

Hermite-Hadamard inequality for product of (h_1, h_2, s) -convex and m -harmonically convex function

Sabir Yasin *

Department of Mathematics and Statistics

School of Quantitative Sciences

Universiti Utara, Malaysia

Kedah

Malaysia

Masnita Misiran

Department of Mathematics and Statistics

School of Quantitative Sciences

Universiti Utara, Malaysia

Kedah

Malaysia

and

Centre for Testing

Measurement and Appraisal

Universiti Utara Malaysia

06010 UIUM Sintok

Kedah

Malaysia

Zurni Omar

Department of Mathematics and Statistics

School of Quantitative Sciences

Universiti Utara, Malaysia

Kedah

Malaysia

* E-mail: sabiryasin77@gmail.com

Abstract

In this paper, a new definition of (m, h_1, h_2, s) -Harmonically convex function is introduced by combining m -convex, (h_1, h_2) -convex, s -convex, and harmonically convex function. Nowadays the approach of combining different convex functions is being used to extend the mathematical inequalities. In this paper, H-H inequality is considered to extend the fact that the combination of two or more convex functions combines their properties also. This innovative approach of combining convex functions leads to new applications in a variety of domains, including mathematics as well as other fields. These given inequalities can be considered as refinements and improvements to previously established results.

Subject Classification: (2010) 26A51, 26A33, 26D10, 26D07, 26D20, 26E60.

Keywords: Hermite-Hadamard (H-H), Inequality, Convex, Function.

1. Introduction

Convex functions are very important because it provides the basis for construction of mathematical inequalities.

A function $f : \mathbb{I} \rightarrow \mathbb{R}$, is convex for $a_1 \in [0, 1]$, if

$$f(a_1x + m(1 - a_1)y) \leq a_1f(x) + (1 - a_1)f(y), \quad x, y \in \mathbb{I}. \quad (1)$$

Several mathematical inequalities and extensions are the results of convex functions [1-9]. The first inequality in literature for convex function is Hermite-Hadamard inequality [7].

Let $f : \mathbb{I} \rightarrow \mathbb{R}_+$ be a convex function, then

$$f\left[\frac{p+q}{2}\right] \leq \frac{1}{q-p} \int_p^q f(x)dx \leq \frac{f(q)+f(p)}{2}, \quad p, q \in \mathbb{I} \in \mathbb{R}, \quad (2)$$

is called Hermite-Hadamard (H-H) inequality.

Many researchers used to extend H-H inequality using different convex function [13-15]. The new trend is to combine more than two different convex function and to extend this inequality.

In [10], a new definition of (m, h_1, h_1) -convex function is introduced as

Definition 1: A function $f : \mathbb{I} \rightarrow (0, \infty)$ and $h_1, h_2 : \mathbb{I} \rightarrow \mathbb{R}$, then f is called (m, h_1, h_2) -convex for $a_1 \in [0, 1]$, if

$$f(a_1x + m(1 - a_1)y) \leq h_1(a_1)f(x) + mh_2(1 - a_1)f(y), \quad x, y \in \mathbb{I}. \quad (3)$$

Here, $h \neq 0$ is a positive function.

Recently, the definition of harmonically convex function is introduced by Iscan [11] as follows.

Definition 2: A function $f: \mathbb{I} \rightarrow \mathbb{R}$, is called harmonically convex on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$, if

$$f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) \leq a_1f(x) + (1-a_1)f(y), \quad x, y \in \mathbb{I}, a_1 \in [0, 1] \quad (4)$$

On the basis of this definition (2), some new extensions for H-H inequality are produced as

Theorem 1: Let $f: \mathbb{I} \rightarrow \mathbb{R}$ be a harmonically convex function on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$, then the following H-H inequality holds.

$$f\left[\frac{2pq}{p+q}\right] \leq \frac{pq}{q-p} \int_p^q \frac{f(x)}{x^2} dx \leq \frac{f(q)+f(p)}{2}, \quad p, q \in \mathbb{I} \in \mathbb{R}, \quad (5)$$

In [12], Xi and Zhang introduced another definition by combining m -convex and harmonically convex function as follows.

Definition 3: A function $f: \mathbb{I} \rightarrow \mathbb{R}$, is called m -harmonically convex on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$, if

$$f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) \leq a_1f(x) + m(1-a_1)f(y), \quad x, y \in \mathbb{I}, a_1 \in [0, 1] \quad (6)$$

Here $m \in (0, 1]$ is a constant quantity.

The H-H inequality for m -harmonically convex function was also investigated in [12]. Furthermore, two more theorems are also discussed in that study as follows.

Theorem 2: Let $f: \mathbb{I} \rightarrow \mathbb{R}$ be a m -harmonically convex function on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$ and $\mathbb{I} \in [0, 1]$, then

$$\left[\frac{pq}{q-p}\right]_p^q \frac{f(x)}{x^2} dx \leq \min\{f(q) + mf(mp), f(p) + mf(mq)\} \int_0^1 h(a_1) da_1. \quad (7)$$

Theorem 3: Let $f: \mathbb{I} \rightarrow \mathbb{R}$ be a m -harmonically convex function on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$ and $\mathbb{I} \in [0, 1]$, then

$$\begin{aligned} \frac{1}{h\left(\frac{1}{2}\right)} f\left[\frac{2pq}{q-p}\right] &\leq \frac{pq}{q-p} \int_p^q \frac{f(x) + mf(xm)}{x^2} dx \leq \frac{1}{2} \{f(p) + f(q) \\ &+ 2m[f(pm) + f(qm)] + m^2[f(am^2) + f(bm^2)]\} \int_0^1 h(a_1) da_1. \end{aligned} \quad (8)$$

Theorem 4: Let $f, g : \mathbb{I} \rightarrow \mathbb{R}$ be two m -harmonically convex functions named m_1 -harmonically convex and m_2 -harmonically convex function respectively on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$ and $\mathbb{I} \in [0, 1]$, then

$$\frac{pq}{q-p} \int_p^q \frac{f(x)g(x)}{x^2} dx \leq \min\{M_1(x, y), M_2(x, y)\}. \quad (9)$$

Here,

$$\begin{aligned} M_1(x, y) &= [m_1 f(pm_1) m_2 g(pm_2) + f(q)g(q)] \int_0^1 [h(a_1)]^2 da_1 + \\ &\quad [m_1 f(pm_1)g(q) + m_2 g(pm_2)f(q)] \int_0^1 h(a_1)h(1-a_1) da_1 \\ M_1(x, y) &= [m_1 f(qm_1) m_2 g(pm_2) + f(p)g(p)] \int_0^1 [h(a_1)]^2 da_1 + \\ &\quad [m_1 f(pm_1)g(q) + m_2 g(pm_2)f(q)] \int_0^1 h(a_1)h(1-a_1) da_1 \end{aligned}$$

2. Main Results

In this section, we introduced a new definition of (m, h_1, h_2, s) -HA-convex function as follows

Definition 4: A function $f : \mathbb{I} \rightarrow \mathbb{R}$, is called (m, h_1, h_2, s) -HA convex on $\mathbb{I} \subset \mathbb{R} \setminus \{0\}$, if

$$f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) \leq h_1^s(a_1)f(x) + mh_2^s(1-a_1)f(y), \quad x, y \in \mathbb{I}, a_1 \in [0, 1]. \quad (10)$$

Here $m \in (0, 1]$ is a constant quantity and $h_1, h_2 \neq 0$ for $h_1, h_2 : [0, 1] \rightarrow \mathbb{R}$.

Remark:

- (1) If $h_1^s(a_1) = h^s(a_1)$ and $h_2^s(1-a_1) = h^s(1-a_1)$ then this Definition (4) will be reduced to (m, h, s) -HA convex function.

(2) If $h_1^s(a_1) = h(a_1)$ and $h_2^s(1-a_1) = h(1-a_1)$ then this Definition (4) will be reduced to (m, h) -HA convex function.

(3) If $h_1^s(a_1) = a_1$ and $h_2^s(1-a_1) = (1-a_1)$ then this Definition (4) will be reduced to m -HA convex function.

(4) If $h_1^s(a_1) = a_1^s$ and $h_2^s(1-a_1) = (1-a_1^s)$ then this Definition (4) will be reduced to (m, s) -HA convex function.

Example 1: A function $f: \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}$ is called (m, h_1, h_2, s) -HA convex function defined as $f(x) = \frac{1}{x^\alpha}$, for some fixed $\alpha \geq 1$. Let $h_1^s(a_1) = a_1^{\alpha_1}$, $h_2^s(a_1) = a_1^{\alpha_2}$, for all $a_1 \in [0, 1]$ and $0 < \alpha_1, \alpha_2 \leq 1$.

Let $x, y \in \mathbb{I}$, then by definition

$$\begin{aligned} f(x) = \frac{1}{x^\alpha} \Rightarrow f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) &= \left(\frac{1}{\frac{xy}{a_1x + m(1-a_1)y}}\right)^\alpha, \\ &= \left(\frac{a_1x + m(1-a_1)y}{xy}\right)^\alpha, \\ &= \frac{[a_1x + m(1-a_1)y]^\alpha}{[xy]^\alpha}, \\ &\leq \frac{a_1x^{\alpha_1} + m^\alpha(1-a_1)y^\alpha}{[x]^\alpha[y]^\alpha}. \end{aligned}$$

As we know that $h_1^s(a_1) = a_1^{\alpha_1}$, $h_2^s(a_1) = a_1^{\alpha_2}$ and $0 < \alpha_1, \alpha_2 \leq 1$ then $a_1 \leq a_1^{\alpha_1}$ and $(1-a_1) \leq (1-a_1^{\alpha_1})$.

Now above inequality can be written as

$$\begin{aligned} f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) &\leq \frac{a_1^{\alpha_1}x^{\alpha_1} + m^\alpha(1-a_1^{\alpha_1})y^\alpha}{[x]^\alpha[y]^\alpha} \\ &\leq a_1^{\alpha_1} \frac{1}{y^\alpha} + m^\alpha(1-a_1^{\alpha_1}) \frac{1}{x^\alpha} \\ &= h_1^s(a_1)f(y) + h_2^s(a_1)f(x) \end{aligned}$$

This showed that f is a (m, h_1, h_2, s) -HA convex function.

Theorem 5: Let $h_1, h_2: \mathbb{I} \rightarrow \mathbb{R}$ such that $h_1, h_2 \neq 0$. Let $f: \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be (m, h_1, h_2, s) -harmonically convex function. If $m=1$ then $h_1^s(a_1) + h_2^s(a_1) \geq 1$, for all $a_1 \in [0, 1]$.

Proof: As f is a (m, h_1, h_2, s) -harmonically convex function with $m=1$ then

$$\begin{aligned}
f(x) &= f\left(\frac{x^2}{a_1x + (1-a_1)x}\right), \\
&\leq h_1^s f(x) + h_2^s(1-a_1)f(x), \\
&\leq [h_1^s(a_1) + h_2^s(1-a_1)]f(x).
\end{aligned}$$

This proves that $h_1^s(a_1) + h_2^s(1-a_1) \geq 1$ for all $a_1 \in [0,1]$.

Theorem 6: Let $h_i : [0,1] \rightarrow \mathbb{R}$ such that $h_i \neq 0$ for all $i = 1, 2, 3, 4$. Let $f : \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be (m, h_1, h_2, s) -harmonically convex function. If $m \in [0,1]$, $a_1 \in [0,1]$ and $h_1^s(a_1) \leq h_3^s(a_1)$, $h_2^s(a_1) \leq h_4^s(a_1)$ then f is a (m, h_3, h_4, s) -harmonically convex function.

Proof: As f is a (m, h_1, h_2, s) -harmonically convex function then

$$\begin{aligned}
f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) &\leq h_1^s(a_1)f(x) + mh_2^s(1-a_1)f(y), \\
f\left(\frac{xy}{a_1x + m(1-a_1)y}\right) &\leq h_3^s(a_1)f(x) + mh_4^s(1-a_1)f(y).
\end{aligned}$$

This completes the proof.

Theorem 7: Let $h_i : [0,1] \rightarrow \mathbb{R}$ such that $h_i \neq 0$ for all $i = 1, 2$. Let $f : \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ and $g : J \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be (m, h_1, h_2, s) -harmonically convex function. If f is nondecreasing function with respect to g and g is m -HA-convex function on J with $m \in [0,1]$, $a_1 \in [0,1]$ then $f \circ g$ is a (m, h_1, h_2, s) -harmonically convex function.

Proof: As g is a m -HA convex function and $m \in [0,1]$, $a_1 \in [0,1]$ with, we have

$$g\left(\frac{xy}{a_1x + m(1-a_1)y}\right) \leq a_1g(x) + m(1-a_1)g(y).$$

As f is a nondecreasing (m, h_1, h_2, s) -convex function, we have

$$f\left(g\left(\frac{xy}{a_1x + m(1-a_1)y}\right)\right) \leq a_1f(g(x)) + m(1-a_1)f(g(y)).$$

By using the definition of (m, h_1, h_2, s) -convex function, we get

$$g\left(\frac{xy}{a_1x + m(1-a_1)y}\right) \leq h_1^s(a_1)f(g(x)) + mh_2^s(1-a_1)f(g(y)).$$

This completes the proof that $f \circ g$ is a (m, h_1, h_2, s) -harmonically convex function.

3. Hermite-Hadamard (H-H) inequality.

In this section, some extensions of H-H inequality for (m, h_1, h_2, s) -HA convex function is obtained and presented in the form of theorems.

Theorem 7: Let $h_1, h_2 : [0, 1] \rightarrow \mathbb{R}$ such that $h_1, h_2 \neq 0$. Let $f : \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be an (m, h_1, h_2, s) -harmonically convex function with $s \in [0, 1]$, $m \in [0, 1]$, $a_1 \in [0, 1]$ then

$$f\left(\frac{2pq}{p+q}\right) \leq \frac{pqh_1^s\left(\frac{1}{2}\right)}{q-p} \int_p^q \frac{f(x)}{x^2} dx + \frac{pqmh_2^s\left(\frac{1}{2}\right)}{q-p} \int_p^q \frac{f(xm)}{x^2} dx. \quad (11)$$

Proof:

As we know that $\left(\frac{2pq}{p+q}\right)$ can be written as $\left(\left(\frac{1}{2}\right)\left(\frac{1}{\frac{pq}{a_1p+(1-a_1)q}}\right) + \left(\frac{1}{2}\right)\left(\frac{1}{\frac{pq}{a_1q+(1-a_1)p}}\right)\right)$

for all $a_1 \in [0, 1]$ then we get

$$f\left(\frac{2pq}{p+q}\right) \leq h_1^s\left(\frac{1}{2}\right) f\left(\frac{pq}{a_1p+(1-a_1)q}\right) + mh_2^s\left(\frac{1}{2}\right) f\left(\frac{pq}{a_1q+(1-a_1)p}\right). \quad (12)$$

Put $x = \frac{pq}{a_1p+(1-a_1)q} = \frac{pq}{a_1p+(1-a_1)q}$ in Inequality (12) and integrate with respect to $a_1 \in [0, 1]$, we get

$$\int_0^1 f\left(\frac{pq}{a_1p+(1-a_1)q}\right) da_1 = \left(\frac{pq}{q-p}\right) \int_p^q \frac{f(x)}{x^2} dx. \quad (13)$$

$$\int_0^1 f\left(\frac{pqm}{a_1q+(1-a_1)p}\right) da_1 = \left(\frac{pq}{q-p}\right) \int_p^q \frac{f(xm)}{x^2} dx. \quad (14)$$

By substituting the values in Equation (13) and Equation (14) in Inequality (12), we get

$$f\left(\frac{2pq}{p+q}\right) \leq h_1^s\left(\frac{1}{2}\right) \int_p^q \frac{f(x)}{x^2} dx + mh_2^s\left(\frac{1}{2}\right) \int_p^q \frac{f(xm)}{x^2} dx. \quad (15)$$

This Inequality (15) completes the proof.

Theorem 8: Let $h_1, h_2 : [0, 1] \rightarrow \mathbb{R}$ such that $h_1, h_2 \neq 0$. Let $f : \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be an (m, h_1, h_2, s) -harmonically convex function with $s \in [0, 1]$, $m \in [0, 1]$, $a_1 \in [0, 1]$ then

$$\begin{aligned} \left(\frac{pq}{q-p} \right)_p^q \frac{f(x)}{x^2} dx &\leq \min\{f(p) \int_0^1 h_1^s(a_1) da_1 + mf(qm) \int_0^1 h_2^s(1-a_1) da_1, f(q) \int_0^1 h_1^s(a_1) da_1 \\ &\quad + mf(pm) \int_0^1 h_2^s(1-a_1) da_1\}. \end{aligned} \quad (16)$$

Proof: Let $p, q \in \mathbb{R}_+$ and f be a (m, h_1, h_2, s) -harmonically convex function, then

$$f\left(\frac{pq}{a_1p+(1-a_1)q}\right) \leq h_1^s(a_1)f(p) + mh_2^s(1-a_1)f(qm). \quad (17)$$

Integrate Inequality (17) with respect to $a_1 \in [0,1]$, we get

$$\left(\frac{pq}{q-p} \right)_p^q \frac{f(x)}{x^2} dx \leq \int_0^1 h_1^s(a_1) da_1 f(p) + m \int_0^1 h_2^s(1-a_1) da_1 f(qm). \quad (18)$$

Now by using Inequality (17) and Inequality (18), we get

$$\begin{aligned} \left(\frac{pq}{q-p} \right)_p^q \frac{f(x)}{x^2} dx &\leq \min\{f(p) \int_0^1 h_1^s(a_1) da_1 + mf(qm) \int_0^1 h_2^s(1-a_1) da_1, f(q) \int_0^1 h_1^s(a_1) da_1 \\ &\quad + mf(pm) \int_0^1 h_2^s(1-a_1) da_1\}. \end{aligned} \quad (19)$$

This Inequality (19) completes the proof.

Theorem 8: Let $h_1, h_2 : [0,1] \rightarrow \mathbb{R}$ such that $h_1, h_2 \neq 0$. Let $f : \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be an (m, h_1, h_2, s) -harmonically convex function with $s \in [0,1]$, $m \in [0,1]$, $a_1 \in [0,1]$ then

$$\begin{aligned} f\left(\frac{pq}{p+q}\right) &\leq h_1^s\left(\frac{1}{2}\right) \left(\frac{pq}{q-p} \right)_p^q \frac{f(x)}{x^2} dx + mh_2^s\left(\frac{1}{2}\right) \left(\frac{pq}{q-p} \right)_p^q \frac{f(xm)}{x^2} dx \\ &\leq \min \left\{ h_1^s\left(\frac{1}{2}\right)f(q) + mh_2^s\left(\frac{1}{2}\right)f(mp), \int_0^1 h_1^s(a_1) da_1 + m \left[h_1^s\left(\frac{1}{2}\right)f(mp) \right. \right. \\ &\quad \left. \left. + mh_2^s\left(\frac{1}{2}\right)f(m^2q) \right] \int_0^1 h_2^s(a_1) da_1 \left[h_1^s\left(\frac{1}{2}\right)f(p) + mh_2^s\left(\frac{1}{2}\right)f(mq) \right] \int_0^1 h_1^s(a_1) da_1 \right. \\ &\quad \left. + m \left[h_1^s\left(\frac{1}{2}\right)f(mq) + mh_2^s\left(\frac{1}{2}\right)f(m^2p) \right] \int_0^1 h_2^s(a_1) da_1 \right\}. \end{aligned} \quad (20)$$

Proof: Let $p, q \in \mathbb{R}_+$ and f be a (m, h_1, h_2, s) -harmonically convex function, then

$$f\left(\frac{2pq}{p+q}\right) \leq h_1^s\left(\frac{1}{2}\right) f\left(\frac{pq}{a_1p+(1-a_1)q}\right) + h_2^s\left(\frac{1}{2}\right) f\left(\frac{pqm}{a_1p+(1-a_1)q}\right), \quad (21)$$

Similarly,

$$f\left(\frac{2pq}{p+q}\right) \leq h_1^s\left(\frac{1}{2}\right) f\left(\frac{pq}{a_1p+(1-a_1)q}\right) + h_2^s\left(\frac{1}{2}\right) f\left(\frac{pqm}{a_1p+(1-a_1)q}\right), \quad (23)$$

$$\begin{aligned} &\leq h_1^s\left(\frac{1}{2}\right) [h_1^s(a_1)f(p) + mh_2^s(1-a_1)f(qm)] + mh_2^s\left(\frac{1}{2}\right) [h_1^s(a_1)f(mq) \\ &\quad + mh_2^s(1-a_1)f(pm^2)]. \end{aligned} \quad (24)$$

After integrating Inequality (22) and Inequality (24) with respect to $a_1 \in [0, 1]$, we get

$$f\left(\frac{2pq}{p+q}\right) \leq h_1^s\left(\frac{1}{2}\right) \int_p^q \frac{f(x)}{x^2} dx + mh_2^s\left(\frac{1}{2}\right) \int_p^q \frac{f(xm)}{x^2} dx, \quad (25)$$

$$\begin{aligned} &\leq h_1^s\left(\frac{1}{2}\right) [f(q) + mh_2^s\left(\frac{1}{2}\right) f(pm)] \int_0^1 h_1^s(a_1) da_1 \\ &\quad + \left[f(pm) + mh_2^s\left(\frac{1}{2}\right) f(qm^2) \right] \int_0^1 h_2^s(a_1) da_1, \end{aligned} \quad (26)$$

$$f\left(\frac{2pq}{p+q}\right) \leq h_1^s\left(\frac{1}{2}\right) \int_p^q \frac{f(x)}{x^2} dx + mh_2^s\left(\frac{1}{2}\right) \int_p^q \frac{f(xm)}{x^2} dx, \quad (27)$$

$$\begin{aligned} &\leq h_1^s\left(\frac{1}{2}\right) [f(p) + mh_2^s\left(\frac{1}{2}\right) f(qm)] \int_0^1 h_1^s(a_1) da_1 \\ &\quad + \left[f(qm) + mh_2^s\left(\frac{1}{2}\right) f(pm^2) \right] \int_0^1 h_2^s(a_1) da_1, \end{aligned} \quad (28)$$

respectively.

Now by using Inequality (26) and Inequality (28), we get

$$\begin{aligned} f\left(\frac{pq}{p+q}\right) &\leq h_1^s\left(\frac{1}{2}\right) \int_p^q \frac{f(x)}{x^2} dx + mh_2^s\left(\frac{1}{2}\right) \int_p^q \frac{f(xm)}{x^2} dx \\ &\leq \min \left\{ h_1^s\left(\frac{1}{2}\right) f(q) + mh_2^s\left(\frac{1}{2}\right) f(mp), \int_0^1 h_1^s(a_1) da_1 \right\} + m \left[h_1^s\left(\frac{1}{2}\right) f(mp) \right. \\ &\quad \left. + mh_2^s\left(\frac{1}{2}\right) f(m^2q) \right] \int_0^1 h_2^s(a_1) da_1 \left[h_1^s\left(\frac{1}{2}\right) f(p) + mh_2^s\left(\frac{1}{2}\right) f(mq) \right] \int_0^1 h_1^s(a_1) da_1 \\ &\quad + m \left[h_1^s\left(\frac{1}{2}\right) f(mq) + mh_2^s\left(\frac{1}{2}\right) f(m^2p) \right] \int_0^1 h_2^s(a_1) da_1 \right\}. \end{aligned} \quad (29)$$

Inequality (29) completes the proof.

Remarks:

- (1) If we put $h_1^s(a_1) = h_2^s(a_1) = h(a_1)$ in Inequality (29), we get Inequality (7).
- (2) If we put $h_1^s(a_1) = h_1(a_1)$ and $h_2^s(a_1) = h_2(a_1)$ in Inequality (29), we get the results for (m, h_1, h_2) -HA convex function.
- (3) If we put $h_1^s(a_1) = a_1$ and $h_2^s(a_1) = (1 - a_1)$ in Inequality (29), we get the results for m -HA convex function.

Theorem 9: Let $h_1, h_2 : [0, 1] \rightarrow \mathbb{R}$ such that $h_1, h_2 \neq 0$. Let $f, g : \mathbb{I} \subset \mathbb{R}_+ \rightarrow \mathbb{R}_+$ be (m, h_1, h_2, s) -harmonically convex function with $s \in [0, 1]$, $m \in [0, 1]$, $a_1 \in [0, 1]$ then

$$\begin{aligned} \frac{p-q}{pq} f\left(\frac{2pq}{p+q}\right) g\left(\frac{2pq}{p+q}\right) &\leq \left[h_1^s\left(\frac{1}{2}\right) \right]^2 \int_p^q \frac{f(x)g(x)}{x^2} dx + mh_1^s\left(\frac{1}{2}\right) h_2^s\left(\frac{1}{2}\right) \int_p^q \frac{g(xm)f(x)}{x^2} dx \\ &+ mh_1^s\left(\frac{1}{2}\right) h_2^s\left(\frac{1}{2}\right) \int_p^q \frac{f(xm)g(x)}{x^2} dx + \left[h_2^s\left(\frac{1}{2}\right) \right]^2 \int_p^q \frac{g(xm)f(xm)}{x^2} dx. \end{aligned} \quad (20)$$

Proof: Let $p, q \in \mathbb{R}_+$ and be a (m, h_1, h_2, s) -harmonically convex function, then

$$\begin{aligned} f\left(\frac{2pq}{p+q}\right) g\left(\frac{2pq}{p+q}\right) &\leq \left[h_1^s\left(\frac{1}{2}\right) f\left(\frac{pqm}{a_1p+(1-a_1)q}\right) + mh_2^s\left(\frac{1}{2}\right) f\left(\frac{pqm}{a_1p+(1-a_1)q}\right) \right] \\ &\quad \left[h_1^s\left(\frac{1}{2}\right) g\left(\frac{pq}{a_1p+(1-a_1)q}\right) + mh_2^s\left(\frac{1}{2}\right) g\left(\frac{pq}{a_1p+(1-a_1)q}\right) \right]. \end{aligned} \quad (21)$$

$$\begin{aligned} &= \left[\left[h_1^s\left(\frac{1}{2}\right) \right]^2 f\left(\frac{pqm}{a_1p+(1-a_1)q}\right) g\left(\frac{pq}{a_1p+(1-a_1)q}\right) \right. \\ &\quad + mh_1^s\left(\frac{1}{2}\right) h_2^s\left(\frac{1}{2}\right) f\left(\frac{pq}{a_1p+(1-a_1)q}\right) g\left(\frac{pqm}{a_1p+(1-a_1)q}\right) \\ &\quad + mh_1^s\left(\frac{1}{2}\right) h_2^s\left(\frac{1}{2}\right) f\left(\frac{pqm}{a_1p+(1-a_1)q}\right) g\left(\frac{pq}{a_1p+(1-a_1)q}\right) \\ &\quad \left. + \left[mh_2^s\left(\frac{1}{2}\right) \right]^2 f\left(\frac{pqm}{a_1p+(1-a_1)q}\right) g\left(\frac{pqm}{a_1p+(1-a_1)q}\right) \right]. \end{aligned} \quad (22)$$

Integrate Inequality (22) with respect to $a_1 \in [0, 1]$, we get

$$\begin{aligned} \frac{p-q}{pq} f\left(\frac{2pq}{p+q}\right) g\left(\frac{2pq}{p+q}\right) &\leq \left[h_1^s\left(\frac{1}{2}\right) \right]^2 \int_p^q \frac{f(x)g(x)}{x^2} dx + mh_1^s\left(\frac{1}{2}\right) h_2^s\left(\frac{1}{2}\right) \int_p^q \frac{g(xm)f(x)}{x^2} dx \\ &+ mh_1^s\left(\frac{1}{2}\right) h_2^s\left(\frac{1}{2}\right) \int_p^q \frac{f(xm)g(x)}{x^2} dx + \left[h_2^s\left(\frac{1}{2}\right) \right]^2 \int_p^q \frac{g(xm)f(xm)}{x^2} dx. \end{aligned} \quad (23)$$

$$h_s^1\left(\frac{2}{1}\right) = \frac{2}{1} = 2, \quad (27)$$

$$f\left(\frac{b+d}{2p}\right) = H_{\alpha}(d, b), \quad (26)$$

After solving Inequality (25) using the mean (averages), we get

$$\int_{\frac{b}{2p}}^{\frac{b+d}{2}} \frac{p}{f(x)} dx + \int_{\frac{b}{2p}}^{\frac{b+d}{2}} \frac{p}{f(x)} dx \leq \int_{\frac{b}{2p}}^{\frac{b+d}{2}} \frac{p}{f(x)} dx. \quad (25)$$

Theorem (7), we get
 $h_s^z(a_1) = a_1$, for all $a_1 \in [0, 1]$ and $0 < \alpha_1, \alpha_2 \leq 1$. Further, by using
 then by using Example (1) as $f(x) = \frac{x}{1}$ for all $\alpha \geq 1$ and $h_s^1(a_1) = a_1$,
 Proof: Let $p, q \in \mathbb{R}^+$ and f be a (m, h_1, h_2, s) -harmonically convex function,

$$2_{(\alpha_1 + \alpha_2)} G_{\alpha}(p, q) H_{\alpha}(p, q) \leq [2_{\alpha_2} m_{\alpha_2-1} + 2_{\alpha_1}] L_{\alpha}(p, q). \quad (24)$$

Theorem 10: Let $0 < p < q$. Then

In next Theorem (10), we present some relationship between the
 previous results and the means (averages) defined above.
 Here, $\alpha \in \mathbb{R} \setminus \{0\}$ and $p > q$.

$$L_{\alpha}(p, q) = \left[\frac{(p-q)}{\frac{q}{\alpha+1} - \frac{p}{\alpha+1}} \right]^{\frac{1}{\alpha}}.$$

(3) The α -logarithmic mean

$$H(p, q) = \frac{p+q}{2pq}.$$

(2) The harmonic mean

$$G(p, q) = \sqrt{pq}.$$

(1) The geometric mean

As we know that for all $p, q \in \mathbb{R}$, some means (average) are as follows

4. Application for Mean (Average).

Inequality (23) completes the required proof.

$$\text{Similarly, } h_2^s\left(\frac{1}{2}\right) = \frac{1}{2^{\alpha_2}} = 2^{-\alpha_2}, \quad (28)$$

$$\left(\frac{pq}{q-p}\right) \int_p^q \frac{f(x)}{x^2} dx = \left(\frac{pq}{q-p}\right) \int_p^q \frac{1}{x^{\alpha+2}} dx, \quad (29)$$

$$\begin{aligned} &= \left[\frac{pq}{-(q-p)(\alpha+1)} \right] q^{-(\alpha+1)} - p^{-(\alpha+1)}, \\ &= \left[\frac{pq}{(q-p)(\alpha+1)} \right] \frac{1}{p^{(\alpha+1)}} - \frac{1}{q^{(\alpha+1)}}, \\ &= \left[\frac{pq}{(q-p)(\alpha+1)} \right] \frac{q^{(\alpha+1)} - p^{(\alpha+1)}}{q^{(\alpha+1)} p^{(\alpha+1)}}, \\ &= \left[\frac{1}{q^\alpha p^\alpha} \right] \frac{q^{(\alpha+1)} - p^{(\alpha+1)}}{(\alpha+1)(q-p)}, \\ &= \left[\frac{1}{G^2(q^\alpha, p^\alpha)} \right] \left\{ \left(\frac{q^{(\alpha+1)} - p^{(\alpha+1)}}{(\alpha+1)(q-p)} \right)^{\frac{1}{\alpha}} \right\}^\alpha, \\ &= \left[\frac{1}{G^2(q^\alpha, p^\alpha)} \right] L_\alpha^*(p, q). \end{aligned} \quad (30)$$

Similarly,

$$\begin{aligned} \left(\frac{pqm}{q-p}\right) \int_p^q \frac{f(xm)}{x^2} dx &= \left(\frac{pq}{q-p}\right) \int_p^q \frac{1}{m^\alpha x^{\alpha+2}} dx, \\ &= \left[\frac{pq}{-(q-p)(\alpha+1)m^{(\alpha-1)}} \right] q^{-(\alpha+1)} - p^{-(\alpha+1)}, \\ &= \left[\frac{pq}{(q-p)(\alpha+1)m^{(\alpha-1)}} \right] \frac{1}{p^{(\alpha+1)}} - \frac{1}{q^{(\alpha+1)}}, \\ &= \left[\frac{pq}{(q-p)(\alpha+1)m^{(\alpha-1)}} \right] \frac{q^{(\alpha+1)} - p^{(\alpha+1)}}{q^{(\alpha+1)} p^{(\alpha+1)}}, \\ &= \left[\frac{1}{q^\alpha p^\alpha m^{(\alpha-1)}} \right] \frac{q^{(\alpha+1)} - p^{(\alpha+1)}}{(\alpha+1)(q-p)}, \\ &= \left[\frac{1}{G^2(q^\alpha, p^\alpha)m^{(\alpha-1)}} \right] \left\{ \left(\frac{q^{(\alpha+1)} - p^{(\alpha+1)}}{(\alpha+1)(q-p)} \right)^{\frac{1}{\alpha}} \right\}^\alpha, \\ &= \left[\frac{1}{G^2(q^\alpha, p^\alpha)m^{(\alpha-1)}} \right] L_\alpha^*(p, q). \end{aligned} \quad (31)$$

After substituting the values from Equation (30) and Equation (31) in Inequality (25), we get

$$H^{-\alpha}(p, q) \leq \left(\frac{1}{2^{\alpha_1}} \left(\frac{1}{G^2(q^\alpha, p^\alpha)} \right) L_\alpha^\alpha(p, q) + \left(\frac{1}{2^{\alpha_2}} \left(\frac{1}{G^2(q^\alpha, p^\alpha) m^{(\alpha-1)}} \right) L_\alpha^\alpha(p, q) \right) \right) \quad (32)$$

$$= \frac{2^{\alpha_2} m^{(\alpha-1)} + 2^{\alpha_1}}{2^{\alpha_1 + \alpha_2} m^{(\alpha-1)}} \left(\frac{1}{G^2(q^\alpha, p^\alpha)} \right) L_\alpha^\alpha(p, q). \quad (33)$$

Inequality (33) can be written as

$$2^{(\alpha_1 + \alpha_2)} G^2(p^\alpha, q^\alpha) H^{-\alpha}(p, q) \leq [2^{\alpha_2} m^{\alpha-1} + 2^{\alpha_1}] L_\alpha^\alpha(p, q). \quad (34)$$

Inequality (34) completes the proof.

5. Conclusion

This paper utilized the procedure of combining more than two functions to extend the convex function. Different types of convex functions are used to extend the previous results and to investigate the H-H inequalities. For some specific value of h , h^s , m and α , almost all the previous results for discussed functions are derived. The comparison between new as well as old results reflects that all the previous results can be obtained for these new results by only choosing some specific conditions. H-H and Fejér's inequalities are also used to produce the results and original H-H inequalities can also be found by using these results. On the basis of discussed inequalities, mathematical means (averages) are also applied in calculating the required results.

References

- [1] G. Toader, "Some generalization of convexity," Proc. Colloq. Approx. Optim in Proceedings of the Colloquium on Approximation and Optimization, Technical University of Cluj-Napoca, Cluj-Napoca, Romania, Vol. 329, no. 338 page, 1985. URL: <https://scholar.google.com/scholar?cluster=15924744671159794708&hl=en&oi=scholarr>
- [2] M. K. Bakula, M. E. Ozdemir, and J. Pecaric, "Hadamard type inequalities for m -convex and (α, m) -convex functions," *Journal of Inequalities in Pure and Applied Mathematics*, vol. 9, no. 4, 12 pages, 2008.
URL: http://emis.math.tifr.res.in/journals/JIPAM/images/062_08_JIPAM/062_08-www.pdf

- [3] M. A. Noor, M. U. Awan, K. I. Noor, and T. M. Rassias, "On (α, m, h) -convexity," *Applied Mathematics & Information Sciences Letters*, vol. 12, no. 1, pp. 145–150, 2021.
URL: <https://www.hindawi.com/journals/jmath/2021/6630411/>
- [4] Iscan I, Kadakal H, Kadakal M. Some new integral inequalities for functions whose n th derivatives in absolute value are (a, m) -convex functions. *New Trends in Mathematical Sciences*. 2017;5(2):180-5.
- [5] Pachpatte BG. On some inequalities for convex functions. *RGMIA Res. Rep. Coll.* 2003;6(1):1-9. URL: <https://rgmia.org/papers/v6e/convex1.pdf>
- [6] Rashid S, Noor MA, Noor KI. Integral inequalities for exponentially geometrically convex functions via fractional operators. *Punjab University Journal of Mathematics*. 2020;52(6):65-82.
- [7] Rehman AU, Farid G, Malik S. A Generalized Hermite-Hadamard Inequality for Coordinated Convex Function and Some Associated Mappings. *Journal of Mathematics*. 2016 Jan 1;2016. URL: <https://www.hindawi.com/journals/jmath/2016/1631269/>
- [8] Mitrinović DS, Lacković IB. Hermite and convexity. *Aequationes mathematicae*. 1985 Dec 1;28(1):229-32. URL: <https://link.springer.com/content/pdf/10.1007/BF02189414.pdf>
- [9] Nawaz T, Memon MA, Jacob K. Hermite–Hadamard-Type Inequalities for Product of Functions by Using Convex Functions. *Journal of Mathematics*. 2021 Jan 27;2021.
URL: <https://www.hindawi.com/journals/jmath/2021/6630411/>
- [10] Shi DP, Xi BY, Qi F. Hermite–Hadamard type inequalities for (m, h_1, h_2) -convex functions via Riemann–Liouville fractional integrals. *Turkish J. Anal. Number Theory*. 2014;2:23-8.
- [11] İşcan İ. Hermite–Hadamard type inequalities for harmonically convex functions. *Hacettepe Journal of Mathematics and statistics*. 2014 Dec;43(6):935-42.
URL: <https://dergipark.org.tr/en/download/article-file/711773>
- [12] Xi BY, Qi F, Zhang TY. Some inequalities of Hermite–Hadamard type for m -harmonic-arithmetically convex functions. *ScienceAsia*. 2015 Oct 1;41(5):357-61.
URL: <https://www.thaiscience.info/journals/Article/SCAS/10977185.pdf>

- [13] Zeng Lin & Jin Rong Wang (2017) New Riemann-Liouville fractional Hermite-Hadamard inequalities via two kinds of convex functions, *Journal of Interdisciplinary Mathematics*, 20:2, 357-382, DOI: 10.1080/09720502.2014.914281.
- [14] Yuming Feng (2018) Refining Hermite-Hadamard integral inequality by two parameters, *Journal of Interdisciplinary Mathematics*, 21:3, 743-746, DOI: 10.1080/09720502.2018.1424093.
- [15] Bo-Yan Xi, Shu-Ping Bai & Feng Qi (2018) On integral inequalities of the Hermite–Hadamard type for co-ordinated (α, m_1) – (s, m_2) -convex functions, *Journal of Interdisciplinary Mathematics*, 21:7-8, 1505-1518, DOI: 10.1080/09720502.2016.1247509.

Received July 2021

Revised January 2022

