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Abstract

The change in collateral price is one of the challenges in modeling

mortgage insurance. Current work mostly considers collateral price

similar to addressing risky asset modelling, in which geometric

Brownian motion is being used to model its underlying processes.

This assumption has been heavily criticized due to its lack of

fundamental dependencies in its distribution. This work provides
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empirical investigation towards valuing of loss in mortgage insurance 

while taking into account the dependency, i.e., memory in its 

underlying model. Findings suggest that the model with memory and 

stochastic volatility significantly affects the calculation of loss in 

mortgage insurance. 

1. Introduction 

Mortgage insurance aims to protect lenders in the event when the 

borrower defaults on payments, dies, or are unable to meet the contractual 

obligation of the mortgage. It mitigates exposure of risk among lenders as 

this risk is transferred from lenders to insurers. A good mortgage insurance 

model will contribute to the growth in house financing. Among challenges 

faced by mortgage insurance models include heavy dependency toward 

inflation, other risk faced by insurer and unexpected change in collateral 

prices. 

Change in collateral (risky asset) price plays a critical role in the pricing 

of mortgage insurance contracts since the amount that the insurer has to pay 

lender significantly depends on the price of collateral. Current literatures 

assume the changes in collateral prices to follow a geometric Brownian 

motion (GBM) model, such as in Bardhan et al. [5] and Chen et al. [6],            

as GBM is known to mimic movement that reflects as likely as possible             

the dynamics of these prices. However, GBM essentially stems from the 

random movement of stationary increments in its distribution, thus, fails to 

acknowledge the presence of any dependencies and correlation (memory) in 

its dataset. As such, this assumption is appropriate only when the changes in 

the price of collaterals follow normal distribution with stationary increments. 

Scholars such as Mandelbrot and Van Ness [13], Ross [14], Bakshi et al. 

[4], Chronopoulou and Viens [7, 8], Wang and Zhang [18] and Wang et al. 

[19] had showed that the use of fractional Brownian motion (FBM) is more 

suitable to model financial environments. This is because the correlation 

between the increments that varies consistently with Hurst parameter H that 

represents memory helps to capture the correlation dynamics (memory) of 



On Effects of Stochastic Volatility and Long Memory … 167 

data and therefore produce better forecasting results. Thus, it is natural to 

extend the assumption of GBM to GFBM in order to adapt theoretical 

advantages of such a property. 

In this article, we consider GFBM model as underlying process for 

collateral prices in mortgage insurance model. We also make use of long 

memory stochastic volatility (LMSV) in GFBM’s parameter, which is an 

additional improvement to constant volatility that is normally used in the 

literature for easy calculation for GBM/GFBM model. Note that LMSV is 

considered since GBM model with constant volatility has been under heavy 

criticism by many empirical studies such as in Bakshi et al. [4], Aїt-Sahalia 

and Lo [1] and Stein [17], as they argue that financial entities considered 

under this model failed to reflect financial environment. 

In response to this drawback, researchers such as Scott [15], Hull and 

White [12], Stein and Stein [16], Heston [11], Hagan et al. [10], Comte and 

Renault [9], Chronopoulou and Viens [7, 8] and Wang and Zhang [18] have 

been cooperating SV in GBM model, while recently, Alhagyan et al. [2, 3] 

have successfully developed GFBM model with stochastic volatility. 

To date, no work is available that investigates collateral prices            

that follows GFBM model with stochastic volatility, and LMSV. In the 

following, we provide comparative study among models that are able to 

produce different results for the calculation of collateral prices. 

2. Mortgage Insurance Modeling 

In standard mortgage insurance contract, insurer has to pay lender 

certain amount (Loss) if standard default occurs at time t by following the 

model: 

         ,1,1min,0max  tBLtVtBtLoss R  (1) 

where  
  





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1  is a loan balance with installment y and 
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mortgage rate c during period T. RL  represents loss ratio while  tV  is a 

collateral (risky asset) price. Equation (1) implies that if the collateral value 

is greater than the remaining loan balance, then the insurer will not pay to 

the lender and then the loss is zero, while if the value of the collateral is less 

than the loan balance, then the maximum loss is equal to  .1tBLR  

In this work, we compute collateral values by using four models 

including of GBM with constant volatility assumption (GBM-Con), GBM 

with stochastic volatility assumption (GBM-STO), GFBM with constant 

volatility assumption (GFBM-Con), and GFBM with stochastic volatility 

assumption (GFBM-STO). Also, we assume that the stochastic process 

obeys fractional Ornstein-Uhlenbeck (FOU) process (see Table 1). Thus, we 

make use of long memory stochastic volatility properties to be included in 

this empirical study and investigate further the expected loss to lenders. The 

comparison for insurer’s loss is further investigated. 

Table 1. The models under consideration 

Model Formula 

GBM-Con  tdBVdtVdV ttt   

GBM-STO 
   tdBVYdtVdV tttt   

   tdBdtYmdY Htt 2
  

GFBM-Con  tdBVdtVdV Httt 1
  

GFBM-STO 
   tdBVYdtVdV Htttt 1

  

   tdBdtYmdY Htt 2
  

In Table 1,   TtVt ,0;   represents collateral price process,  is mean 

of return,  is constant volatility,  tY  represents stochastic volatility of 

stochastic process tY  that obeys fractional Ornstein-Uhlenbeck process (one 

of LMSV models). ,  and m represent mean reverting of volatility, 

volatility of volatility, and mean of volatility, respectively.  tB  is a 
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Brownian motion,  tBH1
 and  tBH2

 are two independent FBM processes 

where 1H  and .5.02 H  

a. Data 

For investigation purposes, we use available data online at http:// 

www.nationwide.co.uk. This data represents total house price index in UK. 

The quarterly house price indices from fourth quarter of 1973 (4Q73) to first 

quarter of 2017 (1Q17) are considered with total observation of 174 quarters. 

These data reveal long time dependency with Hurst parameter of .85.0H  

The return series are calculated in logarithm to avoid high volatility in the 

data. Figure 1 and Figure 2 show the house price index and its return series, 

while Table 2 represents the parameters’ values considered in this empirical 

investigation. 

Table 2. Involved parameters’ values 

Parameter   m  1H  2H    tY  

 Value 0.01782 0.6936 0.00066 0.00115 0.8538 0.8541 0.02586 0.000659 

 : constant volatility     :tY  stochastic volatility 

 

Figure 1. Quarterly house price index in UK from 4Q73 to 1Q17. 
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Figure 2. Quarterly return of house price index in UK from 4Q73 to 1Q17. 

The annual insurer’s potential loss is computed by following parameters: 

insured property, £100000;0 V  annual installment, £15000;y  

mortgage rate, 0.042;c  loss ratio, ;75.0RL  and time period, 15T  

years. 

b. Valuing insurer’s potential loss 

Table 3 shows the computed values of loan balance, collaterals via 

different models in Table 1 and their corresponding insurer’s potential loss 

in equation (1). Figure 3 illustrates the level of computed potential losses for 

the first six years. Potential losses after six years happen to be zero. 

 

Figure 3. Comparison between the levels of potential losses in the first six 

years. 
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Table 3. Collateral values and their corresponding potential loss 

Time t  1tB   tV1   tV2   tV3   tV4   tLoss1   tLoss2   tLoss3   tLoss4  

1 164467 108997 101976 103242 101835 55470.3 62491.3 61225.1 62632.1 

2 156375 110920 103810 105063 103666 45455.3 52565.4 51311.6 52708.8 

3 147943 112876 105676 106917 105530 35066.5 42266.7 41026.1 42412.7 

4 139156 114868 107576 108803 107428 24289.0 31580.3 30353.8 31728.9 

5 130001 116894 109510 110722 109359 13107.4 20490.7 19279.1 20642 

6 120461 118956 111479 112675 111325 1505.47 8981.84 7786.13 9135.82 

7 110520 121054 113484 114662 113327 0 0 0 0 

8 100162 123189 115524 116685 115364 0 0 0 0 

9 89369.1 125362 117601 118743 117439 0 0 0 0 

10 78122.7 127574 119715 120838 119550 0 0 0 0 

11 66403.8 129824 121868 122969 121699 0 0 0 0 

12 54192.8 132114 124059 125139 123888 0 0 0 0 

13 41468.9 134444 126290 127346 126115 0 0 0 0 

14 28210.6 136816 128560 129592 128383 0 0 0 0 

15 14395.4 139229 130872 131878 130691 0 0 0 0 

  :1 tV  collateral computed by GBM-Con   :1 tLoss  potential loss corresponding to  tV1  

  :2 tV  collateral computed by GBM-STO   :2 tLoss  potential loss corresponding to  tV2  

  :3 tV  collateral computed by GFBM-Con   :3 tLoss  potential loss corresponding to  tV3  

  :4 tV  collateral computed by GFBM-STO   :4 tLoss  potential loss corresponding to  tV4  

  :1tB  loan balance at time 1t   

Table 3 reveals an inverse relationship between collateral values and       

their potential losses, i.e., as collateral value increases, the loss decreases. In 

the first six years, the value of loan balance  1tB  is greater than the 

computed values of collateral computed by  ,1 tV   ,2 tV   tV3  and  .4 tV  

Thus, the insurers have to pay a certain amount equal to  ,1 tLoss   ,2 tLoss  

 tLoss3  and  tLoss4  corresponding to collateral values      tVtVtV 321 ,,  

and  ,4 tV  respectively. In the seventh year onwards, collateral values are 

greater than loan balances. Thus, insurer’s loss equals to zero. 

The proposed model of GFBM-STO provides the greatest value of 

insurer’s loss   ,4 tLoss  while GBM-Con provides the smallest value of 



Mohammed Alhagyan, Masnita Misiran and Zurni Omar 172 

insurer’s loss   .1 tLoss  These findings imply two perspectives, from the 

insurer and the loaner. From the insurer’s perspective, the loss computed by 

GBM-Con is the best, while the loss computed by GFBM-STO is the worst, 

while from the loaner’s perspective, the loss computed by GFBM-STO is the 

best, while the loss computed by GBM-Con is the worst. 

Table 3 also showed a significant difference between the potential loss 

computed via GBM-Con, and the other three potential computed losses 

(GBM-STO, GFBM-Con and GFBM-STO). These results reflect the level of 

affection of memory and stochastic volatility assumption on potential loss of 

insurer. Therefore, we strongly recommended taking memory and stochastic 

volatility into account in mortgage insurance contracts. 

3. Discussion 

We computed the collateral values using four models listed in Table 1. 

After, we computed the corresponding potential loss of insurer, the findings 

have been summarized into Table 3 and Figure 3. 

The findings showed that the insurer’s loss computed by using GFBM-

STO model provides the largest value while GBM-Con provides the least. 

These results can be read from two viewpoints - insurer’s viewpoint and 

loaner’s viewpoint. From the insurer’s viewpoint, the loss calculated by 

GBM-Con is the best, and the loss calculated by GFBM-STO is the worst, 

while from the loaner’s viewpoint, the loss calculated by GFBM-STO is the 

best, and the loss calculated by GBM-Con is the worst. 

The findings indicate a significant difference between the potential loss 

calculated depending on GBM-Con and the other three potential losses 

calculated depending on GBM-STO, GFBM-Con and GFBM-STO. These 

results reveal the level of affection of memory and stochastic volatility 

assumption on potential loss of insurer. Consequently, we strongly 

recommend taking memory and stochastic volatility into account in mortgage 

insurance contracts. 
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