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Abstract

In this paper, a new definition of (m,h,,h,,s)-Harmonically convex function is
introduced by combining m-convex, (h,,h,)-convex, s-convex, and harmonically convex
function. Nowadays the approach of combining different convex functions is being used to
extend the mathematical inequalities. In this paper, H-H inequality is considered to extend
the fact that the combination of two or more convex functions combines their properties
also. This innovative approach of combining convex functions leads to new applications in
a variety of domains, including mathematics as well as other fields. These given inequalities
can be considered as refinements and improvements to previously established results.

Subject Classification: (2010) 26A51, 26A33, 26D10, 26D07, 26D20, 26E60.
Keywords: Hermite-Hadamard (H-H), Inequality, Convex, Function.

1. Introduction

Convex functions are very important because it provides the basis for
construction of mathematical inequalities.
A function f:I—-R, is convex for a, € [0,1], if

f(a1x+ m(l_ al )_1/)3 alf(‘x)+ (1_ al )f(y)l X,y e L (1)

Several mathematical inequalities and extensions are the results of
convex functions [1-9]. The first inequality in literature for convex function
is Hermite-Hadamard inequality [7].

Let f:1—R_ bea convex function, then

prg 1 flay f(p)
I{T}S ﬁ{if(x)dxﬁ =5, pqeleR, (2)

is called Hermite-Hadamard (H-H) inequality.

Many researchers used to extend H-H inequality using different
convex function [13-15]. The new trend is to combine more than two
different convex function and to extend this inequality.

In [10], a new definition of (m,h,,h,)-convex function is introduced
as

Definition 1: A function f:I1—(0,0c) and h,,h, :I >R, then f is called
(m,h,,h,)-convex for a, € [0,1], if

flax+ m(=a)y)< h(a) f(x)+ mh,(1=a)f(y), x,yel ®3)

Here, h# 0 is a positive function.
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Recently, the definition of harmonically convex function is introduced

by Iscan [11] as follows.

Definition 2: A function f:I1—R, is called harmonically convex on
Ic R\{0}, if

Aot s a f+ (1 a)f), < La, <10,1) )

ayx+ m(l-a

On the basis of this definition (2), some new extensions for H-H

inequality are produced as

Theorem 1: Let f:1—R be a harmonically convex function on I< R\{0},
then the following H-H inequality holds.

pral” #p, 2?

q
f{ﬂ}g DI e JTD e Te R, (5)
14

In [12], Xi and Zhang introduced another definition by combining

m-convex and harmonically convex function as follows.

Definition 3: A function f:I—R, is called m-harmonically convex on
Ic R\{0}, if
f(L]S a, f(x)+ m(1-a)f(y), x,y <€ L,a [0,1] (6)

ayx+ m(l-ap)y

Here m € (0,1] is a constant quantity.
The H-H inequality for m-harmonically convex function was also
investigated in [12]. Furthermore, two more theorems are also discussed

in that study as follows.

Theorem 2: Let f:I1—>R be a m-harmonically convex function on I< R\ {0}
and 1€ [0,1], then

{%W %dxé min{ f(q)+ mf(mp), f(p)+ mf(mq)}f;h(a1 )da,. (7)

Theorem 3: Let f:I1—R be a m-harmonically convex function on 1< R\ {0}
and T e [0,1], then
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17 X m Xm
ﬁf{zﬂ SO g L+ @

I p

+2m[ f(pm)+ f(qm)l+ m’[f(am®)+ f (bmzﬂ}{lﬁ(a1 yda,. (8)

Theorem 4: Let f,g:1—>R be two m-harmonically convex functions named

m-harmonically convex and m,-harmonically convex function respectively on
I R\{0} and T € [0,1], then

pr 08 e min(M, (x, y), M, (&, ). 9)
Here,
My, )= D, fpm, g, o F@g(@)] ThGa,)F o, +
I, F(pm Dga)+ g, ) £ @)U a1 a, e,
M, )= Do fqm, I gpm)+ FPlgY e, o, +

I, F(pm Dga)+ g, ) £ @)U a1 ),

2. Main Results

In this section, we introduced a new definition of (m,h,,h,,s)-HA-
convex function as follows

Definition 4: A function f:I—R, is called (m,h, h,,s)-HA convex on
I< R\{0}, if

f[m} < h(a,) f(x)+ mhy(1-a)f(y), x,yela €l[0,1]. (10)

Here me (0,1] is a constant quantity and h,h,#0 for
:[0,1] >R.

1’2

Remark:

(1) If hj(a,)= h’(a,) and h(1-a,)= h’(1- a,) then this Definition (4)
will be reduced to (m, h, s) -HA convex function.
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(2) If hj(a,)= h(a,) and h;(1- a,)= h(1- a,) then this Definition (4) will

be reduced to (m,h)-HA convex function.

(3) If hj(a,)=a, and h;(1- a,)= (1- a,) then this Definition (4) will be

reduced to m-HA convex function.

(4) If hj(a))=a’ and h;(1- a,)= (1~ a;°) then this Definition (4) will be

reduced to (m,s) -HA convex function.

Example 1: A function f:IcR_—R is called (m,h,h,,s)-HA convex

function defined as f(x)= ia, for some fixed o> 1. Let h(a,)=a,",
X

hy(a,)=a,”, forall a, € [0,1] and 0< ¢, o, < 1.
Let x,y € I, then by definition

flx)= %:f[alxwf(yl—ﬂl)y]: [ij}a

ax+ m(l-ap)y

_ [ e m(1- W]“

= xy ,

_ [ayc+ m(1-aq)y]*
[xy]*

ax %+ m*(1-ay )y

[x1°[y]*

IA

As we know that k(a,)= a,“, hy(a,)=a,* and 0< o,
a,<a" and (1-a,)< (1-a,").
Now above inequality can be written as
f[ xy J< a1 x% m*(1- a1 )y“
- [x]°[y]*

ayx+ m(l-ap)y
1 1
a—+m*(1-a")—
y x

hi(a,) f(y)+ b (a,) f(x)

IA

This showed that fisa (m,h,,h,,s) -HA convex function.

a,< 1 then

Theorem 5: Let h ,h,:1—>R such that h ,h,# 0. Let f:Ic R —R_ be
(m,h,,h,,s) -harmonically convex function. If m= 1 then h;(a,)+ hy(a,)= 1,

forall a, €[0,1].

Proof: Asfisa (m, hl, h2 ,8) -harmonically convex function with m= 1 then
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fx)= f[a1x+ lz—ul) ]’
< B f(x)+ hy(1-a,) f(x),
< [k (a))+ hy(1- a,)]f(x).

This proves that k;(a,)+ hy(1- a,)> 1 for all a, € [0,1].

Theorem 6: Let h, :[0,11—>R such thath,# 0 for all i=1,2,3,4. Let
f:IcR, >R, be (mh,,h,,s)-harmonically convex function. If me [0,1],
a, €[0,1] and hj(a)< hi(a,), hy(a)< hi(a) then f is a (m,h,,h,,s)
-harmonically convex function.

Proof: As fisa (m,h,,h,,s) -harmonically convex function then

f{m} < hi(a)) f(x)+ mhi(1- a,) f(y),
f[m] < hi(a)) f(x)+ mh;(1- a,) f(y)
This completes the proof.

Theorem 7: Let h :[0,1] >R such that h,# 0 for all i=1,2. Let
f:IcR, >R, and g:J<R_ —>R,_ be (mh,,h,,s)-harmonically convex
function. If f z's nondecreasing functzon with respect to g and g is m-HA-
convex function on | with m € [0,1], a, € [0,1] then fog isa (m,h,h,,s)
-harmonically convex function.

Proof: As g is a m-HA convex function and m € [0,1], a, € [0,1] with , we
have

g[ng a,8(x)+ m(1- a,)g(y).

ayx+ m(l-ay)y

As fis a nondecreasing (m, h,,h,,s) - convex function, we have

f(g[alﬁm - j_ 1f(g(x))+ m(l a )f(g(]/))

By using the definition of (m,h,,h,,s) -convex function, we get

é’[ W J< hi(a,) f(g(x))+ mhy(1- a)) f(g(y))-

This completes the proof that fog is a (m,h,,h,,s)-harmonically
convex function.
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3. Hermite-Hadamard (H-H) inequality.

In this section, some extensions of H-H inequality for (m,h, ,h,,s)

-HA convex function is obtained and presented in the form of theorems.
Theorem 7: Let h ,h,:[0,1] >R such that h ,h,# 0. Let f:Ic R —R,
be an (m,h,,h,,s)-harmonically convex function with se [0,1], m e [0,1],
a, € [0,1] then

) 3] g g ) 1 s a
pra)” ap o, x [
Proof:
Asweknow that[ﬂ] canbewrittenas !
pra ( 1 1 [ 1 1
ayp+(1-ay)q mg+ (- )p
for all a, € [0,1] then we get
f[ﬂJg h{lj f{L} mh{l] f[Lj (12)
pra) N2 Laypr (-ay)g A2/ Laypr (- ay)q
_ pq _ Pq ; : . .
Put x= apr(eaya— apr(eayy Inequality (12) and integrate with
respect to a, € [0,1], we get
pa | f®) 1
If[ﬂﬂ* 1—”1)DIJ g [q—ij X ( 3)
1
e\ g | e[ S 14
J;)f[ ﬂl”l+(1—ﬂ1)l7]dal [Q‘P]{, x2 dx. (14)
By substituting the values in Equation (13) and Equation (14) in
Inequality (12), we get
29|« g L] 2o | f®) slIﬂ]qﬂxm)
f[sz hl(zLijfp 9 et i ! ol 1 (15)

This Inequality (15) completes the proof.
Theorem 8: Let h,,h, :[0,1] >R such that h ,h,# 0. Let f:Ic R —R,
be an (m,h,,h,,s)-harmonically convex function with se [0,1], m e [0,1],
a, € [0,1] then
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)

f f(x)
P

x2

dx < min{ f(p)flhf (a,)da, + mf(qm)flhg (1- a,)da, f(q)flhf (a,)da,

+ mf(pm)flh; (1- a,)da,}. (16)

Proof: Let p,ge R, and fbea (m,h,,h,,s) -harmonically convex function,
then

pq s s(1_
f[mjﬁ ki (a,) f(p)+ mh;(1- a,) f(qm). 17)
Integrate Inequality (17) with respect to a, € [0,1], we get
q 1 1
[q]l—’qp]! f(;‘) dx< Ihf(al)dalf(p)+ m| h;(1- a,)da, f(qm). (18)
r X 0 0

Now by using Inequality (17) and Inequality (18), we get
)0 20 e it b, G120 0, S B0 )
+ mf(pm)I:h;(l— a,)da,}. (19)
This Inequality (19) completes the proof.

Theorem 8: Let h,,h, :[0,1] >R such that h ,h,# 0. Let f:Ic R —R,
be an (m,h,,h,,s)-harmonically convex function with se [0,1], me [0,1],
a, € [0,1] then

Al o el ) 5
< min{ h;@ f(g)+ mh;@ f(mp)JI: 1 (a,)da, + n{ h;[%)f(mp)
s ) o) ) | 15 2] gy o 2) ong) |t

+ n{ h;[lj f(mag)+ mh;[l) f(mzp)} f hi(a,)da, | . (20)
2 2 0

Proof: Let p,qe R _and fbe a (m,h,,h,,s) -harmonically convex function,
then
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2pq s| 1 rq s| 1 pgm
f[ﬂjs hl{ijf [ ap <1—al>q]+ hz(i}f[alw(l—am]’ 1)
Similarly,

2pq | gl 1 pq s| L pam___
f[ p+ qjs hl( ZJ/{ ampr (- al)q}L hz[ 2]/{ ap+ (1= ul)q] ! (23)

< 1 Yt a ) fp)+ mi 1 ) gyl mbi 1)1 a,) fma)
+mh(1- a,) f(pm?*)]. (24)

After integrating Inequality (22) and Inequality (24) with respect to
a, € [0,1], we get

f[zqu< h[ I pa ]f f;x)der mhs( I pqp]i f(;zm)dxl (25)

ptq Fp
< h;[ﬂ Flg+ mh;@ f(pm)] I (a, ),
| fpmye i 2] ) 1560, 20

20| pef 1 10 | f® SlIﬂJqf(xm)
f{wqjg hl[ZLPJL x2 dx+ mhz(Z tH?I,, K2 dx, (27)

< hf[%]i fp)+ mh;(%)f(qm)}f:hf(ul)dal
+[ flgm)+ mh;[%]f(pmz)}flh;(ul)dal, (28)

respectively.
Now by using Inequality (26) and Inequality (28), we get

f[p’j{i]s Ak Iqﬁq]f 59 gt I pquif(;n)dx
< min{ 15[ 1) @y misl 2] om) | e e+ nf 15 (2] o
e 3] fon) | e, | i 2]y b 2] ) |1
ol 1 2) oy i) ) )1 | 29)

Inequality (29) completes the proof.
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Remarks:
(1) If we put h;(a,)= h;(a,)= h(a,) in Inequality (29), we get Inequality
(7).
(2) If we put hj(a,)= h (a,) and h;(a,)= h,(a,) in Inequality (29), we get
the results for (m, hl, h,) -HA convex functlon
(3) If we put h(a,)=a, and h;(a,)= (1- a,) in Inequality (29), we get
the results for m-HA convex function.

Theorem 9: Let h ,h, :[0,1] >R such that h ,h,# 0. Let f,¢g:Ic R >R,
be (m,h ,h,,s) harmomcally convex functzon wzth se[0,1], me]0,1],
a, € [0,1] then

z%qf{mjg[;fzj [ [ ﬂ J f(x)g ) gyt mhs[ j 2[ J{]gxn;)f(x

1
2
+mh;(%j ;[ZI pq JJ‘ f(xm)g(x dx+[ [ j:| J‘ glam) f (xm) f(xm dx. (20)

p

Proof: Let p,qe R_and be a (m,h,,h,,s) -harmonically convex function,
then

Azl e ] o e D )
[ (%]g[alm(l a1)q]+ mhz( alw 1 Y } (1)

[T A et
+mhls(% h( j (ﬂlwplq a)q ]g[alwp(ﬁlm]
+mhy (%j ( ) [alwpgmal)ng[alml amJ
Lo T A o] @
Integrate Inequality (22) with respect to 4, € [0,1], we get
et {2l 2] s h( Ui

/
+mh1{§jhz( 21 pq ]J‘ f(xm)g |:h (%ﬂ [ L) f Cem) g(xm)f(xm dr.
p (23)

8 xm)f
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Similarly, h;[%): 2%: 2%, (28)
q q

P | SO g ﬂ] 29

[q—p]{, R Vs 29)

~(arl) _ —(atl)
e Ml ]
1
rfp oﬁl) (aﬂ q(wl) 4
[ I gl p<a+1>]
4
(g-p) oﬁ—l) (mlp(a‘rl)
_| 1 q<m1_p(m1)J
g N (e 1)(g-p) !
1 [24
1 ][qml)pwl)]a
@) |\ (@ ) |7

= ] Li(p,q). (30)

Gz(q“ )

Similarly,

[Pﬂm]j f(xm)d _
Gp X

/ﬁ

pq}f L
X,
q,ppmaxa-FZ

_ Pq G wl)]
_ (1)

(¢ p)(a+-1)m

_ rq I 1 3 1 }
(q_p)(m_l)m(a—l p(wl) q(aﬁ-l) 4
_ - ]q(oﬁ-l)_p(ml)]
(- p)(er Dml =D\ gl Dpleet)
_ 1 Iqml)p(m)]
g%p“m @D\ (e+1)(g-p) )’
1

_ 1 ] [q(ml plerD J;
G2(q%p9ym >V )|\ (e D(g-p) !

= 1]LZ(P,q)~ (31)

G*(q“ p®ym'* 1

a
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After substituting the values from Equation (30) and Equation (31) in
Inequality (25), we get

“(p,q)<[ IGZ(“ ] Li(p. )+ [ IW]U(M) (32)

2% ey 0 ( 1

T para e LGZ(qa/pa)]La(p’q)' (33)

Inequality (33) can be written as

29 G (p®,q)H “(p,q)< [2%m™ '+ 2411 (p,q). (34)

Inequality (34) completes the proof.

5. Conclusion

This paper utilized the procedure of combining more than two
functions to extend the convex function. Different types of convex
functions are used to extend the previous results and to investigate the
H-H inequalities. For some specific value of I, ', m and ¢, almost all
the previous results for discussed functions are derived. The comparison
between new as well as old results reflects that all the previous results
can be obtained for these new results by only choosing some specific
conditions. H-H and Fejer’s inequalities are also used to produce the results
and original H-H inequalities can also be found by using these results.
On the basis of discussed inequalities, mathematical means (averages) are
also applied in calculating the required results.
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