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Abstract

Achieving nominal type | error rates and having high power values
simultaneously will produce good test statistics. In order to identify a
good test statistic which is able to satisfy both aforementioned criteria,
a study is done on F; statistic with trimming strategies using robust

scale estimators, namely, MAD,, T, and LMS,. To test for the
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robustness of the procedures towards the violation of the assumptions,
several variables are manipulated. The variables are types of
distributions, heterogeneity of variances, sample sizes, nature of
pairings of group sample sizes and group variances, and number of
groups. This study is based on simulated data with each procedure
simulated 5000 times. When testing for the hypothesis of the equality
of central tendency measures, approximation method is used on F
statistic. Type | error and power rates on J =4 groups are then
compared. Normal and skewed data from g- and h-distributions are
considered in this study. Generally, all trimming strategies produce
good type | error rates with high power values concurrently.

Introduction

Two sample t-test and analysis of variance (ANOVA) are two common
statistical methods used to locate treatment effects in a one way independent
group design. However, in using these two statistics, assumptions of
normality and homogeneity of variance need to be fulfilled. In real life
applications, these conditions are rarely achieved and any violation will lead
to inaccuracy in decision based on the testing procedure. When these two
problems simultaneously arise, rates of type | error are usually inflated
resulting in spurious rejection of null hypotheses and the power of the test
statistics is reduced.

The usual group means and variances, which are, respectively, the
location and scale measures for the classical methods, are greatly influenced
by the presence of outliers in the score distribution. The existence of outliers
in a sample data will cause the probability of type I error to be less than the
nominal level and concurrently lower the power of the test statistic. In
the application of t-test, outliers can inflate the sample variance and
simultaneously lower the value of the test (Wilcox and Keselman [26]). Even
when sampling from a perfectly symmetrical distribution, outliers can still
cause the t-test to loose power when compared against modern methods.
Modern methods here are methods that are based on robust measures of
location (Wilcox and Keselman [26]).
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According to Keselman et al. [9], reduction in the power to detect
differences between groups occurs because of the usual population standard
deviation is greatly influenced by the presence of the extreme observations in
a distribution of scores. Furthermore, the standard error for the usual mean
can become seriously inflated when the underlying distribution is heavy
tailed (Lix and Keselman [13]). In addition, the classical least squares
estimators can be highly inefficient when assumptions of normality are not
fulfilled. Hence, by substituting robust measures of location and scale such as
trimmed means and Winsorized variances in place of the usual means
and variances, respectively, tests that are insensitive to the combined effects
of non-normality and variance heterogeneity can be obtained (Lix and
Keselman [13]). Wilcox et al. [25] stated that one is able to obtain test
statistics that do not suffer losses in power due to non-normality by using
trimmed means and variances based on Winsorized sum of squares.

The sample mean is the most common estimator used in most statistical
analyses. However, this estimator is also very sensitive to the presence of
outliers and skewness. Under these conditions, any test that used the sample
mean as the estimator will produce low power and distorted rates of type |
error. These include the t-test and ANOVA. To address this problem, Wilcox
and Keselman [26] suggested using estimators of robust measures of location
and rank-based methods. Some of these robust estimators are the M measure
of location and trimmed mean.

The sample trimmed mean (will be referred to as “trimmed mean”
throughout this article) is one of the estimators which is able to handle the
problems of outliers and non-normal data. When using this estimator, the
smallest and the largest observations in the distribution will be trimmed, this
will automatically discard the outliers. By using trimmed mean, high power,
accurate probability coverage, relatively low standard errors, a negligible
amount of bias and a good control over the probability of a type I error can
be achieved (Wilcox and Keselman [26]).

There are two possibilities of estimating the trimmed mean, i.e., equal
amount of trimming or symmetric trimming and unequal amount of trimming
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or asymmetric trimming. In symmetric trimming, the trimming is done
equally on both sides of the distribution. While for asymmetric trimming,
the trimming is done on only one side or unequally on both sides of the
distribution. Othman et al. [17] recommended that when the data are said to
be skewed to the right, then in order to achieve robustness to non-normality
and greater sensitivity to detect effects, one should trim data just from the
upper tail of the data distribution. Hogg [7], Hertsgaard [5] and Tiku [22, 23]
suggested that the data should have different amounts of trimming
percentages from the right and left tails of the distribution. Keselman et al.
[11] proposed a method called adaptive robust estimators to determine the
number of observations to be trimmed from each tail of the distribution. By
using this method, the total amount of trimming is determined a priori before
making the decision whether to trim the data symmetrically, asymmetrically
or not to trim at all (Keselman et al. [11]).

These two strategies stand on the trimming percentage that has to be
stated in advance. It needs the fix amount of trimming percentage. The
strategies are tight down with this amount of trimming. In our proposed
method, the fixed trimming percentage problem can be avoided, since the
trimming is done based on the shape of the distribution. Thus, we do not
have to determine the total amount of data that need to be trimmed in
advance because the determination of the total amount of trimming is done
automatically.

Method

This paper focuses on the F method with new trimming strategies using
robust scale estimators MAD,,, T, and LMS,, and also with 15% symmetric
trimming (v). The K statistic with v is the default procedure for the F;.

The v is included in this study for comparison purposes. These methods
were compared in terms of type | error and power under conditions of
normality and non-normality which will be represented by skewed g- and
h-distributions.
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F; statistic

Lee and Fung [12] introduced a statistic that was able to handle problems
with sample locations when the variance for the population is equal. This
statistic was named the trimmed F statistic, F;. They also suggested this new
statistic to be used for problem involving one-way ANOVA and they
recommended this to be an alternative to the usual F method. This method
had also been proven to be easy to program.

Let X@)j X(2)j» - X(nj)j be an ordered sample of group j with size

nj. The g-trimmed mean of group j is calculated by:

Xij = X()j |
n. J— . — -
i — 91 —92j =g, +1

where

g1j = number of observations X); such that (X)j - M j)<-—2.24

(scale estimator),

g2j = number of observations Xjyj such that (Xjj - I\7Ij) > 2.24

(scale estimator),

A~

M j = median of group j.
Scale estimator can be MAD,,, T,, or LMS,,.

The constant 2.24 is the scaling factor to improve the distribution of
robust scales computed on non-normal data. This constant was chosen due to
the good efficiency of the estimator under normality. Note that 2.24 is
approximately equal to the square root of the 0.976 quartile of a chi-square
distribution with one degree of freedom.

The Winsorized sum of squared deviations for group j is then defined as
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SSDg = (g1 + 1) (X(gy;+1)j = X)” + (X(gyj+2)j — Xg)

+er ot (X gy~ Xg)" + (925 + D X(nj=gp ) — Xg)°

— (@) [X(gj+1)§ = X1+ (@2 [X(nj-g )i ~ X4 11/n;.

Hence the trimmed F statistic is defined as

J
(Xy - X0?/(3 -1)
R =12 ,
D 8sDy/(H - J)
j=1

J
where J is the number of groups, hj =n; —g;j - 0gpj, H = Zhj and
j=1

J
Xi = > hjXj/H. F(g) will follow approximately an F distribution with
ji=1

(J =1, H — J) degrees of freedom.

Scale estimators

The value of a breakdown point is a main factor to be considered when
looking for a scale estimator (Wilcox [24]). Rousseeuw and Croux [19]
have introduced several scale estimators with highest breakdown point such
as MAD,, T, and LMS,. Due to their good performances in Huber [8],
Rousseeuw and Croux [19], Yahaya et al. [21] and Md. Yusof et al. [14],
these scale estimators were chosen for this study. All these scale estimators
have 0.5 breakdown value and also exhibit bounded influence functions.
These estimators are also chosen because of their simplicity and
computational ease.

MAD,,

MAD,, is the median absolute deviation about the median. It
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demonstrates the best possible breakdown value of 50%, twice as much as
the interquartile range and its influence function is bounded with the sharpest
possible bound among all scale estimators (Rousseeuw and Croux [19]).

This robust scale estimator is given by
MAD,, = b med;| x; — medX;j |,
where the constant b is needed to make the estimator consistent for the
parameter of interest.
Tn

Suitable for asymmetric distribution, Rousseeuw and Croux [19]
proposed T, a scale known for its highest breakdown point like MAD,,.

However, this estimator has more plus points compared to MAD,,. It has
52% efficiency, making it more efficient than MAD,,. It also has a continuous
influence function.

Given as

h
1 n
Ty = 1.3800Fé{T§9| Xi = Xj [}(k), where h = [ﬂ +1,

T, has a simple and explicit formula that guarantees uniqueness. This
estimator also has 50% breakdown point.

LMS,

LMS,, is another scale estimator with a 50% breakdown point. The

computation is based on the length of the shortest half sample as shown
below:

LMS,, = ¢ miin| X(i+h-1) = X(i) |

given X() < X(p) < -+ < X(n) are the ordered data. The default value of ¢’ is

0.7413 which achieves consistency at Gaussian distributions. LMS,, also has
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influence function the same as MAD (Rousseeuw and Leroy [18]) and its
efficiency equals that of the MAD as well (Grubel [3]).

Empirical Investigation

This paper only focused on unequal sample sizes and homogeneous
variances for four groups with small samples. Two cases of groups of size
N =60 and N =80 were chosen. For N = 60, the sample, were set at
m =12, ny =14, n3 =16 and ng =18 and for N =80, they were set
at m =10, n, =20, n3 =20 and ny =30. For both sizes, we used
homogeneous variances of 1.

Each method will be tested under three types of distributions with
g =0.0 and h=0.0 (normal), g = 0.5 and h = 0.0 (skewed normal tailed)
and g =0.5 and h =0.5 (skewed leptokurtic). The g- and h-distributions
were first proposed by Hoaglin [6]. These distributions are transformations of
the standard normal distribution. By manipulating the g-parameter, one can
transform the standard normal distribution into a skewed distribution. In
addition to this, one can also transform the standard normal distribution into
a heavy tailed distribution by changing the h-parameter. For this study, 5000
datasets were simulated for each of the procedure. The random samples were
drawn using SAS generator RANNOR (SAS Institute Inc. [20]).

For type | error, the group means were set as (0, 0, 0, 0). However, in

the case of power, one of the group means will be non-zero. Three separation
patterns of the means were identified based on the effect size stated in Cohen
[2]. The pattern was classified as minimum, intermediate and maximum
separation. In minimum, intermediate and maximum case, the group means
were setas (-1, 0, 0, 1), (-1, 0.5, 0.5,1) and (-1, -1, 1, 1), respectively.

Results and Conclusions

The performance of the four F; procedures under unequal sample sizes

and homogeneous variances are shown in the tables and figures below.
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Conventionally, a procedure can be considered robust if its type | error is
between 0.5a to 1.5a (Bradley [1]). Thus, when the nominal level is set at
o = 0.05, the type | error rate should be in between 0.025 and 0.075. Type |
error rates are considered liberal when they are above the 0.075 limit while
those below the 0.025 limit are considered conservative.

Based on Table 1, only the v column produced p-values which are
within the Bradley’s interval for both total sample sizes. When the total
sample size increased from N =60 to N =80, the p-values for v also

improved, producing p-values which are nearer to the nominal level
(o = 0.05). K produces liberal type I error, especially for both total sample

sizes with new trimming strategies. The only exceptions are under extremely
skewed distribution. F with the three new trimming strategies produce good

type | error rates for both sample sizes.

Table 1. Type I error rates

N=60 (12, 14, 16, 18) N=180(10, 20, 20, 30)
Distribution F; with scale estimator F; with scale estimator
Variances = (1:1:1:1) Variances = (1:1:1:1)

MAD, T, LMS, v MAD,, i LMS, 1%

g=0.0and/2=0.0 | 0.1194 | 0.1030 | 0.1594 | 0.0476 | 0.1162 | 0.1006 | 0.1460 | 0.0532

g=05and2=0.0 | 0.1632 | 0.1546 | 0.1890 | 0.0458 | 0.1508 | 0.1468 | 0.1686 | 0.0530

g=05and2=0.5|0.0572 | 0.0502 | 0.0600 | 0.0342 | 0.0542 | 0.0528 | 0.0552 | 0.0474

Average 0.1133 ] 0.1026 | 0.1361 | 0.0425 | 0.1071 | 0.1000 | 0.1233 | 0.0512

Looking across Table 2, the average power values show that LMS,, is
the best performer for both total sample sizes followed by MAD,,, T, and v

in the second, third and fourth ranked, respectively. However, the power
values corresponding to each particular distribution and setting do not differ
much. As the number of observations increased from N =60 to N = 80,

the power values also increased.
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Table 2. Power rates for J = 4

T
0.0500

I
0.1000

1
0.1500

Type | error

1
0.2000

Figure 1. Type | error vs. power for F (N = 60).

Distribution F, with scale estimator, N = 60 F,with scale estimator, N = 80
MAD, | T, [ IMS, | v MAD, | T, | IMS, | v
MINIMUM
g=0.0and 2=0.0 0.9954 | 0.9954 | 0.9924 | 0.9946 | 0.9984 |0.9988 | 0.9980 | 0.9982
g=05and/2=0.0 | 0.9850 | 0.9842| 0.9884 | 0.9664 | 0.9960 |0.9946 | 0.9972 | 0.9902
g=05and =05 | 0.8764 | 0.8496| 0.9000 | 0.7030 [ 0.9278 |0.9160 | 0.9476 | 0.8318
Average 0.9523 10.9431 | 0.9603 | 0.8880 | 0.9741 [0.9698 | 0.9809 [0.9401
MAD, T, LMS, v MAD, 1 LMS, v
INTERMEDIATE
g=0.0and 2#=0.0 0.9998 | 0.9996 | 0.9986 |0.9992  1.0000 | 1.0000 | 0.9998 | 1.0000
g=05and2=0.0 | 0.9966 |0.9960 | 0.9972 | 0.9880 | 0.9988 |0.9984 | 0.9994 | 0.9974
g=05and =05 | 09324 | 09108 | 0.9462 | 0.7766 | 0.9690 |0.9616 | 0.9792 | 0.8920
Average 0.9763 | 0.9688 | 0.9807 |0.9213 | 0.9893 [0.9867 | 0.9928 [0.9631
MAD, T, LMS, 12 MAD, g LMS, 12
MAXIMUM
g=0.0and 2#=0.0 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 | 1.0000 [ 1.0000
g=05and2=0.0 1.0000 | 1.0000 | 1.0000 [ 0.9996 | 1.0000 |0.9998 | 1.0000 | 1.0000
g=05and =05 | 09872 |0.9826| 0.9914 | 0.8928 | 0.9956 |0.9944 | 0.9986 | 0.9644
Average 0.9957 10.9942 | 0.9971 |0.9641 | 0.9985 | 0.9981 | 0.9995 | 0.9881
1.0000— 3 ¢ Fo8 + 18 #
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Figure 2. Type | error vs. power for F (N = 80).

According to Figures 1 and 2, we can observe that the F; statistic with
some of the new trimming strategies proposed in this study show better
performance in terms of type | error than v. These type I error rates are close
to the nominal level. With regard to the power values, except for a few v
procedures for N = 60, all the other procedures generate power values
higher than 0.8. As noted by Murphy and Myors [16], the power of a test is
judged to be adequate if the value is 0.8 and above.

The shaded area in the figures consist of the trimming strategies that
concurrently meet the Bradley’s criterion and also have power values higher
than 0.8. Based on Figure 2, all the power values of the trimming strategies
are located in the area above the 0.8 benchmark.

Conclusions

To evaluate the robustness of a test, several other standards have been
used in the past. Procedures that were considered not robust for some
researchers could be deemed as robust for others. Some researchers would
consider that the procedures with conservative type | error rates fail to
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perform. However, Mehta and Srinivasan [15] and Hayes [4] stated that
conservative procedures in which the true type | error rate is less than or
equal to the nominal level can still be considered as robust. Yet a
conservative test will be lower in power than a less conservative test because
a more conservative test is less likely to reject any null hypothesis (Hayes
[4]). As for the liberal test, Hayes [4] suggested avoiding using this test. He
defined the liberal test as a test that tends to underestimate the true p-value.
Using a liberal test for testing hypothesis will increase the probability of type
I error to a value greater than the nominal level, which implies that there is a
bigger risk of making a type | error. Nonetheless, Keselman et al. [10]
pointed out that there is no one universal standard by which tests can be
judged to be robust, so different interpretations of these results are possible.
This study also identified some promising procedures that performed well in
terms of type | error and produced reasonable power.

The best procedure that should be taken into consideration is the F with
trimming strategy LMS,,. By using this trimming strategy, reasonable type |

error and high power rates were achieved simultaneously especially for
skewed leptokurtic distribution. This procedure works best under the
condition of unequal sample sizes and homogeneous variances.
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