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Abstract: ANOVA is known to be adversely affected by non-normality and unbalanced design. Type I 
error and power rates are substantially affected when these problems occur simultaneously. Continuously 
using ANOVA under the influence of these problems eventually will result in unreliable findings. This 
study proposed a robust procedure known as modified S1 and Ft methods. This procedure combines the S1 
and Ft statistics with a popular robust scale estimator, MADn. A simulation study was conducted to 
compare the robustness (Type I error) of the method with respect to its counterpart from the parametric and 
non parametric aspects namely ANOVA and Kruskal Wallis respectively. Since the null distribution of S1 
is intractable, bootstrap methods were used to give better approximation. The Ft used the approximation 
method. The findings were in favor of the S1 and Ft methods especially when the data were skewed. The 
performance of the methods was further demonstrated on real education data.  
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INTRODUCTION 

 
 Classical statistical methods such as t-test and 
ANOVA which are frequently used by researchers to 
test their work are confined to certain assumptions. One 
of the assumptions is that every classical method has to 
abide by the assumption that the population under study 
is normally distributed. Apart from this assumption, 
researchers also must ensure that the group variances 
are equal or homogenous. These two assumptions, if 
occur simultaneously will inflate the Type I error and 
cause spurious rejection of the null hypothesis. The 
uninformed usage of these methods under violations of 
their assumptions eventually will result in unreliable 
findings. Can we imagine the degree of the damage 
done to the research due to this mistake? However, 
most researchers are not aware of the seriousness of the 
error because they are only the users of the statistical 
methods. Most quantitative researchers, especially in 
the field of business, economics and social sciences, 
rely heavily on the classical methods to solve their 
problems. Continuous practice of the classical methods 
without considering the assumptions will most probably 
generate erroneous results. 
 In view of all the aforementioned violations, an 
estimator that is stable and insensitive to all these 
violations is needed. In other words, the estimator has 
to be robust. In 1960’s, [1, 2] developed the theory of 
robustness that paved the way for finding practical 
solutions in statistics. The theory of robustness 

developed was basically centered on parametric 
models. That is whilst their methods recognized that the 
parametric model might not be the “true” model, but 
nevertheless  made  inferences  about  its  parameters 
with  robust  and  efficient  methods. Robustness 
signifies insensitivity to small deviations from the 
assumptions [3].  
 As mentioned by [4] small departures from 
normality can substantially lower the power when 
comparing the means of two or more groups. Let us 
look at the example of analysis of variance (ANOVA) 
and the drawbacks of this method when assumptions 
are not met. ANOVA is one of the most commonly 
used  statistical  methods  for  locating treatment effects 
in one-way independent group design. Generally, 
violating the assumptions associated with standard 
ANOVA method can seriously hamper the ability to 
detect true differences. Non-normality and 
heteroscedasticity are the two usual assumption 
violations detected in ANOVA. In particular, when 
these problems occur at the same time, rates of Type I 
error are usually inflated, thus causing false rejections 
of the null hypothesis. They can also substantially 
reduce the power of a test, resulting in treatment effects 
going undetected. Reduction in the power to detect 
differences between groups occurs because the usual 
population standard deviation (σ) is very sensitive to 
outliers and will be greatly influenced by their 
presence.  Consequently,  the  standard  error  of the 
mean  (σ2/n)  can  become  seriously  inflated  when the 
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underlying distribution has heavy tails [5]. Therefore, 
the standard error of the F statistics is larger than it 
should be and power accordingly will be depressed. In 
order to achieve a good test, one needs to be able to 
control Type I error and power of test. In other words, 
neither should power be lost nor Type I error be 
inflated.  
 In our study, we would like to suggest two 
statistical procedures that are known to be able to 
handle the problems of non normality and variance 
heterogeneity simultaneously. These procedures, the 
modified S1 and modified Ft statistics are categorized 
under robust statistics.  
 The proposed procedures to be adopted in this 
study are among the latest procedures in robust 
statistics. Modified S1 and modified Ft were proposed 
by [6, 7] respectively. These two procedures are for 
testing the equality of the central tendency measures for 
J groups with 0 1 2 JH : ...θ = θ = = θ , where θj is the central 

tendency parameter corresponding to distribution Fj: j = 
1,2,...,J. S1 uses median while Ft uses trimmed mean as 
the central tendency measures. 
 

METHODS 
 
 This paper focuses on the modified S1 and Ft 
methods, which combines S1 and Ft statistics with one 
of the scale estimators suggested by [8]. 
 These methods were compared in terms of Type I 
error under conditions of normality and nonnormality 
which will be represented by skewed g-and h-
distributions.  
 
S1 statistic: In the quest for a good robust statistics for 
testing location parameters for skewed distributions [9] 
discovered the S1 statistics which uses the median as 
the central measures. It is the sum of all possible 
differences of sample medians from the J distributions 
divided by their respective sample standard errors. 
 Let 

jij 1j 2 j n jY (Y ,Y ,...,Y )=  be a sample from an 

unknown distribution Fj and let Mi be the population 
median of Fj: j = 1, 2,..., J. For testing H0 : M1 = M2 =... 
= MJ versus H1: Mi ≠Mj for at least one pair (i,j), the S1 
statistic is defined as 
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jM̂  is the sample median from the jth group, of group j 

ωj is the squared mean absolute deviation from sample 
median jM̂  and  

nj is the sample size for group j. 
  
 Modification on S1 was done by substituting the 
default scale estimator, jω̂  with the well known robust 

scale estimator, MADn. This scale estimator was chosen 
based on its robustness properties such as highest 
breakdown point and bounded influence function. 
Breakdown point is a measure of an estimator’s 
resistance to contamination. The higher the breakdown 
point, the more robust is the estimator, for example 
sample the mean has a low breakdown point, that is 0 
and the median has the highest breakdown point that is 
0.5. Influence function is the derivative of a statistical 
functional T(F) that measures the relative extent a small 
perturbation in F has on T(F). To minimize the 
influence, the influence function must be bounded. 
Another advantage of using this estimator is its 
simplicity, which makes it easy to compute. 
 
Ft statistic: [10] introduced a statistical procedure that 
is able to handle problems with sample locations when 
nonnormality occurs but the homogeneity of variances 
assumption still applies. This statistic is known as 
trimmed F statistic. We denote it as Ft. They also 
suggested that this new statistic is used as an alternative 
to the classical F method involving one-way 
independent group design. Furthermore, this procedure 
is easy to compute. 
 
To further understand the Ft method, let 

j(1)j (2) j ( n ) jX , X ,...,X  be an ordered sample of group j with 

size n j and let  
kj = [gnj]+1 where [x] is the largest integer ≤x.  
 
We calculated the g-trimmed mean of group j by using: 
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where 
gij = number of observations X(i)j such 
that ( )( i ) j jX M− <

)
-2.24 (scale estimator), 

g2j = number of observations X(i)j 
such  

that ( )( i ) j jX M− >
)

 2.24 (scale estimator), 

jM̂  = median of group j and the scale estimator MADn. 
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 For the equal amounts of trimming in each tail of 
the distribution, the Winsorized sum of squared 
deviations is defined as 
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 When allowing different amounts of trimming in 
each tail of the distribution, the Winsorized sum of 
squared deviations is then defined as, 
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 Note that we used trimmed means in the SSDtj 
formula instead of Winsorized means. 
Hence the g-trimmed F is defined as 
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where, J = number of groups,  
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 Ft(g) will follow approximately an F distribution 
with (J-1, H-J) degree of freedom. 
Scale Estimator, MADn 
 Let 1 2 nX ( x , x , . . . , x )=  be a random sample from any 

distribution and let the sample median be denoted by 
medi xi  
 MADn is median absolute deviation about the 
median.  Given  by  MADn = b med |xi-med xi| with b 
as a constant,this scale estimator is very robust with 
best  possible  breakdown  point  and  bounded  
influence function. [3] identified MADn as the single 
most  useful  ancillary  estimate  of  scale  due  to  its 
high  breakdown  property.  MADn is  simple  and easy 
to compute. 

 
 The constant b is needed to make the estimator 
consistent for the parameter of interest. For example if 
the observations are randomly sampled from a normal 
distribution, by including b = 1.4826, the MADn will 
estimate σ, the standard deviation. With constant b = 1, 
MADn will estimate 0.75σ and this is known as MAD. 
 
Bootstrap method: Since the sampling distribution of 
S1 is intractable  and  its  asymptotic  null distribution 
may  not  be  of  much  use  for  practical  sample sizes, 
the bootstrap method is considered to give a better 
approximation. Therefore, to assess statistical 
significance in this study, percentile bootstrap method 
[11]  was  used. According to [9], the bootstrap method 
is  known  to  give  a  better  approximation  than  the 
one on the normal approximation theory and this 
method  is  attractive,  especially  when  the  samples  
are of moderate size.  
 Bootstrap was introduced by [12] as a computer-
based method for estimating the standard error of an 

estimator, θ̂ . This method has gained a great deal of 
popularity in empirical research. The word bootstrap is 
used to indicate that the observed data are used not only 
to obtain an estimate of the parameter but also to 
generate new samples from which many more estimates 
may be obtained and hence an idea of the variability of 
the estimate [13]. The basic idea is that in the absence 
of any other information about a population, the values 
in a random sample are the best guide to the distribution 
and resampling the sample is the best guide to what can 
be expected from resampling the population. To obtain 
the p-value, the percentile bootstrap method is used as 
follows, 
 
• Calculate S1 based on the available data. 
• Generate bootstrap samples by randomly sampling 

with replacement nj observations from the jth 
group yielding 

j

* * *
1j 2 j n jY , Y ,...,Y . 

• Each if the sample points in the bootstrapped 
groups must be centered at their respective 
estimated medians. 

• Use the bootstrap sample to compute the S1 
statistic denoted by S1

*. 
• Repeat Step 2 to Step 4 B times 

yielding * * *
11 12 1BS ,S ,...,S . B = 599 appears sufficient in 

most situations when n≥12 [14]. 
• Calculate the p-value as (# of *

1B 1S S> ) / B 

 
 Type I error and power of test corresponding to 
each method will be determined and compared. 
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EMPIRICAL INVESTIGATION 

 
 Since this paper deals with robust method where 
sensitivity to small changes is of the main concern, 
manipulating variables could help in identifying the 
robustness of each method. Four variables were 
manipulated to create conditions which are known to 
highlight the strengths and weaknesses of tests for the 
equality of location parameters. 
 Number of Groups: Investigations were done on 
four  unbalanced  completely  randomized  groups 
designs since previous research has looked on these 
designs [15-17]. 
 Distributional Shape: In investigating the effects of 
distributional shape on Type I error and power, two 
types of distribution representing different level of 
skewness were being considered. The standard normal 
distribution and the g-and-h distribution with g = 0.5 
and h = 0.5. Each of these distributions represents zero 
and extreme skewness respectively. The skewness for 
the g-and-h distribution with g = 0.5 and h = 0.5, γ1 and 
γ2 are undefined. 
 Variance heterogeneity: Variance heterogeneity is 
one of the general problems in testing the equality of 
location measures. Therefore, in looking at the effect of 
this condition to the test, the variances with ratio 
1:1:1:36 were assigned to the groups. Though this ratio 
may seem extreme, ratios similar to this case and larger, 
have been reported in the literature [18]. 
 Pairings of unequal variances and group sizes: 
Variances and group sizes were positively and 
negatively paired for comparison. For positive pairings, 
the group having the largest group observations was 
paired with the population having largest group 
variance and while the group having the smallest 
number of observations was paired with the population 
having smallest variance. For the negative pairings, the 
group with largest number of observations was paired 
with smallest variance and the group with smallest 
number  of  observations  was  paired  with  largest 
group variance. These conditions were chosen since 
they typically produce conservative results for the 
positive pairings and liberal results for the negative 
pairings [19]. 
 The random samples were generated using SAS 
generator [20]. The variates were standardized and 
transformed to g-and-h variates having mean µj and 2

jσ . 

The design specification for four groups is shown in 
Table 1. 
 To  test  the  Type  I  error, the group means were 
(0, 0, 0 and 0). For each design, 5000 datasets were 
simulated. For S1 statistic 599 bootstrap samples were 
generated. 

 
Table 1: Design specification  

 Group sizes   Population variances 

 --------------------------------- --------------------------------- 

 1 2 3 4 1 2 3 4 

+ve 10 15 20 25 1 1 1 36 

-ve 10 15 20 25 36 1 1 1 

 
SIMULATION RESULTS 

 
 The robustness of a method is determined by its 
ability in controlling the Type I error. By adopting 
Bradley’s liberal criterion of robustness [21], a test can 
be considered robust if its empirical rate of Type I error 
α, is within the interval 0.5α and 1.5α. If the nominal 
level is α = 0.05, the empirical Type I error rate should 
be in between 0.025 and 0.075. Correspondingly, a test 
is considered to be non-robust if, for any particular 
condition, its Type I error rate is not within this 
interval. We chose this criterion since it was widely 
used by most robust statistic researchers [16, 22-24] to 
judge robustness. Nevertheless, for [25], if the 
empirical Type I error rate do not exceed the 0.075 
level, it is considered robust. The best procedures are 
those procedures that can produce Type I error rates 
closest to the nominal (significance) level. 
 The Type I error rates presented in Table 2 were 
obtained from the tests performed on the four groups 
case. 
 As can be observed in Table 2, under normal 
distribution, the average Type I error rates for Ft with 
MADn and ANOVA inflate above the 0.1 level. This is 
due to the large values of Type I error rates when the 
pairings are negative. Nevertheless, the modified S1 
method is still in control of its Type I error and the 
results are consistent for both pairings. Under extremely 
skewed distribution, again, the average results for Ft 
with MADn and ANOVA show inflated average Type I 
error rates which are caused by the results of the 
negative pairings. However, the Type I error for Ft with 
MADn and Kruskall Wallis under positive pairing are 
robust, but not in the case of ANOVA, which produced 
the worst result with Type I error for both pairings are 
above the 0.1 level. In contrast, even though the Type I 
error rates for S1 are out of the Bradley’s robustness 
constraint (between 0.025 and 0.075), the Type I error 
rates are consistent and small. Nevertheless, according 
to [25], if the empirical Type I error rate do not exceed 
the 0.075 level, the procedure is considered robust.  
 

ANALYSIS ON REAL DATA 
  
 The performance of the modified S1 and modified 
Ft  methods  were  then  demonstrated on real data. Four 
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Table 2: Type I error rates 

  Methods 

  ------------------------------------------------------------------------------------------------------------------------- 

Distribution Pairing S1 with MADn Ft with MADn ANOVA Kruskall Wallis 

Normal  +ve 0.0244 0.0774 0.0336 0.0448 

 -ve 0.0260 0.3542 0.2850 0.1158 

 Ave 0.0252 0.2158 0.1593 0.0803 

g = 0.5  +ve 0.0174 0.0370 0.1492 0.0498 

h = 0.5 -ve 0.0194 0.2814 0.3554 0.1022 

 Ave 0.0184 0.1592 0.2523 0.0760 

 

Table 3: Descriptive statistics for each group 

     95% confidence interval for mean 

     ------------------------------------------- 

Group n Mean of the marks Std. deviation Std error  Lower bound Upper bound Min Max  

1 33 72.07 15.65 2.72 66.53 77.62 7 94 

2 19 70.13 9.13 2.10 65.73 74.53 56 90 

3 24 73.38 10.75 2.20 68.84 77.91 60 96 

4 20 79.21 6.11 1.37 76.35 82.06 68 93 

  
Table 4: Results of the test using different methods 

Methods p-value 

S1 with MADn 0.0400 

Ft with MADn 0.0021 

ANOVA 0.0870 

Kruskall Wallis 0.0160 

 
classes (groups) of Decision Analysis (2nd Semester 
2010/2011) conducted by 4 different lecturers were 
chosen at random. The final marks were recorded and 
tested for the equality between the classes. The sample 
sizes for Class 1, 2, 3 and 4 were 33, 19, 24 and 20 
respectively. The result for the descriptive statistics for 
each of the groups and the results of the test in the form 
of p-values are given in Table 3 and 4 respectively. 
 For comparison, the data were tested using all the 
four procedures mentioned in this study namely 
ANOVA, Kruskall Wallis, S1 with MADn and Ft with 
MADn. As can be observed in Table 4, when testing 
using ANOVA, the result fails to reject the null 
hypothesis such that the performance for all groups is 
equal which indicates that the test fails to detect the 
difference which exists between the groups. On 
contrary, when using Kruskall Wallis, S1 with MADn 
and Ft with MADn, the tests show significant results 
(reject the null hypothesis). Both the non parametric 
(Kruskall Wallis) and robust methods (S1 with MADn 
and Ft with MADn) show better detection compared to 
ANOVA. Ft with MADn shows the strongest 
significance (p = 0.0021) as compared to the other 
methods followed by Kruskall Wallis and S1 with 

MADn. However, for Ft with MADn and Kruskall 
Wallis, we have to interpret the result with caution due 
to the inflated Type I error rates shown in the 
simulation result.  
 

CONCLUSIONS 
 
 The goal of this paper is to find the alternative 
procedures in testing location parameter for skewed 
distribution by simultaneously controlling the Type I 
error and power rates. Classical method such as t-test 
and ANOVA is not robust to nonnormality and 
heteroscedasticity. When these problem occur at the 
same time, the Type I error will increase causing wary 
rejection of the null hypothesis and power of test can be 
substantially reduced from theoretical values, which 
will result in differences going undetected. Realizing 
the need of a good statistic in addressing these 
problems, we integrate the S1 statistic by [9] and Ft 
statistic introduced by [10] with the high breakdown 
scale estimators of [8] and these new methods are 
known as the modified S1 and Ft methods. This study 
has shown some improvement in the statistical solution 
of detecting differences between location parameters.  
 The result indicates that ANOVA fails to detect the 
difference which exists between the groups. Both the 
non parametric (Kruskall Wallis) and robust methods 
(S1 with MADn and Ft with MADn) show better 
detection. Even though Ft with MADn shows stronger 
significance (p = 0.0021) as compared to the Kruskall 
Wallis (p = 0.0160), but as shown in the simulation 
results,  Ft  with  MADn  in  general  produced   inflated  
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Type I error rates, which usually results in spurious 
rejection of the null hypothesis. Thus, misrepresentation 
of the result could occur.  
 To improve the performance of the modified S1 
and Ft methods, we should consider using different 
types of robust scale estimators. There are plenty of 
robust  scale  estimators  proposed  by  [8] we can 
choose from. 
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