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Abstract: ANOVA is known to be adversely affected by non-normality and unbalanced design. Type |
error and power rates are substantially affected when these problems occur simultaneously. Continuously
using ANOVA under the influence of these problems eventually will result in unreliable findings. This
study proposed a robust procedure known as modified S; and F; methods. This procedure combinesthe S;
and R statistics with a popular robust scale estimator, MAD,. A simulation study was conducted to
compare the robustness (Type | error) of the method with respect to its counterpart from the parametric and
non parametric aspects namely ANOVA and Kruskal Wallis respectively. Since the null distribution of S
is intractable, bootstrap methods were used to give better approximation. The R used the approximation
method. The findings were in favor of the S, and R methods especially when the data were skewed. The
performance of the methods was further demonstrated on real education data.
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INTRODUCTION

Classical statistical methods such as ttest and
ANOVA which are frequently used by researchers to
test their work are confined to certain assumptions. One
of the assumptionsisthat every classical method hasto
abide by the assumption that the population under study
is normally distributed. Apart from this assumption,
researchers also must ensure that the group variances
are equal or homogenous. These two assumptions, if
occur simultaneously will inflate the Type | error and
cause spurious rejection of the null hypothesis. The
uninformed usage of these methods under violations of
their assumptions eventually will result in unreliable
findings. Can we imagine the degree of the damage
done to the research due to this mistake? However,
most researchers are not aware of the seriousness of the
error because they are only the users of the statistical
methods. Most quantitative researchers, especialy in
the field of business, economics and social sciences,
rely heavily on the classical methods to solve their
problems. Continuous practice of the classical methods
without considering the assumptions will most probably
generate erroneous results.

In view of all the aforementioned violations, an
estimator that is stable and insensitive to all these
violations is needed. In other words, the estimator has
to be robust. In 1960's, [1, 2] developed the theory of
robustness that paved the way for finding practical
solutions in statistics. The theory of robustness

developed was basically centered on parametric
models. That is whilst their methods recognized that the
parametric model might not be the “true” model, but
nevertheless made inferences about its parameters
with robust ad efficient methods. Robustness
signifies insensitivity to small deviations from the
assumptions|[3].

As mentioned by [4] small departures from
normality can substantially lower the power when
comparing the means of two or more groups. Let us
look at the example of analysis of variance (ANOVA)
and the drawbacks of this method when assumptions
are not met. ANOVA is one of the most commonly
used statistical methods for locating treatment effects
in oneway independent group design. Generaly,
violating the assumptions associated with standard
ANOVA method can seriously hamper the ability to
detect true differences.  Non-normality  and
heteroscedasticity are the two wusual assumption
violations detected in ANOVA. In particular, when
these problems occur & the same time, rates of Type |
error are usualy inflated, thus causing false rejections
of the null hypothesis. They can also substantially
reduce the power of atest, resulting in treatment effects
going undetected. Reduction in the power to detect
differences between groups occurs because the usual
population standard deviation &) is very sensitive to
outliers and will be greatly influenced by their
presence. Consequently, the standard error of the
mean (s?/n) can become seriously inflated when the
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underlying distribution has heavy tails [5]. Therefore,
the standard error of the F statistics is larger than it
should be and power accordingly will be depressed. In
order to achieve a good test, one needs to be able to
control Type | error and power of test. In other words,
neither should power be lost nor Type | error be
inflated.

In our study, we would like to suggest two
statistical procedures that are known to be able to
handle the problems of non normality and variance
heterogeneity simultaneously. These procedures, the
modified § and modified k statistics are categorized
under robust statistics.

The proposed procedures to be adopted in this
study are among the latest procedures in robust
statistics. Modified § and modified i were proposed
by [6, 7] respectively. These two procedures are for
testing the equality of the central tendency measures for
Jgroups withH,:q, =q, =...=q,, where g is the central

tendency parameter corresponding to distribution Fy: j =
1,2,....J. S uses median while Rk uses trimmed mean as
the central tendency measures.

METHODS

This paper focuses on the modified § and kK
methods, which combines § and F; statistics with one
of the scale estimators suggested by [8].

These methods were compared in terms of Type |
error under conditions of normality and nonnormality
which will be represented by skewed g-and h-
distributions.

S; statistic: In the quest for a good robust statistics for
testing location parameters for skewed distributions [9]
discovered the § statistics which uses the median as
the central measures. It is the sum of all possible
differences of sample medians from the J distributions
divided by their respective sample standard errors.

Let Y, =(Yy.Yy....Y,;) be a sample from an
unknown distribution F and let M; be the population
median of F:j =1, 2,..., J. For testing Hy : M1 = M, =...
= Mjversus Hy: M; * M; for at least one pair (i,j), the S;
statistic is defined as

s= & s
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I\A/Ij is the sample median from the jth group, of group |

w is the squared mean absolute deviation from sample
median M, and
n; isthe sample size for group j.

Modification on § was done by substituting the

default scale estimator, w, with the well known robust

]

scale estimator, MAD,. This scale estimator was chosen
based on its robustness properties such as highest
breakdown point and bounded influence function.
Breakdown point is a measure of an estimator's
resistance to contamination. The higher the breakdown
point, the more robust is the estimator, for example
sample the mean has a low breakdown point, that is 0
and the median has the highest breakdown point that is
0.5. Influence function is the derivative of a statistical
functional T(F) that measures the relative extent a small
perturbation in F has on T(F). To minimize the
influence, the influence function must be bounded.
Another advantage of using this estimator is its
simplicity, which makesit easy to compute.

F; statistic: [10] introduced a statistical procedure that
is able to handle problems with sample locations when
nonnormality occurs but the homogeneity of variances
assumption still applies. This statistic is known as
trimmed F statistic. We denote it as k. They aso
suggested that this new statistic is used as an alternative
to the classic F method involving one-way
independent group design. Furthermore, this procedure
is easy to compute.

To further understand the F; method, | et
X ayin X2y Xy b€ @N ordered sample of group j with

sizen; and let
ki = [gnj]+1 where [x] isthe largest integer £x.

We cal culated the g-trimmed mean of group j by using:

Xy = - gnga X(i)jH
N - G- Oy B=g,+1 ]
where
gj = number of observations X such
that (X, - M, ) < -2.24 (scale estimator),
g = number of observations X such

that (X, - M, ) > 2.24 (scale estimator),
I\A/Ij = median of group j and the scal e estimator MAD,,.
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For the equal amounts of trimming in each tail of
the distribution, the Winsorized sum of squared
deviationsis defined as

§

SSD, = (g, +1)(x(gjﬁ)j - Yq)z +(>§gj+2)j- %,-)2 +.

— \2 2
+(X(n1-g,-1)j - X“) +(gi +1)(X(n,-gj>j - X“)
When allowing different amounts of trimming in
each tail of the distribution, the Winsorized sum of
squared deviationsisthen defined as,

S0, =(9, +1)(X (T Y“)Z * (X(W)j - Yﬁ)z T
LR CRE )

108 - K006, o) Xl

'Y‘ngr

Note that we used trimmed means in the SSDy
formulainstead of Winsorized means.
Hence the g-trimmed F is defined as

where, J= number of groups,

h=n-g9- 09
J
H=3a h,
=1
and
—_ 9 _
Xi=4 h X /H
=1

Fi(g) will follow approximately an F distribution
with (31, H-J) degree of freedom.
Scale Estimator, MAD,

Let X=(x,X,...,x) be arandom sample from any

distribution and let the sample median be denoted by
med; X

MAD, is median absolute deviation about the
median. Given by MADnN = b med |x-med x| with b
as a constant,this scale estimator is very robust with
best possible breakdown point and bounded
influence function. [3] identified MAD, as the single
most useful ancillary estimate of scale due to its
high breakdown property. MAD,is simple and easy
to compute.
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The constant b is needed to make the estimator
consistent for the parameter of interest. For example if
the observations are randomly sampled from a normal
distribution, by including b = 1.4826, the MAD,, will
estimate s, the standard deviation. With constantb =1,
MAD, will estimate 0.75s and thisis known as MAD.

Bootstrap method: Since the sampling distribution of
S isintractable and its asymptotic null distribution
may not be of much use for practical sample sizes,
the bootstrap method is considered to give a better
approximation. Therefore, to assess statistical
significance in this study, percentile bootstrap method
[11] was used. According to [9], the bootstrap method
is known to give a better approximation than the
one on the normal approximation theory and this
method is attractive, especially when the samples
are of moderate size.

Bootstrap was introduced by [12] as a computer-
based method for estimating the standard error of an

estimator, q. This method has gained a great deal of
popularity in empirical research. The word bootstrap is
used to indicate that the observed data are used not only
to obtain an estimate of the parameter but also to
generate new samples from which many more estimates
may be obtained and hence an idea of the variability of
the estimate [13]. The basic idea is that in the absence
of any other information about a population, the values
in arandom sample are the best guide to the distribution
and resampling the sampleis the best guide to what can
be expected from resampling the population. To obtain
the p-value, the percentile bootstrap method is used as
follows,

Calculate S; based on the available data.

Generate bootstrap samples by randomly sampling
with replacement n; observations from the jth
group yielding Y, ¥;.....Y,; .

Each if the sample points in the bootstrapped
groups must be centered at their respective
estimated medians.

Use the bootstrap sample to compute the S
statistic denoted by S; .

Repeat Step 2 to Step 4 B times
yieldingS;,,S,,.....S; - B = 599 appears sufficient in
most situations when n3 12[14].
Cdculatethep-valueas (#of S; >S)/B

Type | error and power of test corresponding to
each method will be determined and compared.
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EMPIRICAL INVESTIGATION

Since this paper deals with robust method where
sensitivity to small changes is of the main concern,
manipulating variables could help in identifying the
robustness of each method. Four variables were
manipulated to create conditions which are known to
highlight the strengths and weaknesses of tests for the
equality of location parameters.

Number of Groups: Investigations were done on
four unbalanced completely randomized groups
designs since previous research has looked on these
designs[15-17].

Distributional Shape: In investigating the effects of
distributional shape on Type | error and power, two
types of distribution representing different level of
skewness were being considered. The standard normal
distribution and the g-and-h distribution with g = 0.5
and h = 0.5. Each of these distributions represents zero
and extreme skewness respectively. The skewness for
the g-and-h distribution with g = 0.5 and h = 0.5, g and
@ areundefined.

Variance heterogeneity: Variance heterogeneity is
one of the general problems in testing the equality of
location measures. Therefore, in looking at the effect of
this condition to the test, the variances with ratio
1:1:1:36 were assigned to the groups. Though this ratio
may seem extreme, ratios similar to this case and larger,
have been reported in the literature [18].

Pairings of unequal variances and group sizes:
Variances and group sizes were positively and
negatively paired for comparison. For positive pairings,
the group having the largest group observations was
paired with the population having largest group
variance and while the group having the smallest
number of observations was paired with the population
having smallest variance. For the negative pairings, the
group with largest number of observations was paired
with smallest variance and the group with smallest
number of observations was paired with largest
group variance. These conditions were chosen since
they typically produce conservative results for the
positive pairings and liberal results for the negative
pairings[19].

The random samples were generated using SAS
generator [20]. The variates were standardized and
transformed to g-and-h variates having mean  ands?.

The design specification for four groups is shown in
Table 1.

To test the Type | error, the group means were
(0, 0, 0 and 0). For each design, 5000 datasets were
simulated. For § statistic 599 bootstrap samples were
generated.
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Table 1: Design specification

Group sizes Population variances

1 2 3 4 1 3 4
+ve 10 15 20 25 1 1 36
-ve 10 15 20 25 36 1 1

SMULATION RESULTS

The robustness of a method is determined by its
ability in controlling the Type | error. By adopting
Bradley’s liberal criterion of robustness [21], a test can
be considered robust if its empirical rate of Type | error
a, is within the interval 0.5a and 1.5a. If the nominal
level is a = 0.05, the empirical Type | error rate should
be in between 0.025 and 0.075. Correspondingly, a test
is considered to be non-robust if, for any particular
condition, its Type | error rate is not within this
interval. We chose this criterion since it was widely
used by most robust statistic researchers [16, 22-24] to
judge robustness. Nevertheless, for [25], if the
empirica Type | error rate do not exceed the 0.075
level, it is considered robust. The best procedures are
those procedures that can produce Type | error rates
closest to the nominal (significance) level.

The Type | error rates presented in Table 2 were
obtained from the tests performed on the four groups
case.

As can be observed in Table 2, under normal
distribution, the average Type | error rates for Rk with
MAD, and ANOVA inflate above the 0.1 level. Thisis
due to the large values of Type | error rates when the
pairings are negative. Nevertheless, the modified S
method is still in control of its Type | error and the
results are consistent for both pairings. Under extremely
skewed distribution, again, the average results for
with MAD, and ANOVA show inflated average Type |
error rates which are caused by the results of the
negative pairings. However, the Type | error for K with
MAD, and Kruskall Wallis under positive pairing are
robust, but not in the case of ANOVA, which produced
the worst result with Type | error for both pairings are
above the 0.1 level. In contrast, even though the Type |
error rates for § are out of the Bradley’s robustness
constraint (between 0.025 and 0.075), the Type | error
rates are consistent and small. Nevertheless, according
to [25], if the empirical Type | error rate do not exceed
the 0.075 level, the procedure is considered robust.

ANALYSISON REAL DATA

The performance of the modified S and modified
F. methods were then demonstrated on real data. Four
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Table 2: Type | error rates

Methods

Distribution Pairing S with MAD, F with MAD, ANOVA Kruskall Wallis
Normal +ve 0.0244 0.0774 0.0336 0.0448

-ve 0.0260 0.3542 0.2850 0.1158

Ave 0.0252 0.2158 0.1593 0.0803
g=05 +ve 0.0174 0.0370 0.1492 0.0498
h=05 -ve 0.0194 0.2814 0.3554 0.1022

Ave 0.0184 0.1592 0.2523 0.0760
Table 3: Descriptive statistics for each group

95% confidence interval for mean

Group n Mean of the marks  Std. deviation Std error Lower bound Upper bound Min Max
1 33 72.07 15.65 2.72 66.53 77.62 7 94
2 19 70.13 9.13 2.10 65.73 7453 56 90
3 24 73.38 10.75 2.20 68.84 77.91 60 96
4 20 79.21 6.11 1.37 76.35 82.06 68 93

Table 4: Results of the test using different methods

Methods p-vaue
S with MAD, 0.0400
Ft with MAD, 0.0021
ANOVA 0.0870
Kruskall Wallis 0.0160

classes (groups) of Decision Analysis (2" Semester
2010/2011) conducted by 4 different lecturers were
chosen at random. The final marks were recorded and
tested for the equality between the classes. The sample
sizes for Class 1, 2, 3 and 4 were 33, 19, 24 and 20
respectively. The result for the descriptive statistics for
each of the groups and the results of the test in the form
of p-valuesare given in Table 3 and 4 respectively.

For comparison, the data were tested using all the
four procedures mentioned in this study namely
ANOVA, Kruskall Wallis, § with MAD, and R with
MAD,. As can be observed in Table 4, when testing
using ANOVA, the result fails to reject the null
hypothesis such that the performance for al groupsis
equal which indicates that the test fails to detect the
difference which exists between the groups. On
contrary, when using Kruskall Wallis, § with MAD,
and Rk with MAD,, the tests show significant results
(reject the null hypothesis). Both the non parametric
(Kruskall Wallis) and robust methods (S; with MAD,
and R with MAD,) show better detection compared to
ANOVA. K with MAD, shows the strongest
significance (p = 0.0021) as compared to the other
methods followed by Kruskal Wallis and S; with
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MAD,. However, for F with MAD, and Kruskall
Wallis, we have to interpret the result with caution due
to the inflated Type | error rates shown in the
simulation result.

CONCLUSIONS

The goa of this paper is to find the alternative
procedures in testing location parameter for skewed
distribution by simultaneously controlling the Type |
error and power rates. Classical method such as t-test
and ANOVA is not robust to nonnormality and
heteroscedasticity. When these problem occur at the
same time, the Type | error will increase causing wary
rejection of the null hypothesis and power of test can be
substantially reduced from theoretical values, which
will result in differences going undetected. Realizing
the need of a good statistic in addressing these
problems, we integrate the § statistic by [9] and k
statistic introduced by [10] with the high breakdown
scale estimators of [8] and these new methods are
known as the modified § and R methods. This study
has shown some improvement in the statistical solution
of detecting differences between location parameters.

The result indicates that ANOVA failsto detect the
difference which exists between the groups. Both the
non parametric (Kruskall Wallis) and robust methods
(S1 with MAD, and K with MAD,) show better
detection. Even though R with MAD, shows stronger
significance (p = 0.0021) as compared to the Kruskall
Wallis (p = 0.0160), but as shown in the simulation
results, F; with MAD,, in general produced inflated
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Type | error iates, which usually results in spurious
rejection of the null hypothesis. Thus, misrepresentation
of theresult could occur.

To improve the performance of the modified S

and Kk methods, we should consider using different
types of robust scale estimators. There are plenty of
robust scale estimators proposed by [8] we can
choose from.
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