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Abstract--  The classical independent t-test is often in jeopardy 

when the assumptions of normality or homogeneity of variances 

being violated. The test performs worsen when these violations 

occur simultaneously. Alexander-Govern test offers the 

alternative solution to the classical t-test when dealing with 

heterogeneous variances conditions. However, it produces good 

control of Type I error rates only if the data are normally 

distributed, which is a known fact that normality is hardly 

achieved in real life situation. As a remedy, in this study, 

we modify the Alexander-Govern test using trimmed mean 

and Winsorized mean as the location measures. Generally, the 

modified test using trimmed mean performs better compared to 

the original test in terms of Type I error rates. However, the test 

using Winsorized mean failed to control the Type I error rate well 

under most condition considered. 

Index Term--  T-test; Alexander-Govern test; trimmed mean; 

Winsorized mean 

1. INTRODUCTION AND BACKGROUND OF STUDY

Statistical methods are powerful in extracting 

information from data. However, choosing incorrect statistical 

tests would mislead the information and affecting the 

conclusion. This will lead to a more serious problem where the 

information might jeopardize any decision-making process. 

The t-test and ANOVA are well-known as the most 

commonly used statistical methods when comparing two or 

more independent groups. However, some researchers 

sometimes are unaware of the assumptions needed to these 

methods. The methods are adversely affected by non-normality, 

particularly when variances are heterogeneous and group sizes 

are unequal [1].  

Those who are mindful of the problems might choose 

to use nonparametric methods.  It is a good alternative where 

these methods need to fulfill fewer assumptions. As a free 

distribution approach, the practitioners can use it without need 

any assumption on the data distribution. Instead of using the 

original observation, most of the nonparametric methods use 

rank values which make this approach free from the effect of 

an outlier. However, using the rank values produce a less 

powerful test. Therefore some researchers might turn to another 

approach known as robust methods.  

The robust method is not a new approach where it was 

introduced decades ago. But it becomes more 

popular nowadays due to its good performance in dealing with 

violation of assumptions. To handle various problems in 

classical methods, researchers developed many new robust 

methods as alternatives. The Alexander-Govern (AG) test is one 

of the robust methods for comparing independent groups when 

data are heterogeneous [2].  

[3] and [4] investigated on how the AG test performs.

They found that this test is a good alternative to ANOVA 

because of its simple computation and the overall superiority 

when considering both Type I error rates and power under 

experimental conditions. However, this test seems to suffer 

when the normal distribution assumption is not fulfilled [4]. 

Currently, there is no study yet done, modifying the 

AG test with robust estimator which consider friendly to data 

distribution. Motivated to produce better statistical test, which 

able to handle the non-normality and the heterocedasticity, the 

main objective of this paper is to modify the AG test using 

robust estimators known as adaptive trimmed mean and 

adaptive Winsorized mean.

2. THE PROPOSED STATISTICAL TEST

The original AG test is testing the equality of means with null hypothesis of

JH   ...: 210

where µ1=µ2=…= µJ are the mean of J independent groups.

Every J groups with size, 𝑛𝑗  has a sample mean (𝑋̅𝑗) and each of the mean has a standard error (𝑆𝑗) which derived as:
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Then the weight (𝑤𝑗) is calculated as:  
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such that ∑ 𝑤𝑗 = 1. The weighted mean (𝑋+) is computed as: 

 

(3) 

 

One-sample t statistic 𝑡𝑗  is then calculated using the weighted mean as follow: 

 

 

(4) 

 

 

where each of the 𝑡𝑗   is distributed as t distribution with 𝑣𝑗 =  𝑛𝑗 − 1 degrees of freedom. The z statistic is a normalized 

transformation of each of the t statistic value: 
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where c = [𝑎 ln(1 + 𝑡𝑗2/𝑣𝑗)]1 2⁄
; b = 48𝑎2 and a = 𝑣𝑗 − 0.5. The AG test statistic is obtained by total up the 𝑧𝑗2 values: 

 

 

(6)         

  

AG statistic is approximately distributed to 𝒳2 distribution with (J-1) degrees of freedom.  

 

In this study, the adaptive trimmed mean or the adaptive winsorized mean substitute the common mean as it central tendency 

measure. In order to identify the shape of data distribution, these adaptive trimmed and winsorized mean use hinge estimator HQ1 to 

determine how many data should be trimmed or winsorized.  

 

2.1 Adaptive trimmed mean 

The adaptive trimmed mean is calculated as  

 

(7) 
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where g1 = [njl], g2 = [nju], h = nj – g1 – g2, l = lower trimming percentage, u = upper trimming percentage and nj is the sample size. 

The percentage of lower and upper trimming identified using hinge estimator HQ1 [5]. However, the total percentage of trimming is 

predetermined just like the usual trimmed mean. The standard error of the adaptive trimmed mean is computed as 

 

(8) 
 

Where 

(9) 

 

 

2.2 Adaptive Winsorized mean 

The adaptive Winsorized mean is derived by  

 

       (10)  

 

 

  

Where 𝑚1𝑗  = [𝛼1𝑛𝑗], 𝑚2𝑗  = [𝛼2𝑛𝑗], 𝛼1 = the proportion of the observations to be Winsorized for the lower tail distribution, 𝛼2 = 

the proportion of the observations to be Winsorized for the upper tail distribution and 𝑛𝑗  = number of sample size for the 𝑗𝑡ℎ group. 

 

 

Each of the adaptive Winsorized mean, 𝑥̅𝑤(𝛼1, 𝛼2)𝑗 will have a standard error,  𝑆𝑎𝑤(𝛼1, 𝛼2)𝑗 and calculated as: 
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where          
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Due to the modification, there will be two new proposed AG 

test statistics denoted as AG_ATM and AG_AWM to represent the 

AG test with adaptive trimmed mean and adaptive winsorized 

mean respectively.  Both AG_ATM and AG_AWM are also 

approximately distributed as a 2 with (J-1) degrees of freedom. 

 

,  

3. METHODS AND EMPIRICAL INVESTIGATION 

To evaluate the proposed test procedures performances, 

this study uses to manipulate a few variables to create different 

conditions. For the number of groups, this study focuses on two 

groups case with balanced and unbalanced sample sizes.  For 

balanced sample sizes, each group will have the equal sample size 

of 20 while for unbalanced groups, the sample size is 15 and 25. 

To investigate the robustness of AG to variance heterogeneity, 

the variance ratios chosen are 1:1 for homogeneous variances 

condition and 1:36 for the heterogeneous condition.  With regards 

to nonnormality, the investigation considered four types of 

distributions representing four different shapes of data (i.e. 

Normal, symmetric with heavy tails, skewed with moderate tails, 

and skewed with heavy tails). For easy manipulation of the 

shapes, this study uses the g-h distribution. The g-h distribution 

transformed from the normal distribution with constant g 

controlling the value of skewness and h controlling the value of 
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kurtosis. The level of skewness and kurtosis will increase as the 

value of g and h increase, respectively. The data are symmetric 

when g = 0 and h = 0. The values of (g, h) used in this study were 

(0, 0), (0.5,0), (0.5,0) and (0.5,0.5). Table 1 summarizes the 

skewness and kurtosis values for four selected situations [6]. 

[7] investigated the power of the Tukey multiple 

comparison statistics and found that the power of the test was 

slightly affected by variance heterogeneity, unequal sample sizes, 

nonnormality and positive and negative pairings of unequal 

group sizes with unequal variances. Hence, in addition to the 

above variables, nature of pairing was also taken into 

consideration. There were two types of pairing, positive and 

negative.  Positive pairing is when the group with the smallest 

sample size being paired with the smallest variance while the 

group with the largest sample size being paired with the largest 

variance. For the negative pairing, the group with largest sample 

size being paired with the smallest variance and the group with 

smallest sample size being paired with the largest variance. 

  This study uses SAS generator RANNOR to generate 

pseudo-random variates. Observations from the g-h distributions 

were generated by transforming the standard normal variables to 

the g-h random variables using the following equation: 

 

 

 

 

(13) 

 

 

 

 

In examining the Type I error rates, the group location 

measures were set to zero.  As there were various opinions on 

how much the data should be trimmed, this study also examined 

on a different percentage of trimming.  [8] suggested using 20% 

for symmetric trimming while [8] concluded that, 15% is the 

most optimal proportion to be trimmed. In this paper, only 15% 

amount of trimming and winsorization will be considered in 

AG_ATM and AG_AWM test.   

 
Table I 

Some properties of the g-h distribution. 

g h Skewness Kurtosis Shape 

0.0 0.0 0.0 3.0 Normal 

0.0 0.5 0.0 11986.2 Symmetric with heavy tails 

0.5 0 1.81 9.7 Skewed with moderate tails  

0.5 0.5 120.1 18393.6 Skewed with heavy tails 

 

4. RESULTS AND DISCUSSION 

The performance of the investigated procedures in terms of 

robustness (insensitivity to the violation of assumptions) under 

a particular condition was based on the stringent criterion of 

robustness.  Under this criterion, a procedure tested at the 

significance level of α = 0.05 is considered robust when the 
Type I error rate is within the 0.045 and 0.055 intervals. 

A more liberal criterion of robustness proposed by [9] 

was considered as well for identifying moderate performances.  

For this criterion, any procedure with Type I error rates between 

the range of 0.025 and 0.075 were considered as robust. Table 

2 represents the Type I error rates for AG_ATM and AG_AWM 

for all 20 conditions being investigated. The robustness of these 

tests was compared to the original AG test and classical t-test as 

well. The stringent values of Type I error rates were marked as 

** and the liberal values with *.  

From the results in Table 2, under a normal 

distribution, the performance of the original AG test is 

indisputable. It is found to be robust in all conditions regardless 

of the variance ratio. The AG_ATM also performs well (robust) 

under all conditions.  In contrast, the winsorization process does 

not seem to be a good alternative where it fails to improve the 

performance of the AG test even though when the data is 

normally distributed. It is robust in two conditions only. While 

the classical t-test performs well as expected, with only one 

condition which is not robust.  

  When the tail of the distribution becomes heavier 

while skewness remains normal, the condition clearly put some 

impact on the robustness of the AG test where most of the Type 

I error rates are reduced.  There is only one condition which is 

not robust when the sample is unbalanced with the positive 

pairing. For the classical t-test, it is robust when the sample size 

is a balance. While the AG_AWM test shows the worst with only 

robust in one condition. Out of all, the AG_ATM   demonstrates 

the most convincing results where the Type I error rates still 

under control in all conditions.  

Under skewed distribution with normal tail, the 

original AG test still can sustain its robustness under most of 

the conditions. It not robust only in condition balance sample 

size with unequal variance.  The classical t-test found to be 
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robust only under balanced sample size with equal variance. 

Other than that, the test fails to control the Type I error rates. 

Between the AG_ATM and the AG_AWM, there is a huge gap 

where the AG_ATM has an excellent performance in controlling 

the Type I error rates but not to the AG_AWM. The AG_AWM 

has the worst performance among all with only robust in the 

condition of unbalanced sample size with equal variance.  

For skewed with heavy-tailed distribution, the original AG test 

can be considered robust where it is capable of controlling Type 

I error rate in all conditions. The results for AG_ATM are as 

good as well. The classical t-test maintains its robustness under 

the condition of balanced sample size. However, the AG_AWM 

is still the worst, with only one robust condition.  

 

Table II 

Type I error rates 

Distribution Sample 

size 
Variance 

AG_ATM AG_AWM AG t-test 

 20, 20 1,1 0.0536** 0.0910 0.0508** 0.052** 

Normal 

(g = 0; h = 0) 
  1, 36 0.0656* 0.0990 0.0562* 0.0710* 

15, 25 1,1 0.0484** 0.0692* 0.0468** 0.0540** 

   1,36  0.0626* 0.0898 0.0560* 0.0270* 

   36,1 0.0632* 0.0674* 0.0478** 0.1290 

Symmetry heavy -tailed 

 (g = 0; h = 0.5) 
20, 20 1,1 0.0414* 0.1284 0.0336* 0.0300* 

  1, 36 0.0484** 0.1912 0.0340* 0.0490** 

15, 25 1,1 0.0342* 0.0738* 0.0284* 0.0410* 

  1,36  0.0424* 0.1790 0.0956 0.0130 

  36,1 0.0432* 0.0976 0.0554* 0.1110 

Skewed normal tailed 

(g = 0.5; h = 0) 
20, 20 1,1 0.0476** 0.0874 0.0450** 0.0540** 

  1, 36 0.0692* 0.1272 0.0772 0.0890 

15, 25 1,1 0.0452** 0.0612* 0.0476** 0.0440* 

  1,36  0.0644* 0.1126 0.0394* 0.0340* 

  36,1 0.0492** 0.0804 0.0296* 0.1540 

Skewed and heavy-

tailed 

(g = 0.5; h = 0.5) 

20, 20 1,1 0.0328* 0.1040 0.0264* 0.0340* 

  1, 36 0.0684* 0.4108 0.0360* 0.0560* 

15, 25 1,1 0.0270* 0.0580* 0.0286* 0.0330* 

  1,36  0.0658* 0.3848 0.0458** 0.0140 

  36,1 0.0416* 0.2558 0.0288* 0.1020 

Number of conditions 

  

* * 6 

   * 14 

* * 0 

   * 5 

** 6 

  *12 

** 4 

  * 9 

 

 

 

5. CONCLUSIONS 

The classical tests for independent groups such as t-test are 

usually the favorite among practitioners when dealing with two 

groups case. This method is powerful under perfect data 

condition; that is when the distribution is normal with equal 

variance. However, the perfect data condition is hardly 

achieved in this real world.  Real life data come in various 

conditions such as nonnormal data distribution or unequal 

variance or the worst condition that is when both occur 

simultaneously.   

Constrained by the assumptions of normal distribution 

and equal variance, the classical t-test has limited usage. For 

those who are aware of the problems, the selection of the test 

will be done with precaution.  Realizing the importance of using 

the right test statistics, this study proposes a modified robust 

test statistics as an alternative to the t-test. The AG test was 
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proved to be a better alternative of t-test when dealing with 

heterogeneous variance. Nevertheless, this test still it needs 

improvement when it cannot handle nonnormality. Therefore 

this paper introduces adaptive trimmed mean and adaptive 

Winsorized mean as an alternative to the usual mean in the AG 

test. This modification produces two new test statistics denoted 

as AG_ATM and AG_AWM for AG test using adaptive trimmed 

mean and AG test using adaptive Winsorized mean 

respectively.  

Generally, the results of the investigation show that 

the modifications done on the AG test has improved the 

performance greatly, especially under nonnormal conditions. 

However, between the adaptive trimmed mean and the adaptive 

Winsorized mean, there is a huge difference in terms of 

controlling the Type I error rates. The adaptive trimmed mean 

in the AG_ATM test has increased the robustness of the AG test, 

whereby it is robust in all considered conditions.  However, this 

is not the case for AG_AWM where the tests are not robust under 

most conditions. Without modification, the original AG test 

shows nonrobustness in two conditions only, one under 

symmetric heavy-tailed and another one is under skewed 

heavy-tailed. The classical t-test still maintains its robustness 

across different data distribution as long as the data has balance 

sample size with equal variance.   
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