International Journal of Basic & Applied Sciences [JBAS-IJENS Vol:17 No:06 1

The Robust Test Statistic in Comparing Two
Independent Groups using Trimming and
Winsorization

Suhaida Abdullah, Sharipah Soaad Syed Yahaya and Zahayu Md. Yusof
School of Quantitative Sciences, Universiti Utara Malaysia, 06010 Sintok, Kedah, Malaysia

Abstract-- The classical independent t-test is often in jeopardy
when the assumptions of normality or homogeneity of variances
being violated. The test performs worsen when these violations
occur simultaneously. Alexander-Govern test offers the
alternative solution to the classical t-test when dealing with
heterogeneous variances conditions. However, it produces good
control of Type I error rates only if the data are normally
distributed, which is a known fact that normality is hardly
achieved in real life situation. As a remedy, in this study,
we modify the Alexander-Govern test using trimmed mean
and Winsorized mean as the location measures. Generally, the
modified test using trimmed mean performs better compared to
the original test in terms of Type I error rates. However, the test
using Winsorized mean failed to control the Type I error rate well
under most condition considered.

Index Term-- T-test; Alexander-Govern test; trimmed mean;
Winsorized mean

1. INTRODUCTION AND BACKGROUND OF STUDY

Statistical methods are powerful in extracting
information from data. However, choosing incorrect statistical
tests would mislead the information and affecting the
conclusion. This will lead to a more serious problem where the
information might jeopardize any decision-making process.

The t-test and ANOVA are well-known as the most
commonly used statistical methods when comparing two or
more independent groups. However, some researchers
sometimes are unaware of the assumptions needed to these
methods. The methods are adversely affected by non-normality,
particularly when variances are heterogeneous and group sizes
are unequal [1].

Those who are mindful of the problems might choose
to use nonparametric methods. It is a good alternative where

these methods need to fulfill fewer assumptions. As a free
distribution approach, the practitioners can use it without need
any assumption on the data distribution. Instead of using the
original observation, most of the nonparametric methods use
rank values which make this approach free from the effect of
an outlier. However, using the rank values produce a less
powerful test. Therefore some researchers might turn to another
approach known as robust methods.

The robust method is not a new approach where it was
introduced decades ago. But it becomes more
popular nowadays due to its good performance in dealing with
violation of assumptions. To handle various problems in
classical methods, researchers developed many new robust
methods as alternatives. The Alexander-Govern (AG) test is one
of the robust methods for comparing independent groups when
data are heterogeneous [2].

[3] and [4] investigated on how the AG test performs.
They found that this test is a good alternative to ANOVA
because of its simple computation and the overall superiority
when considering both Type I error rates and power under
experimental conditions. However, this test seems to suffer
when the normal distribution assumption is not fulfilled [4].

Currently, there is no study yet done, modifying the
AG test with robust estimator which consider friendly to data
distribution. Motivated to produce better statistical test, which
able to handle the non-normality and the heterocedasticity, the
main objective of this paper is to modify the AG test using
robust estimators known as adaptive trimmed mean and
adaptive Winsorized mean.

2. THE PROPOSED STATISTICAL TEST
The original AG test is testing the equality of means with null hypothesis of

Hyopy=p, == 1,

where u1=u>=...= uy are the mean of J independent groups.

Every J groups with size, 1; has a sample mean ()? j) and each of the mean has a standard error S ) which derived as:
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such that )’ W; = 1. The weighted mean X is computed as:
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One-sample 7 statistic tj is then calculated using the weighted mean as follow:
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where each of the {; is distributed as 7 distribution with V; = n; — 1 degrees of freedom. The z statistic is a normalized
transformation of each of the ¢ statistic value:
o4 (¢’ +3c) N (4¢” +33¢” +240¢” +855¢) 5)
7=
’ b (106> +8bc* +1000b)

1/2
where ¢ = [a ln(l + tjz/vj)] ;b=48a% anda= U; — 0.5. The AG test statistic is obtained by total up the ij values:

J (6)
, AG=> z?
AG statistic is approximately distributed to X “ distribution with (J-I) degrees of freedom.

In this study, the adaptive trimmed mean or the adaptive winsorized mean substitute the common mean as it central tendency
measure. In order to identify the shape of data distribution, these adaptive trimmed and winsorized mean use hinge estimator HQ; to
determine how many data should be trimmed or winsorized.

2.1 Adaptive trimmed mean

The adaptive trimmed mean is calculated as

nj—8

1
)=t S @

i=g;+1
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where g; = [njyl, g2=[njnl, h = nj— g1 — g2, 1= lower trimming percentage, %, = upper trimming percentage and n;is the sample size.
The percentage of lower and upper trimming identified using hinge estimator HQ; [5]. However, the total percentage of trimming is

predetermined just like the usual trimmed mean. The standard error of the adaptive trimmed mean is computed as

SS(ay,
Sty = M ®)
e h(h-1)
Where
SS(al > 0!2) = (gl + 1)[Y(g,+1) - '),et (al > az)]z + [Y(gl+2) - )'Et (al > 0‘2)]2 +...
+ [Y(n/-—g2—l) - )"\’-t (O!l N22S )]2 + (gz + 1)[Y(n/_g2) - )%t (al 22 )]2 (9)
—{8ilY 0y — X () ]+ gZ[Yﬂ/—gz) — X (o, a)1¥ /n;
2.2 Adaptive Winsorized mean
The adaptive Winsorized mean is derived by
(10
- (m,; + l)xmlj+1 FXy Tt X, (m,; + Dxn,_mz,
Xaw(Q),@y); = . ’

J

Where my,; = [a 1], my; = [a2M}], a1 = the proportion of the observations to be Winsorized for the lower tail distribution, @, =

the proportion of the observations to be Winsorized for the upper tail distribution and 71; = number of sample size for the j th group.

Each of the adaptive Winsorized mean, X, (1, @) j will have a standard error, Sq,, (@4, @) and calculated as:

2
_ saw(al’a2) (11)
aw(oy,ay);
/ nn-1)
where
2 N 2 ~ 2
Sa(@150,) ; = (my, +1)[me_+1 —Xav(@;, )] +[)ch_+2 —Xaw(@,,0,) ;1" +. 4 (12)

[x — Xaw(ay,@,) T+ (my, + DL

=, . —1 j—n, .
nj=my; nj=ty ;

{mlj (X, o —Xa(@, ;) ]+ my [xnj_

my i+l my

Due to the modification, there will be two new proposed AG
test statistics denoted as AG_ATM and AG_AWM to represent the
AG test with adaptive trimmed mean and adaptive winsorized
mean respectively. Both AG_ATM and AG_AWM are also
approximately distributed as a »* with (J-1) degrees of freedom.

3. METHODS AND EMPIRICAL INVESTIGATION

To evaluate the proposed test procedures performances,
this study uses to manipulate a few variables to create different
conditions. For the number of groups, this study focuses on two
groups case with balanced and unbalanced sample sizes. For
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balanced sample sizes, each group will have the equal sample size
of 20 while for unbalanced groups, the sample size is 15 and 25.
To investigate the robustness of AG to variance heterogeneity,
the variance ratios chosen are 1:1 for homogeneous variances
condition and 1:36 for the heterogeneous condition. With regards
to nonnormality, the investigation considered four types of
distributions representing four different shapes of data (i.e.
Normal, symmetric with heavy tails, skewed with moderate tails,
and skewed with heavy tails). For easy manipulation of the
shapes, this study uses the g-h distribution. The g-h distribution
transformed from the normal distribution with constant g
controlling the value of skewness and h controlling the value of
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kurtosis. The level of skewness and kurtosis will increase as the
value of g and h increase, respectively. The data are symmetric
when g = 0 and h = 0. The values of (g, h) used in this study were
0, 0), (0.5,0), (0.5,0) and (0.5,0.5). Table 1 summarizes the
skewness and kurtosis values for four selected situations [6].

[7] investigated the power of the Tukey multiple
comparison statistics and found that the power of the test was
slightly affected by variance heterogeneity, unequal sample sizes,
nonnormality and positive and negative pairings of unequal
group sizes with unequal variances. Hence, in addition to the
above variables, nature of pairing was also taken into

7. )—1
v Mexp(hZijZ/Z)

1

2
Z; exp(hZ;/2)

In examining the Type I error rates, the group location
measures were set to zero. As there were various opinions on
how much the data should be trimmed, this study also examined
on a different percentage of trimming. [8] suggested using 20%

consideration. There were two types of pairing, positive and
negative. Positive pairing is when the group with the smallest
sample size being paired with the smallest variance while the
group with the largest sample size being paired with the largest
variance. For the negative pairing, the group with largest sample
size being paired with the smallest variance and the group with
smallest sample size being paired with the largest variance.

This study uses SAS generator RANNOR to generate
pseudo-random variates. Observations from the g-h distributions
were generated by transforming the standard normal variables to
the g-h random variables using the following equation:

(13)

forg = 0

forg = 0

for symmetric trimming while [8] concluded that, 15% is the
most optimal proportion to be trimmed. In this paper, only 15%
amount of trimming and winsorization will be considered in
AG_ATM and AG_AWM test.

Table 1
Some properties of the g-h distribution.
g h Skewness Kurtosis Shape
0.0 0.0 0.0 3.0 Normal
0.0 0.5 0.0 11986.2 Symmetric with heavy tails
0.5 0 1.81 9.7 Skewed with moderate tails
0.5 0.5 120.1 18393.6 Skewed with heavy tails

4. RESULTS AND DISCUSSION

The performance of the investigated procedures in terms of
robustness (insensitivity to the violation of assumptions) under
a particular condition was based on the stringent criterion of
robustness. Under this criterion, a procedure tested at the
significance level of o = 0.05 is considered robust when the
Type I error rate is within the 0.045 and 0.055 intervals.

A more liberal criterion of robustness proposed by [9]
was considered as well for identifying moderate performances.
For this criterion, any procedure with Type I error rates between
the range of 0.025 and 0.075 were considered as robust. Table
2 represents the Type I error rates for AG_ATM and AG_AWM
for all 20 conditions being investigated. The robustness of these
tests was compared to the original AG test and classical #-test as
well. The stringent values of Type I error rates were marked as
** and the liberal values with *.

From the results in Table 2, under a normal
distribution, the performance of the original AG test is
indisputable. It is found to be robust in all conditions regardless
of the variance ratio. The AG_ATM also performs well (robust)

under all conditions. In contrast, the winsorization process does
not seem to be a good alternative where it fails to improve the
performance of the AG test even though when the data is
normally distributed. It is robust in two conditions only. While
the classical z-test performs well as expected, with only one
condition which is not robust.

When the tail of the distribution becomes heavier
while skewness remains normal, the condition clearly put some
impact on the robustness of the AG test where most of the Type
I error rates are reduced. There is only one condition which is
not robust when the sample is unbalanced with the positive
pairing. For the classical #-test, it is robust when the sample size
is abalance. While the AG_AWM test shows the worst with only
robust in one condition. Out of all, the AG_ATM demonstrates
the most convincing results where the Type I error rates still
under control in all conditions.

Under skewed distribution with normal tail, the
original AG test still can sustain its robustness under most of
the conditions. It not robust only in condition balance sample
size with unequal variance. The classical t-test found to be
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robust only under balanced sample size with equal variance.
Other than that, the test fails to control the Type I error rates.
Between the AG_ATM and the AG_AWM, there is a huge gap
where the AG_ATM has an excellent performance in controlling
the Type I error rates but not to the AG_AWM. The AG_AWM

has the worst performance among all with only robust in the
condition of unbalanced sample size with equal variance.

For skewed with heavy-tailed distribution, the original AG test
can be considered robust where it is capable of controlling Type
I error rate in all conditions. The results for AG_ATM are as
good as well. The classical #-test maintains its robustness under
the condition of balanced sample size. However, the AG_AWM
is still the worst, with only one robust condition.

Table 11
Type I error rates
Distribution Sample Variance
size AG ATM  AG AWM  AG r-test
20, 20 11 0.0536**  0.0910 0.0508%%  0.052%%
Zofgf‘lh _0) 1,36 0.0656*  0.0990 0.0562*  0.0710%
15,25 11 0.0484%%  0.0692* 0.0468%%  0.0540%%
1,36 0.0626%  0.0898 0.0560%  0.0270%
36,1 0.0632%  0.0674* 0.0478**  0.1290
Sénin(;‘?t]zy_hgés‘gy ailed 50 29 11 0.0414%  0.1284 0.0336*  0.0300*
1,36 0.0484%%  0.1912 0.0340%  0.0490%*
15,25 11 0.0342%  0.0738* 0.0284*  0.0410%
1,36 0.0424+ 01790 0.0956 0.0130
36,1 0.0432¢ 00976 0.0554%  0.1110
(S;e_woeg.“;r_ﬁg‘)l tailed 50,20 11 0.0476**  0.0874 0.0450%*  0.0540%*
1,36 0.0692%  0.1272 0.0772 0.0890
15,25 1,1 0.0452%%  0.0612* 0.0476%%  0.0440%
1,36 0.0644%  0.1126 0.0394%  0.0340%
36,1 0.0492++  0.0804 0.0296*  0.1540
tsall;ee‘ged and  heavy- 54 5 1,1 0.0328*  0.1040 0.0264*  0.0340%
(g=0.5 h=0.5) 1,36 0.0684*  0.4108 0.0360*  0.0560%
15,25 11 0.0270%  0.0580% 0.0286*  0.0330%
1,36 0.0658%  0-3848 0.0458%%  0.0140
36,1 0.0416% 02558 0.0288%  0.1020
Number of conditions * % G * * () % G % 4
%14 %5 12 %9

5. CONCLUSIONS

The classical tests for independent groups such as #-test are
usually the favorite among practitioners when dealing with two
groups case. This method is powerful under perfect data
condition; that is when the distribution is normal with equal
variance. However, the perfect data condition is hardly
achieved in this real world. Real life data come in various
conditions such as nonnormal data distribution or unequal
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variance or the worst condition that is when both occur
simultaneously.

Constrained by the assumptions of normal distribution
and equal variance, the classical #-test has limited usage. For
those who are aware of the problems, the selection of the test
will be done with precaution. Realizing the importance of using
the right test statistics, this study proposes a modified robust
test statistics as an alternative to the #-test. The AG test was
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proved to be a better alternative of #-test when dealing with
heterogeneous variance. Nevertheless, this test still it needs
improvement when it cannot handle nonnormality. Therefore
this paper introduces adaptive trimmed mean and adaptive
Winsorized mean as an alternative to the usual mean in the AG
test. This modification produces two new test statistics denoted
as AG_ATM and AG_AWM for AG test using adaptive trimmed
mean and AG test using adaptive Winsorized mean
respectively.

Generally, the results of the investigation show that
the modifications done on the AG test has improved the
performance greatly, especially under nonnormal conditions.
However, between the adaptive trimmed mean and the adaptive
Winsorized mean, there is a huge difference in terms of
controlling the Type I error rates. The adaptive trimmed mean
in the AG_ATM test has increased the robustness of the AG test,
whereby it is robust in all considered conditions. However, this
is not the case for AG_AWM where the tests are not robust under
most conditions. Without modification, the original AG test
shows nonrobustness in two conditions only, one under
symmetric heavy-tailed and another one is under skewed
heavy-tailed. The classical #-test still maintains its robustness
across different data distribution as long as the data has balance
sample size with equal variance.
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