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Abstract: - Variance changes over time and depends on historical data and previous variances; as a result, it is 

useful to use a GARCH process to model it. In this paper, we use the notion of Conditional Esscher transform to 

GARCH models to find the GARCH, EGARCH and GJR risk-neutral models. Subsequently, we apply these three 

models to obtain option prices for the Stock Exchange of Thailand and compare to the well-known Black-Scholes 

model. Findings suggest that most of the pricing options under GARCH model are the nearest to the actual prices 

for SET50 option contracts with both times to maturity of 30 days and 60 days. 
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1 Introduction 
The most important options in Thailand are the 

SET50 index options which are the contracts that 

provide the right to the buyer to buy or sell the SET50 

index on or before an expired date at a specified 

contract price, depending on the form of the option. 

We consider, in our study, the European call option 

and therefore it can only be exercised at expiration. 

Investment in the security has a risk due to changes 

over time and the variance may aff ect the investment 

returns in an unexpected way. The most popular 

model which gives the option price is the Black and 

Scholes formula which assumes volatility to be 

constant. Several studies have shown that in the 

market, the volatility of the security depends on 

previous volatilities. Hence the GARCH model is 

suitable for modeling volatility and for forecasting 

asset prices since the GARCH is a model that applies 

the information of variance in the past to forecast 

variances in the future.  

Many researchers were interested in GARCH 

option pricing models. In 2010, Costa, Veiga and Siu 

[1] valuated option prices by using some special 

GARCH models based on risk neutral assumption. In 

1995, Duan [2], developed an option pricing model 

and its corresponding delta formula for GARCH 

models with by the generalization of the concept of 

risk neutral valuation and local risk neutral valuation 

relationship on assets. In 1994, Gerber and Shiu [3] 

proposed a method of Esscher Transforms for option 

pricing which was later be able to apply for GARCH  

 

 

models. In the later year of 1996, Schmitt [4] showed 

his empirical studies that the time-varying volatility 

of asset returns can be described by GARCH models. 

Siu, Tong and Yang in 2004 [5] developed an 

approach for derivative pricing by using the GARCH 

option pricing models under the dynamic 

environment based on the model of Gerber-Shui and 

utilized the concrete idea of the conditional Esscher 

transforms. In 2017, Huang, Su and Chen [6] 

explored the valuation performance of a special kind 

of GARCH model, Heston and Nandi GARCH model 

on the option pricing. The results showed another 

vision of the impact of liquidity on GARCH models 

and the pricing error during financial crisis. In 2017, 

Badescu, Cui and Ortega [7] investigated the pricing 

and weak convergence of an asymmetric non-affine, 

non-Gaussian GARCH model. The option data 

analysis illustrated the advantage of coupling the 

option pricing with non-Gaussian methods. In 2018, 

Hua and Jiang [8] explored option pricing based on 

the proposed hybrid GARCH models with improved 

ensemble empirical mode decomposition. The results 

indicated that the hybrid models of GARCH with the 

decomposition technique could reduce the option 

pricing error. In the recent years, many researchers 

have applied GARCH models for the new financial 

currency which was well known as Cryptocurrency. 

In 2020, Venter, Mare and Pindza [9] applied 

GARCH models for Bitcoin and Cryptocurrency 

index (CRIX). Later, in the same year of 2020, 
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Venter and Mare [10] applied GARCH models to 

generate volatility indices of Bitcoin and 

Cryptocurrency index (CRIX). In 2021, Anel, 

Rastegari and Stentoft [11] proposed a new condition 

of GARCH models for option pricing including a 

dynamic variance dependent pricing kernel. 

There are some researchers studied GARCH 

models applied to the environment of Thailand. In 

2005, Khanthavit [12] considered the model for 

pricing and analyzed the behavior of options on the 

SET50. His results show that the GARCH (1,1) 

model could describe the random behavior of SET50 

better than the other models. In 2014, Tanattrin [13] 

applied GARCH and GJRGARCH model for 

volatility analysis of international tourist arrival 

growth rate in Thailand. 

In this paper, we study the GARCH, EGARCH 

and GJR-GARCH models to find the option prices. 

So we follow the Siu, Tong and Yang (2004) [5] 

method to find the risk neutral version of the 

GARCH, EGARCH and GJR-GARCH for pricing 

options on the SET50 index of Thailand. 
 

 

2 Theoretical Background 
In 1973, Black and Scholes [14] proposed a model 

for option pricing that has been frequently used in the 

financial researches. Nevertheless, the model that 

Black and Scholes proposed has some inapplicable 

assumptions of constant variance which is not 

practical. Hence, in 1982, Engle [15] presented the 

autoregressive conditional heteroskedasticity or 

ARCH model for modelling financial time series that 

present time-varying volatility clustering. In the 

ARCH model, a moving average of past error terms 

is utilized to forecast the variance: 
222

011... ttqtq    

and 
2

1 |(0,) ttt N   where 00  and 0 i , 

1,..., iq . i  must be estimated from the given 

data, t   is the information set of all information until 

time t. The stationarity condition of the ARCH model 

is that 
1

1
q

i
i




. The GARCH(p,q) model is well 

known as Generalized Autoregressive Conditionally 

Heteroskedastic with conditional variance with p 

GARCH coefficient terms j  and q ARCH 

coefficient terms i . It practically determines a time 

series of return tt y  where  is the expected 

return and t  is a zero-mean white noise and 
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where ttt z . The stationarity condition of the 

GARCH model is 00 , 0 i , 0 j  and 
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In 1991, Nelson [16] presented the exponential 

GARCH or EGARCH model in which the logarithm 

of conditional variance is as follows. 
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where 
2

(0,) tt N  .  

In the GJR model, 01 ti I or  00 ti I 

where00 , 0 i , 0 j  and 0 ii  . 

The stationarity condition of the GJR model is: 
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In this paper, we consider the case of the GARCH, 

EGARCH and GJRGARCH option pricing models 

with the assumptions of the conditional distribution 

of the innovations t  given that 1 t is normal. 

 

2.1 GARCH Option Pricing Model 
For GARCH option pricing model, it is provided that 

t , given 1 t , is a noise with conditional mean zero 

and variance 
2

t  under the statistical probability 

measure P. From the work of Duan in 1995 [2], we 

suppose that the process {}ttT  can be modelled as 

a GARCH (p,q) with zero mean and variance 
2

t  

under the probability P.  

Thus, we have that t Y under the probability 

measure P is distributed under the normal 

distribution with the mean of 
22

/2 tt r  and 

the variance of 
2

t . The conditional risk-neutralized 

Esscher parameter 
q

t   is given by 

 ln(,1)
q

Yt rMt . 

Using  

 
2

2
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t
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we have 






222
/2/2 ,

,
,

tt

q

zrz Yt q

Ytq

Yt

Mtz
Mtze

Mt

 




 
 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.112

Somphorn Arunsingkarat, Renato Costa, 
Masnita Misran, Nattakorn Phewchean

E-ISSN: 2224-2880113Volume 20, 2021

_J 

-11 -11 



which is a normally distributed moment generating 

function with mean 
2

/2 t r and variance 
2

t , with 


22

/2,/2. ttt YNr


  

Hence, the conditional distribution of t  given 

1 t  under P where  

2
; ttttt Y  

is 


2

1 ||
2

t
PttPtt EEYr


  


2

1 | PttPtt VarVarY  . 

Under Q, nevertheless, the conditional 

distribution of t  given 1 t  is 
2

(0,), t N 
2

/2 ttt r   

and  
2

/2 ttt Yr . 

It is noted that by applying the conditional mean,

22
/2 tt r  , the same way as in Duan’s 

work [2], we obtain 
222

/2/2 ttttt rr  . 

Thus,  
2

ttt   

and therefore the dynamics of the variance is given 

by 


2
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This result was obtained from Siu, Tong and Yang 

[5] and was in agreement with that obtained by Duan 

[2]. 

 

2.2 EGARCH Option Pricing Model 
The EGARCH(1,1) model under the statistical 

probability measure P is given by: 

1 221
01

11

2
loglog.

tt
tt

tt












 

 
 

In a similar manner as in the previous case, we 

apply the method used by Sui, Tong and Yang in [5] 

to obtain the EGARCH under the Q measure: 
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2.3 GJR-GARCH Option Pricing Model 

The GJR(1,1) model under the statistical probability 

measure P is given by : 


2222

01111 0. ttttt I   
 

In a similar manner as in the previous cases, we 

apply the method used by Sui, Tong and Yang in [5].  

Now, we have the GJR-GARCH under Q measure as 

follows: 


2
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3 Methodology 
In this work, we make some assumptions to construct 

a financial model for the discrete environment. We let 

T be the set {0,1,2,,}Trepresenting economic 

time under the probability space (,,) FP  where P 

is the probability measure with sample space  and 

event space F.  

Let ttT   be a stochastic process of 

underlying asset return and 
2

t  denotes the stock 

variance. Next, we let  be the risk premium and r 

be the risk free rate. Under P, we presume that the 

process {}ttT , the bond price process, follows the 

relation 1

r

tte  , 01  and the process of stock 

price  {}ttT Sfollows the dynamics, 

22

0

1
,,

2
tttt YrSS    

2
(0,),{0} tt NtT  

where 
1

ln
t

t

t

S
Y

S

 denotes the log-return of the stock 

S [2]. Subsequently, the method of conditional 

Esscher transform is applied for t Y, the GARCH 

process with conditional Esscher parameter sequence 

of {}ttT .  

Under the probability measure P, we let 

1 |() tt Y Mz be the moment generating function of t Y 

given the information 1 t  at time 1 t where z 

and assume a stochastic process {0} {}ttT  given the 

information1 t . We have 
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t
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where a conditional distribution function of t Y is 

defined as  
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We assume that, for each {0}t T   and z , 

( , )
tYM t z  exists if  1|tzY

P tE e     and ( , )
tYM t   

exists and define 0 1  , where E is the expectation 

under P and 
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Then, we let , {0}{ }
tt t TP    be a family of 

probabilities and define 
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where  tI Y X  is the indicator function of the 

event and X  is an open set of the real line. Letting 

 ,Y tM z   be the moment generating function of the 

return tY  given the information 
1t 
 with the 

conditional Esscher parameter
t , we consequently 

have  

 
 

 

,
,

,

Y t

Y t

Y t

M t z
M z

M t

 
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With a sequence of {0}{ }q

t t T   , we assume that 

log-return follows the following equation with the 

martingale condition.  

.

     ln , 1 ln , , {0}q q

Y t Y tr M t M t t T       

In 1994, Shiu et al [3] proposed the derivative 

pricing model V at time t T  as  

 ( ) |r T t

t Q T tV e E V                                                             (6) 

where Q is a conditional risk neutral Esscher pricing 

measure and 
,

q
TT

P


 is a probability measure on 

TF  . The process { }rt

t t Te S


 is a martingale 

process under Q given the information  .  

Consequently, in this paper, the methodology is 

performed in the following steps. 

1. We randomly choose the option contract on 

SET50 market of Thailand from years 2015 and 

2016, since the data of these two years are publicly 

accessible with complete data. 

2. We perform the residual test of ARCH effect 

from the chosen option data fitness by using Ljung-

Box’s 2 ( )Q n test. The results of (20)Q  of 25.382 and 
2 (20)Q  of 52.320 show that SET50 option price 

samples have the ARCH effect.  

3. In this paper, we use the lag order (1,1) for all 

testing models, since it was shown that models with 

a small lag are sufficient to cope with the changing 

variance [17]. 

4. We utilize the maximum likelihood estimation 

for parameter estimates of GARCH, EGARCH and 

GJR-GARCH. 

5. From equation (6), the expected value of TV is 

obtained by Monte Carlo simulation for a sample size 

of 10,000 with the variance reduction technique 

which is a control variate method. 

6. The option pricing value from classical Black-

Sholes model is obtained from a financial toolbox of 

Matlab. 

7. The method of room mean square error is 

applied to evaluate the precision performance of the 

GARCH models. 

8. We discuss the advantage and the limitation of 

the results for the investor in stock market of 

Thailand. 

 

 

4 Numerical Results 
In this section, we show some simulated option prices 

by using GARCH option pricing models (GARCH, 

EGARCH and GJR) and the classical Black-Scholes 

model (BS) under probability measure Q using the 

estimated values of SET50. The data have been 

obtained from the database www.set.or.th and the 

derivative security in which we are interested is the 

European Call option on the SET50 index. 

 We randomly pick the option contract on SET50 

market from years 2015 and 2016. The contracts in 

year 2015 under study are S50Z15C950, 

S50Z15C925, S50Z15C900, S50Z15C875, 

S50Z15C850, S50Z15P950, S50Z15P925, 

S50Z15P900, S50Z15P875 and S50Z15P850. And in 

year 2016, the contracts under study are 

S50Z16C1000, S50Z16C975, S50Z16C950, 

S50Z16C925, S50Z16C900, S50Z16P1000, 

S50Z16P975, S50Z16P950, S50Z16P925 and 

S50Z16P900. We use daily closing prices in each 

index to estimate the parameters of the GARCH, 

EGARCH and GJR-GARCH models to be able to 

find the option price. 

 

 

 

 

 

WSEAS TRANSACTIONS on MATHEMATICS 
DOI: 10.37394/23206.2021.20.112

Somphorn Arunsingkarat, Renato Costa, 
Masnita Misran, Nattakorn Phewchean

E-ISSN: 2224-2880 115 Volume 20, 2021

□ 



 

 Table 1 and 2 shows estimation results for 

randomized contracts from year 2015 and 2016 

respectively, based on the same index. Several 

researchers assume the risk-free rate r to be 0 to make 

the interpretation of options easier such as Duan in 

1995 [3] and Schmitt in 1996 [4]. Consequently, in 

this work, we also assume that the risk premium is 

zero.  

 Next, we use the estimated parameters from Table 

1 and 2 in GARCH models under probability measure 

Q so that we find the option price by taking the 

conditional expectation of the terminal payoff  under 

the pricing probability measure Q and discount at the 

risk-free interest rate as follows: 

 ( ) max , 0r T t

t TC e E S X      , 

and  

 ( ) max 0,r T t

t TP e E X S       

 

 

where tC  and tP  are call option prices and put option 

prices respectively. Following the work of Duan’s in 

1995 [2], the terminal stock price at time T can be 

calculated as: 

2

1 1

1
exp ( )

2

T T

T t s s

s t s t

S S T t r  
   

 
    

 
 

. 

 Tables 3 and 4 present the average simulated 

option prices tC  and tP   under GARCH, EGARCH 

and GJRGARCH models applied to the SET50 index 

option. This table uses the estimated parameters from 

Tables 1 and 2 to fit in the GARCH, EGARCH and 

GJRGARCH option pricing models. Then, we 

establish a set of parameters, the strike price (K) and 

stock price ( 0S ) at the start date of the year-2015 

contracts and year-2016 contracts which are 19 

August 2015 and 2 November 2016 for calculation,  

 

Table 1 The Estimated Parameters of the GARCH models for contracts year 2015 

Contract Models 
Parameters 

0      
  

S50Z15C950 

GARCH 1.79e-5 0.92810 0.99183 - 

EGARCH -6.29874 0.12032 -0.79121 -0.12890 

GJR 2.37e-5 0.89321 0.21083 0.13801 

S50Z15C925 

GARCH 2.28e-5 0.23018 0.64020 - 

EGARCH -3.39023 -0.11930 0.20188 -0.13284 

GJR 2.11e-5 0.20912 0.80239 0.11121 

S50Z15C900 

GARCH 2.01e-5 0.39012 0.53082 - 

EGARCH -1.39801 -0.00231 0.98210 -0.19021 

GJR 2.55e-5 0.32900 0.99821 0.11934 

S50Z15C875 

GARCH 2.83e-5 0.12903 0.10299 - 

EGARCH -0.49781 -0.02190 -0.28301 -0.12190 

GJR 2.29e-5 0.23188 0.90128 0.13891 

S50Z15C850 

GARCH 1.88e-5 0.11408 0.22180 - 

EGARCH -10.81006 0.93801 0.90721 -0.17781 

GJR 2.17e-5 0.15324 0.28102 0.11198 

S50Z15P950 

GARCH 3.74e-5 0.32301 0.92108 - 

EGARCH -2.89102 -0.00513 -0.27912 -0.17782 

GJR 2.02e-5 0.34782 0.82109 0.11293 

S50Z15P925 

GARCH 3.25e-5 0.01812 0.80122 - 

EGARCH -5.90123 -0.09913 0.21092 -0.18329 

GJR 2.65e-5 0.05635 0.99218 0.13245 

S50Z15P900 

GARCH 3.71e-5 0.52313 0.71221 - 

EGARCH -0.44814 0.02921 0.82123 -0.19810 

GJR 2.62e-5 0.43872 0.39033 0.17812 

S50Z15P875 

GARCH 2.90e-5 0.62901 0.59023 - 

EGARCH -8.11356 -0.13792 0.60298 -0.18921 

GJR 2.07e-5 0.58729 0.21203 0.12782 

S50Z15P850 

GARCH 1.66e-5 0.80001 0.12324 - 

EGARCH -11.18182 -0.98921 -0.83232 -0.16692 

GJR 2.35e-5 0.78293 0.79231 0.19320 
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respectively. The values of parameters set in the 

models of each contract are clearly shown in Table 5. 

Thus, we apply the diff erences between the actual 

data of option prices and the simulated results in 

order to compare the performance of the models.  

 Tables 6 and 7 show the Root Mean Square Error 

(or RMSE), calculated by the square root of average 

square diff erence between the simulated option price 

and the option price in the market. The formula of 

RMSE is as follows: 

 
2

1

1
ˆ

n

i i

i

RMSE y y
n 

   

where ˆiy  are predicted prices, and iy  market prices.  

We simulated the prices of option under the GARCH, 

EGARCH and GJRGARCH models by using 

MATLAB. The contracts under study from year 2015 

are S50Z15C950, S50Z15C925, S50Z15C900, 

S50Z15C875, S50Z15C850, S50Z15P950,  

 

S50Z15P925, S50Z15P900, S50Z15P875 and 

S50Z15P850. 

 The results show that, at the maturity time of 30 

days, the GARCH model’s value is the nearest to the 

actual option price in the market in all of our sample 

contracts except that the option prices for the contract 

S50Z15C850 under the EGARCH model are slightly 

nearer to the actual option prices as it can be seen that 

RMSE of contract S50Z15C850 under GARCH 

model is 0.17189 and the RMSE of EGARCH model 

is 0.16727.  

 At maturity time of 60 days, the option prices 

under the GARCH model are the nearest to the actual 

option prices in the market for all of the contracts as 

well, except that the for the contract of S50Z15C950, 

the EGARCH model shows a slightly better 

performance as indicated by the results that the 

RMSE of contract S50Z15C950 with GARCH model 

is 0.01332, while it is 0.01325 with the EGARCH. 

Table 2 The Estimated Parameters of the GARCH models for contracts year 2016 

Contract Models 
Parameters 

0      
  

S50Z16C1000 

GARCH 1.63e-5 0.42532 0.41512 - 

EGARCH -6.34532 0.25104 -0.89412 -0.15343 

GJR 3.52e-5 0.23482 0.24255 0.13241 

S50Z15C975 

GARCH 1.58e-5 0.57923 0.84152 - 

EGARCH -4.32144 0.94210 0.25143 -0.19423 

GJR 2.72e-5 0.45921 0.74231 0.18894 

S50Z15C950 

GARCH 2.32e-5 0.41325 0.42398 - 

EGARCH -1.43253 -0.04221 0.74235 -0.11048 

GJR 4.23e-5 0.39802 0.74632 0.18432 

S50Z15C925 

GARCH 2.48e-5 0.24234 0.67333 - 

EGARCH -0.23642 0.43152 -0.70244 -0.18923 

GJR 3.54e-5 0.28391 0.78234 0.12294 

S50Z15C900 

GARCH 2.09e-5 0.21425 0.23249 - 

EGARCH -3.42220 0.43232 0.74125 -0.14214 

GJR 4.88e-5 0.23008 0.94325 0.10943 

S50Z15P1000 

GARCH 2.23e-5 0.24202 0.24244 - 

EGARCH -5.23521 -0.09323 -0.94125 -0.10044 

GJR 2.56e-5 0.22329 0.73221 0.17935 

S50Z15P975 

GARCH 2.49e-5 0.04323 0.73242 - 

EGARCH -1.94233 -0.03253 0.12532 -0.17354 

GJR 3.92e-5 0.03928 0.81435 0.19843 

S50Z15P950 

GARCH 2.47e-5 0.28423 0.54523 - 

EGARCH -0.32424 -0.04238 0.82415 -0.19432 

GJR 1.34e-5 0.23654 0.43202 0.15324 

S50Z15P925 

GARCH 2.76e-5 0.69023 0.42150 - 

EGARCH -5.10023 -0.13225 0.84215 -0.17842 

GJR 3.34e-5 0.69832 0.23114 0.11894 

S50Z15P900 

GARCH 1.91e-5 0.34221 0.74231 - 

EGARCH -12.43253 -0.04247 -0.88349 -0.28340 

GJR 2.92e-5 0.42983 0.32566 0.29306 
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Table 3 The average simulated option 

prices under GARCH and BS models for 

contracts year 2015 

 

 

Contract GARCH EGARCH GJR BS 

Call option T = 30 

S50Z15C950 2.5823 3.2409 11.6788 9.7283 

S50Z15C925 6.3679 7.9823 12.8396 11.2452 

S50Z15C900 11.5321 14.0032 16.8921 17.3340 

S50Z15C875 24.0002 25.3245 29.9892 32.2391 

S50Z15C850 34.8772 34.7458 35.1242 40.9811 

Put option T = 30 

S50Z15P950 63.5023 63.4903 68.5322 65.0927 

S50Z15P925 46.1098 46.5436 58.3423 56.3902 

S50Z15P900 25.7320 27.3432 28.0321 35.0924 

S50Z15P875 14.2232 16.9823 19.9302 25.2501 

S50Z15P850 8.20102 11.2422 17.4325 20.2239 

Call option T = 60 

S50Z15C950 3.4245 3.3129 17.3274 15.3022 

S50Z15C925 7.5241 7.6432 35.4325 26.3247 

S50Z15C900 12.353 12.453 50.4522 49.2932 

S50Z15C875 26.432 29.432 70.0432 72.4320 

S50Z15C850 36.534 40.024 80.3245 93.7882 

Put option T = 60 

S50Z15P950 66.2932 66.4565 140.0623 80.3202 

S50Z15P925 48.4324 49.5343 75.9023 69.3936 

S50Z15P900 27.0801 28.4326 47.0343 49.9457 

S50Z15P875 17.0023 20.0342 36.0325 38.9021 

S50Z15P850 11.8425 15.0425 24.3883 29.0287 

     

Table 4 The average simulated option 

prices under GARCH and BS models for 

contracts year 2016 

 

 

Contract GARCH EGARCH GJR BS 

Call option T = 30 

S50Z16C1000 7.24254 7.13254 9.42423 10.1324 

S50Z16C975 15.42344 15.04353 18.23494 19.9932 

S50Z16C950 26.42435 26.14252 31.32544 35.3211 

S50Z16C925 41.12325 41.04659 42.33256 53.2038 

S50Z16C900 55.62234 58.12524 61.04235 73.9217 

Put option T = 30 

S50Z16P1000 67.83224 67.18942 75.45336 78.3231 

S50Z16P975 47.32532 47.10425 49.23343 52.3292 

S50Z16P950 32.32556 31.54342 31.24797 43.4893 

S50Z16P925 22.22145 24.52345 30.09842 35.4581 

S50Z16P900 14.23223 16.52533 29.04253 29.9210 

Call option T = 60 

S50Z16C1000 9.45233 10.42352 11.42026 12.9332 

S50Z16C975 18.23123 18.34235 23.89421 19.3292 

S50Z16C950 28.24252 30.24235 37.42363 35.9844 

S50Z16C925 43.43235 45.25324 46.42546 56.2001 

S50Z16C900 58.42224 61.02644 59.42084 65.7862 

Put option T = 60 

S50Z16P1000 69.42352 69.94326 75.42634 78.4522 

S50Z16P975 50.23425 51.14253 53.24336 65.0901 

S50Z16P950 34.53426 36.00234 43.23509 54.2995 

S50Z16P925 23.32098 24.14253 30.42540 41.7890 

S50Z16P900 15.94204 17.45530 25.42543 30.0087 

 

 

 

 

 

 

Table 5 Parameters set in the models for contracts 

Contract K 
0S  Variance Actual 

option 

price 

Call option T = 30 

S50Z15C950 950 859.51 0.234523 2.90 

S50Z15C925 925 859.51 0.134425 6.00 

S50Z15C900 900 859.51 0.135234 11.80 

S50Z15C875 875 859.51 0.342543 24.00 

S50Z15C850 850 859.51 0.109452 34.50 

Put option T = 30 

S50Z15P950 950 859.51 0.123253 63.80 

S50Z15P925 925 859.51 0.143567 46.00 

S50Z15P900 900 859.51 0.193235 25.90 

S50Z15P875 875 859.51 0.289223 14.30 

S50Z15P850 850 859.51 0.242674 8.80 

Call option T = 30 

S50Z16C1000 1000 942.56 0.192523 7.90 

S50Z16C975 975 942.56 0.145437 15.70 

S50Z16C950 950 942.56 0.183257 26.60 

S50Z16C925 925 942.56 0.235367 40.40 

S50Z16C900 900 942.56 0.323426 56.00 

Put option T = 30 

S50Z16P1000 1000 942.56 0.132567 67.90 

S50Z16P975 975 942.56 0.282363 48.00 

S50Z16P950 950 942.56 0.427336 32.30 

S50Z16P925 925 942.56 0.291325 21.30 

S50Z16P900 900 942.56 0.225623 13.90 

Call option T = 60 

S50Z15C950 950 859.51 0.242536 3.60 

S50Z15C925 925 859.51 0.292677 7.00 

S50Z15C900 900 859.51 0.192364 12.60 

S50Z15C875 875 859.51 0.242673 25.20 

S50Z15C850 850 859.51 0.109452 36.00 

Put option T = 60 

S50Z15P950 950 859.51 0.224256 64.60 

S50Z15P925 925 859.51 0.142267 48.00 

S50Z15P900 900 859.51 0.122566 27.90 

S50Z15P875 875 859.51 0.133554 15.30 

S50Z15P850 850 859.51 0.272342 10.80 

Call option T = 60 

S50Z16C1000 1000 942.56 0.152623 9.90 

S50Z16C975 975 942.56 0.183265 16.50 

S50Z16C950 950 942.56 0.223563 28.20 

S50Z16C925 925 942.56 0.243003 42.50 

S50Z16C900 900 942.56 0.132578 58.00 

Put option T = 60 

S50Z16P1000 1000 942.56 0.225367 69.50 

S50Z16P975 975 942.56 0.242774 49.00 

S50Z16P950 950 942.56 0.243268 34.00 

S50Z16P925 925 942.56 0.112532 23.20 

S50Z16P900 900 942.56 0.173564 15.10 
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Table 6 Model comparison for 2015 

contracts.  

 

Contract GARCH EGARCH GJR BS 

Call option T = 30 

S50Z15C950 0.1982 1.4823 3.5802 3.4293 

S50Z15C925 0.2452 1.4562 2.2063 2.1293 

S50Z15C900 0.2639 1.7892 2.2340 2.5324 

S50Z15C875 0.1455 0.0945 1.0178 2.2088 

S50Z15C850 0.1718 0.1672 0.8753 1.2398 

Put option T = 30 

S50Z15P950 0.2103 0.2242 2.0329 1.9923 

S50Z15P925 0.3801 0.3901 3.2238 3.1208 

S50Z15P900 0.8321 1.9323 1.3223 2.9023 

S50Z15P875 0.3012 1.3223 2.4387 3.8922 

S50Z15P850 0.6231 1.1021 4.2981 5.3892 

Call option T = 60 

S50Z15C950 0.0133 0.0132 4.0820 4.0037 

S50Z15C925 0.0013 0.3254 5.3244 5.1220 

S50Z15C900 0.0023 0.6543 7.1021 8.3212 

S50Z15C875 0.0021 1.1435 6.1213 7.0092 

S50Z15C850 0.0032 1.1354 3.2103 3.9326 

Put option T = 60 

S50Z15P950 0.1423 0.5424 8.0329 7.8023 

S50Z15P925 0.1124 0.9043 5.2923 4.2922 

S50Z15P900 0.0942 0.4214 4.3232 5.9201 

S50Z15P875 0.0032 1.9323 4.9324 6.2873 

S50Z15P850 0.0012 1.5932 3.3200 4.6700 

Table 7 Model comparison for 2016 

contracts. 

 

Contract GARCH EGARCH GJR BS 

Call option T = 30 

S50Z16C1000 0.1424 0.1644 1.0432 1.3020 

S50Z16C975 0.1242 0.1453 1.3252 1.5234 

S50Z16C950 0.4522 0.5543 2.4325 3.2992 

S50Z16C925 0.6434 0.6389 1.0093 1.5236 

S50Z16C900 0.8422 1.3042 2.9432 3.42321 

Put option T = 30 

S50Z16P1000 0.4233 1.2325 3.4252 4.5823 

S50Z16P975 0.2394 0.5352 0.4256 1.2832 

S50Z16P950 0.3827 0.5623 3.4256 4.2324 

S50Z16P925 0.3235 1.0992 3.9342 5.2312 

S50Z16P900 0.1125 0.3453 4.4256 5.9921 

Call option T = 60 

S50Z16C1000 0.0024 0.1235 1.2425 1.5422 

S50Z16C975 0.0425 0.2352 2.2452 3.9812 

S50Z16C950 0.1842 1.2423 3.2425 2.9902 

S50Z16C925 0.0242 1.3523 1.2014 1.1021 

S50Z16C900 0.0083 1.5042 0.3256 1.6202 

Put option T = 60 

S50Z16P1000 0.0923 0.3425 2.5326 3.2201 

S50Z16P975 0.0031 0.0212 1.4256 2.3324 

S50Z16P950 0.0892 0.0993 3.2362 4.9821 

S50Z16P925 0.0523 0.5242 2.2567 3.0583 

S50Z16P900 0.1100 1.2154 3.42264 4.9122 

 

From year 2016, the contracts under study are 

S50Z16C1000, S50Z16C975, S50Z16C950, 

S50Z16C925, S50Z16C900, S50Z16P1000, 

S50Z16P975, S50Z16P950, S50Z16P925 and 

S50Z16P900. Table 7 shows that the option prices 

from all of our randomized contracts with both times 

to maturity of 30 days and 60 days under GARCH 

model are the nearest to the option prices in the 

market, except only for the contract S50Z16C925 

under the EGARCH model with time to maturity of 

30 days that has slightly less RMSE, 0.6389, 

compared to the RMSE of the contract under the 

GARCH model, 0.6434.  

 From the results it is obvious that BS model 

performs the highest RMSE in most of the contracts 

compared to GARCH, EGARCH and GJRGARCH. 

It is noted that, among GARCH models, all contracts 

under the GJRGARCH model have higher RMSE 

than the other contracts under the other models but 

lower RMSE than BS model. Also, clearly, most 

contracts under the GARCH model have the lowest 

RMSE. Although, there are few contracts that show 

a slightly better performance with the EGARCH 

model, the differences in RMSE are insignificant 

when compared to that of the GARCH model. As a 

result, it could be concluded that the GARCH model 

may be a more suitable model for option pricing for 

SET50 in Thailand, based on our sample of data. 

 

 

 

5 Conclusion 
In this paper, we studied the GARCH, EGARCH 

and GJRGARCH models in finding the option price 

for the SET50 index of Thailand. We followed the 

method of Sui, Tong and Yang’s [5] which uses the 

conditional Esscher transform to find the risk neutral 

version of the GARCH, EGARCH and GJRGARCH 

model which is required for finding option prices.  

We carried out the exercise of simulating option 

prices using the GARCH, EGARCH and 

GJRGARCH models in the risk neutral measure Q. 

Our computations of the risk neutral version of the 

models are in agreement with those of Duan’s [2] and 

Schmitt’s [4].  

The contracts that we studied were randomized 

from two years, 2015 and 2016. The option contracts 

from year 2015 are S50Z15C950, S50Z15C925, 

S50Z15C900, S50Z15C875, S50Z15C850, 

S50Z15P950, S50Z15P925, S50Z15P900, 

S50Z15P875 and S50Z15P850. The option contracts 

from year 2016 are S50Z16C1000, S50Z16C975, 

S50Z16C950, S50Z16C925, S50Z16C900, 

S50Z16P1000, S50Z16P975, S50Z16P950, 

S50Z16P925 and S50Z16P900. All of our sample 

option contracts are traded in the Thailand Futures 

Exchange (TFEX). In most of the contracts, we 

observed that the option prices under the GARCH 

model is the closest to the actual option prices in the 

market. Especially, when the GARCH model is 

compared to the well-known Black-Sholes (BS) 

model, GARCH model can significantly outperform 

BS model. Only three out of twenty contracts in this 
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study, which are S50Z15C850 with time to maturity 

of 30 days, S50Z15C950 S50Z15C850 with time to 

maturity of 60 days and S50Z16C925 S50Z15C850 

with time to maturity of 30 days, show that the option 

prices under the EGARCH model is the closest to the 

actual prices in the market. However, the results of 

these three contracts under the EGARCH model only 

slightly outperform the results of the GARCH model. 

It can be concluded that the GARCH model might be 

a good candidate for these three contracts as well. 

This implies that the GARCH option pricing model 

may be the most suitable tool, compared to the 

EGARCH and GJRGARCH models, including the 

well-known benchmark of BS model, for the 

investors to valuate the options in Thailand.  

In conclusion, the advantages of this study is to 

indicate that option prices in Thailand under SET50 

have the ARCH effect based on Ljung-Box’s 2 ( )Q n

test. As a result, it is suggested to use GARCH 

models for option pricing. Our study indicates that 

GARCH model obviously outperform the other 

pricing models, including the well-known Black-

Schole model because of the least RMSE in our 

option price samples. This illustrates the main benefit 

for the investor to analyze the option pricing in 

Thailand. The GARCH option pricing model is a 

good candidate as an attractive tool for model pricing 

in SET50 options of Thailand. The investor can 

confidently use GARCH model as the most important 

tool to valuate option prices of SET50 and to 

determine the status of being overpriced and 

underpriced of the underlying assets. Moreover, it is 

suggested that GARCH model can be applied to 

predict the option price in the future as well based on 

our study of data samples of SET50 in Thailand. 
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