): loan balance at time ¢ — 1

Table 3 reveals an inverse relationship between collateral values and
their potential losses, i.e., as collateral value increases, the loss decreases. In

the first six years, the value of loan balance B(z —1) is greater than the
computed values of collateral computed by V(¢), V5(¢), V3(¢) and V,(¢).
Thus, the insurers have to pay a certain amount equal to Loss(¢), Loss,(t),
Loss3(t) and Lossy(t) corresponding to collateral values V(2), V5 (¢), V3(t)
and V,(t), respectively. In the seventh year onwards, collateral values are
greater than loan balances. Thus, insurer’s loss equals to zero.

The proposed model of GFBM-STO provides the greatest value of

insurer’s loss (Loss4(¢)), while GBM-Con provides the smallest value of
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insurer’s loss (Lossy(¢)). These findings imply two perspectives, from the
insurer and the loaner. From the insurer’s perspective, the loss computed by
GBM-Con is the best, while the loss computed by GFBM-STO is the worst,
while from the loaner’s perspective, the loss computed by GFBM-STO is the
best, while the loss computed by GBM-Con is the worst.

Table 3 also showed a significant difference between the potential loss
computed via GBM-Con, and the other three potential computed losses
(GBM-STO, GFBM-Con and GFBM-STO). These results reflect the level of
affection of memory and stochastic volatility assumption on potential loss of
insurer. Therefore, we strongly recommended taking memory and stochastic

volatility into account in mortgage insurance contracts.
3. Discussion

We computed the collateral values using four models listed in Table 1.
After, we computed the corresponding potential loss of insurer, the findings

have been summarized into Table 3 and Figure 3.

The findings showed that the insurer’s loss computed by using GFBM-
STO model provides the largest value while GBM-Con provides the least.
These results can be read from two viewpoints - insurer’s viewpoint and
loaner’s viewpoint. From the insurer’s viewpoint, the loss calculated by
GBM-Con is the best, and the loss calculated by GFBM-STO is the worst,
while from the loaner’s viewpoint, the loss calculated by GFBM-STO is the
best, and the loss calculated by GBM-Con is the worst.

The findings indicate a significant difference between the potential loss
calculated depending on GBM-Con and the other three potential losses
calculated depending on GBM-STO, GFBM-Con and GFBM-STO. These
results reveal the level of affection of memory and stochastic volatility
assumption on potential loss of insurer. Consequently, we strongly
recommend taking memory and stochastic volatility into account in mortgage

insurance contracts.
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