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Abstract 

Achieving nominal type I error rates and having high power values 
simultaneously will produce good test statistics. In order to identify a 
good test statistic which is able to satisfy both aforementioned criteria, 
a study is done on tF  statistic with trimming strategies using robust 

scale estimators, namely, ,nMAD  nT  and .nMSL  To test for the 
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robustness of the procedures towards the violation of the assumptions, 
several variables are manipulated. The variables are types of 
distributions, heterogeneity of variances, sample sizes, nature of 
pairings of group sample sizes and group variances, and number of 
groups. This study is based on simulated data with each procedure 
simulated 5000 times. When testing for the hypothesis of the equality 
of central tendency measures, approximation method is used on tF  

statistic. Type I error and power rates on 4=J  groups are then 
compared. Normal and skewed data from g- and h-distributions are 
considered in this study. Generally, all trimming strategies produce 
good type I error rates with high power values concurrently. 

Introduction 

Two sample t-test and analysis of variance (ANOVA) are two common 
statistical methods used to locate treatment effects in a one way independent 
group design. However, in using these two statistics, assumptions of 
normality and homogeneity of variance need to be fulfilled. In real life 
applications, these conditions are rarely achieved and any violation will lead 
to inaccuracy in decision based on the testing procedure. When these two 
problems simultaneously arise, rates of type I error are usually inflated 
resulting in spurious rejection of null hypotheses and the power of the test 
statistics is reduced. 

The usual group means and variances, which are, respectively, the 
location and scale measures for the classical methods, are greatly influenced 
by the presence of outliers in the score distribution. The existence of outliers 
in a sample data will cause the probability of type I error to be less than the 
nominal level and concurrently lower the power of the test statistic. In        
the application of t-test, outliers can inflate the sample variance and 
simultaneously lower the value of the test (Wilcox and Keselman [26]). Even 
when sampling from a perfectly symmetrical distribution, outliers can still 
cause the t-test to loose power when compared against modern methods. 
Modern methods here are methods that are based on robust measures of 
location (Wilcox and Keselman [26]). 
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According to Keselman et al. [9], reduction in the power to detect 
differences between groups occurs because of the usual population standard 
deviation is greatly influenced by the presence of the extreme observations in 
a distribution of scores. Furthermore, the standard error for the usual mean 
can become seriously inflated when the underlying distribution is heavy 
tailed (Lix and Keselman [13]). In addition, the classical least squares 
estimators can be highly inefficient when assumptions of normality are not 
fulfilled. Hence, by substituting robust measures of location and scale such as 
trimmed means and Winsorized variances in place of the usual means        
and variances, respectively, tests that are insensitive to the combined effects 
of non-normality and variance heterogeneity can be obtained (Lix and 
Keselman [13]). Wilcox et al. [25] stated that one is able to obtain test 
statistics that do not suffer losses in power due to non-normality by using 
trimmed means and variances based on Winsorized sum of squares. 

The sample mean is the most common estimator used in most statistical 
analyses. However, this estimator is also very sensitive to the presence of 
outliers and skewness. Under these conditions, any test that used the sample 
mean as the estimator will produce low power and distorted rates of type I 
error. These include the t-test and ANOVA. To address this problem, Wilcox 
and Keselman [26] suggested using estimators of robust measures of location 
and rank-based methods. Some of these robust estimators are the M measure 
of location and trimmed mean. 

The sample trimmed mean (will be referred to as “trimmed mean” 
throughout this article) is one of the estimators which is able to handle the 
problems of outliers and non-normal data. When using this estimator, the 
smallest and the largest observations in the distribution will be trimmed, this 
will automatically discard the outliers. By using trimmed mean, high power, 
accurate probability coverage, relatively low standard errors, a negligible 
amount of bias and a good control over the probability of a type I error can 
be achieved (Wilcox and Keselman [26]). 

There are two possibilities of estimating the trimmed mean, i.e., equal 
amount of trimming or symmetric trimming and unequal amount of trimming 
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or asymmetric trimming. In symmetric trimming, the trimming is done 
equally on both sides of the distribution. While for asymmetric trimming, 
the  trimming is done on only one side or unequally on both sides of the 
distribution. Othman et al. [17] recommended that when the data are said to 
be skewed to the right, then in order to achieve robustness to non-normality 
and greater sensitivity to detect effects, one should trim data just from the 
upper tail of the data distribution. Hogg [7], Hertsgaard [5] and Tiku [22, 23] 
suggested that the data should have different amounts of trimming 
percentages from the right and left tails of the distribution. Keselman et al. 
[11] proposed a method called adaptive robust estimators to determine the 
number of observations to be trimmed from each tail of the distribution. By 
using this method, the total amount of trimming is determined a priori before 
making the decision whether to trim the data symmetrically, asymmetrically 
or not to trim at all (Keselman et al. [11]). 

These two strategies stand on the trimming percentage that has to be 
stated in advance. It needs the fix amount of trimming percentage. The 
strategies are tight down with this amount of trimming. In our proposed 
method, the fixed trimming percentage problem can be avoided, since the 
trimming is done based on the shape of the distribution. Thus, we do not 
have to determine the total amount of data that need to be trimmed in 
advance because the determination of the total amount of trimming is done 
automatically. 

Method 

This paper focuses on the tF  method with new trimming strategies using 

robust scale estimators ,nMAD  nT  and nMSL  and also with 15% symmetric 

trimming ( ).ν  The tF  statistic with ν  is the default procedure for the .tF  

The ν  is included in this study for comparison purposes. These methods 
were compared in terms of type I error and power under conditions of 
normality and non-normality which will be represented by skewed g- and     
h-distributions. 
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tF  statistic 

Lee and Fung [12] introduced a statistic that was able to handle problems 
with sample locations when the variance for the population is equal. This 
statistic was named the trimmed F statistic, .tF  They also suggested this new 

statistic to be used for problem involving one-way ANOVA and they 
recommended this to be an alternative to the usual F method. This method 
had also been proven to be easy to program. 

Let ( ) ( ) ( ) jnjj jXXX ...,,, 21  be an ordered sample of group j with size 

.jn  The g-trimmed mean of group j is calculated by: 
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=jg1  number of observations ( ) jiX  such that ( ( ) ) 24.2ˆ −<− jji MX  

(scale estimator), 

=jg2  number of observations ( ) jiX  such that ( ( ) ) 24.2ˆ >− jji MX  

(scale estimator), 

=jM̂  median of group j. 

Scale estimator can be ,nMAD  nT  or .nMSL  

The constant 2.24 is the scaling factor to improve the distribution of 
robust scales computed on non-normal data. This constant was chosen due to 
the good efficiency of the estimator under normality. Note that 2.24 is 
approximately equal to the square root of the 0.976 quartile of a chi-square 
distribution with one degree of freedom. 

The Winsorized sum of squared deviations for group j is then defined as 
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( )JHJ −− ,1  degrees of freedom. 

Scale estimators 

The value of a breakdown point is a main factor to be considered when 
looking for a scale estimator (Wilcox [24]). Rousseeuw and Croux [19]     
have introduced several scale estimators with highest breakdown point such 
as ,nMAD  nT  and .nLMS  Due to their good performances in Huber [8], 

Rousseeuw and Croux [19], Yahaya et al. [21] and Md. Yusof et al. [14], 
these scale estimators were chosen for this study. All these scale estimators 
have 0.5 breakdown value and also exhibit bounded influence functions. 
These estimators are also chosen because of their simplicity and 
computational ease. 

nMAD  

nMAD  is the median absolute deviation about the median. It 
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demonstrates the best possible breakdown value of 50%, twice as much as 
the interquartile range and its influence function is bounded with the sharpest 
possible bound among all scale estimators (Rousseeuw and Croux [19]). 

This robust scale estimator is given by 

,medmed jjiin xxbMAD −=  

where the constant b is needed to make the estimator consistent for the 
parameter of interest. 

nT  

Suitable for asymmetric distribution, Rousseeuw and Croux [19] 
proposed nT  a scale known for its highest breakdown point like .nMAD  

However, this estimator has more plus points compared to .nMAD  It has 

52% efficiency, making it more efficient than .nMAD  It also has a continuous 

influence function. 

Given as 
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nT  has a simple and explicit formula that guarantees uniqueness. This 

estimator also has 50% breakdown point. 

nLMS  

nMSL  is another scale estimator with a 50% breakdown point. The 

computation is based on the length of the shortest half sample as shown 
below: 

( ) ( )ihi
i

n xxcLMS −′= −+ 1min  

given ( ) ( ) ( )nxxx ≤≤≤ 21  are the ordered data. The default value of c′  is 

0.7413 which achieves consistency at Gaussian distributions. nMSL  also has 
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influence function the same as MAD (Rousseeuw and Leroy [18]) and its 
efficiency equals that of the MAD as well (Grubel [3]). 

Empirical Investigation 

This paper only focused on unequal sample sizes and homogeneous 
variances for four groups with small samples. Two cases of groups of size 

60=N  and 80=N  were chosen. For ,60=N  the sample, were set at 

,121 =n  ,142 =n  163 =n  and 184 =n  and for ,80=N  they were set        

at ,101 =n  ,202 =n  203 =n  and .304 =n  For both sizes, we used 

homogeneous variances of 1. 

Each method will be tested under three types of distributions with 
0.0=g  and 0.0=h  (normal), 5.0=g  and 0.0=h  (skewed normal tailed) 

and 5.0=g  and 5.0=h  (skewed leptokurtic). The g- and h-distributions 

were first proposed by Hoaglin [6]. These distributions are transformations of 
the standard normal distribution. By manipulating the g-parameter, one can 
transform the standard normal distribution into a skewed distribution. In 
addition to this, one can also transform the standard normal distribution into 
a heavy tailed distribution by changing the h-parameter. For this study, 5000 
datasets were simulated for each of the procedure. The random samples were 
drawn using SAS generator RANNOR (SAS Institute Inc. [20]). 

For type I error, the group means were set as ( ).0,0,0,0  However, in 

the case of power, one of the group means will be non-zero. Three separation 
patterns of the means were identified based on the effect size stated in Cohen 
[2]. The pattern was classified as minimum, intermediate and maximum 
separation. In minimum, intermediate and maximum case, the group means 
were set as ( ),1,0,0,1−  ( )1,5.0,5.0,1 −−  and ( ),1,1,1,1 −−  respectively. 

Results and Conclusions 

The performance of the four tF  procedures under unequal sample sizes 

and homogeneous variances are shown in the tables and figures below. 
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Conventionally, a procedure can be considered robust if its type I error is 
between 0.5α to 1.5α (Bradley [1]). Thus, when the nominal level is set at 

,05.0=α  the type I error rate should be in between 0.025 and 0.075. Type I 

error rates are considered liberal when they are above the 0.075 limit while 
those below the 0.025 limit are considered conservative. 

Based on Table 1, only the ν  column produced p-values which are 
within the Bradley’s interval for both total sample sizes. When the total 
sample size increased from 60=N  to ,80=N  the p-values for ν  also 

improved, producing p-values which are nearer to the nominal level 
( ) tF.05.0=α  produces liberal type I error, especially for both total sample 

sizes with new trimming strategies. The only exceptions are under extremely 
skewed distribution. tF  with the three new trimming strategies produce good 

type I error rates for both sample sizes. 

Table 1. Type I error rates 

 

Looking across Table 2, the average power values show that nLMS  is 

the best performer for both total sample sizes followed by ,nMAD  nT  and ν  

in the second, third and fourth ranked, respectively. However, the power 
values corresponding to each particular distribution and setting do not differ 
much. As the number of observations increased from 60=N  to ,80=N  

the power values also increased. 
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Table 2. Power rates for 4=J  

 

 

Figure 1. Type I error vs. power for ( ).60=NFt  



Type I Error and Power Rates of tF  Statistic with Trimmed Mean 47 

 

Figure 2. Type I error vs. power for ( ).80=NFt  

According to Figures 1 and 2, we can observe that the tF  statistic with 

some of the new trimming strategies proposed in this study show better 
performance in terms of type I error than .ν  These type I error rates are close 
to the nominal level. With regard to the power values, except for a few ν  
procedures for ,60=N  all the other procedures generate power values 
higher than 0.8. As noted by Murphy and Myors [16], the power of a test is 
judged to be adequate if the value is 0.8 and above. 

The shaded area in the figures consist of the trimming strategies that 
concurrently meet the Bradley’s criterion and also have power values higher 
than 0.8. Based on Figure 2, all the power values of the trimming strategies 
are located in the area above the 0.8 benchmark. 

Conclusions 

To evaluate the robustness of a test, several other standards have been 
used in the past. Procedures that were considered not robust for some 
researchers could be deemed as robust for others. Some researchers would 
consider that the procedures with conservative type I error rates fail to 
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perform. However, Mehta and Srinivasan [15] and Hayes [4] stated that 
conservative procedures in which the true type I error rate is less than or 
equal to the nominal level can still be considered as robust. Yet a 
conservative test will be lower in power than a less conservative test because 
a more conservative test is less likely to reject any null hypothesis (Hayes 
[4]). As for the liberal test, Hayes [4] suggested avoiding using this test. He 
defined the liberal test as a test that tends to underestimate the true p-value. 
Using a liberal test for testing hypothesis will increase the probability of type 
I error to a value greater than the nominal level, which implies that there is a 
bigger risk of making a type I error. Nonetheless, Keselman et al. [10] 
pointed out that there is no one universal standard by which tests can be 
judged to be robust, so different interpretations of these results are possible. 
This study also identified some promising procedures that performed well in 
terms of type I error and produced reasonable power. 

The best procedure that should be taken into consideration is the tF  with 

trimming strategy .nMSL  By using this trimming strategy, reasonable type I 

error and high power rates were achieved simultaneously especially for 
skewed leptokurtic distribution. This procedure works best under the 
condition of unequal sample sizes and homogeneous variances. 
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