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Abstract: Survival mixture model of three different distributions was proposed. The model consists of a mixture of Exponential,
Gamma and Weibull distributions. Simulated data was employed to investigate the performance of the model by considering three
different censoring percentages and two sets of mixing probabilities in ascending order and descending order. The simulated data were
used to estimate the maximum likelihood estimators of the model by employing Expectation Maximization (EM). Hazard functions
corresponding to the censoring percentages were investigated graphically. Parameters of the proposed model were estimated and were
all close the values used in generating the data. Simulation was repeated 300 times and the mean square error (MSE) and root mean
square error (RMSE) were estimated to assess the consistency and stability of the model. The simulated data used to compare the effect
of different censoring percentages revealed that the model performed much better with small percentage of censored observations. Also
the model performed well with both the ascending and descending order of the mixing probabilities. However, mixing probabilities in
ascending order performed better than the descending order. The hazard function graphs showed that, samples with higher percentage
of censored observations seemed to have lower hazard compared to the smaller censored observations. The proposed model showed that
survival mixture models are flexible and maintain the features of the pure classical survival model and are better option for modelling

heterogeneous survival data.
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1. Introduction

Survival analysis commonly employed to analyse some event
that occurs within a particular period of time. The methods
of survival analysis are widely used in different fields such
as engineering, biological sciences, sociology, economic and
engineering to mention few. The nonparametric methods are
frequently used to analyse survival data. Pure classical
parametric survival models are very powerful methods in
survival analysis; they perform better than the nonparametric
methods when the chosen distribution fit the data properly.
The Exponential, Gamma and Weibull distributions are
frequently employed in analysing survival data. [1],[2],[3]
and [4]. Mixture models are normally utilised for analysing
survival data which are heterogeneous in nature. In the
recent decades, many authors employed mixture model
technique to analyse survival data. A survival mixture model
of Weibull distributions with two components was proposed
where the parameters of the model were estimated by the
weighted least squares method [5]. A survival mixture model
of Weibull distributions with two components was proposed,
where the parameters of the model were estimated by
graphical approach [6]. A new technique was developed for
evaluating the parameters of a two components survival
mixture model of Weibull distributions [7].

In another study, Expectation Maximization (EM) was
employed to evaluate the parameters of a two-components
survival mixture model of the Weibull-Weibull distributions,
and the model stability was investigated [8] Two
components survival mixture models of Gamma-Gamma,
Weibul-Weibull and Lognormal-Lognormal distributions

were used to model survival data [9], they implemented
model selection technique to select the model which better
represents the real data. A survival mixture of mixed
distribution was proposed for analysing heterogeneous data.
The model consists of two components of the Extended
Exponential-Geometric (EEG) distribution [10]. Also a two
components survival mixture model of different distributions
consisting of an Exponential-Gamma, an Exponential-
Weibull and a Gamma-Weibull distributions was employed
for analysing heterogeneous survival data [11].

Three components survival mixture models did not receive
much attention. A study to observe the risk of death after
open-heart surgery was able to classify the risk of death after
the surgery by three different time overlapping phases [12].
This type of survival data were better analysed by a three
components mixture model [13]Jand [14]. A parametric
survival mixture model of the Exponential, Gamma and
Weibull distributions was proposed to model heterogeneous
survival data. Simulated data were employed to investigate
the stability and consistency of the model [15]. The method
of model selection was employed to select the model which
fit the data better [16]. Bayesian method was also
implemented to analyse a three components survival mixture
model of Weibull distributions [17]. In some situations
where data consist of some missing or unobserved
observations, Expectation Maximization (EM) is appropriate
for analysing such data [18]. The Maximum Likelihood
parameters of survival mixture models are commonly
evaluated by implementing the EM [19]and [20].

In this study simulated data were generated and utilized to
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investigate the flexibility and appropriateness of a three
components survival mixture model of different distributions
consisting of the Exponential, Gamma and Weibull
distributions in  modelling heterogeneous data. The
arrangement of the paper is as follows. In section two the
survival analysis and some properties of the Exponential,
Gamma and Weibull distributions are highlighted. Section
three devoted to discussing the survival mixture model of
three components in the survival analysis. Section four
highlights the employment of the EM in estimating the
maximum likelihood parameters of the proposed model.
Section five devoted to data application to evaluate the
parameters of the proposed model and compare the different
censoring percentages and the two sets of mixing

probabilities. Section six devoted for summary and
conclusion.
2. Survival  Analysis  and Probabilty

Distributions

Survival analysis concern with the application of some
statistical method to model and analyse survival data. The
focus of interest is the occurrence of a particular event of
interest within a given period of time. The response of
variable T is a non-negative random variable which gives the
survival time of an object or an individual which can be
expressed as a probability density function (pdf) denoted by f
(), which is written as:

f(t) =50

Where F (t) is the distribution function of response variable
T. The probability density function can also be presented
graphically, the graph of f (t), is known as the density curve.
The density function f (t) is a nonnegative function and the
area between the curve and the t axis is equal to 1. The
survival function denoted by S (t) can be written as:
S(t)=1-F(X)

which gives the probability that an individual will survive
beyond a particular time t. Note that the survival function
S(t) is a monotonic decreasing continuous function with

SO=13g S)=0 The nhazard function can be
represented by h (t), and is given by

f(t
ht) =<

which gives the probability of an individual to fail within a

small interval (t.t+A1) , provided that the individual was a
life  until the beginning of that interval. Pure classical
parametric survival models are powerful method in survival
analysis; when the chosen probability distribution
appropriately represents the data. The Exponential, Gamma
and Weibull densities are commonly employed in the
analysis of survival data. The probability density

function f(t) and  survival  functions S(®) of
distributions are highlighted below.

these

Exponential Distribution
fo(t)=2e* t,A>0

Sc(t)=e™*
Gamma distribution
__ta-l e’%f
fo) =t St tand «, 5 >0
SG (t) =1- rrx((:))

Where 1 () is known as the incomplete Gamma function.
Weibull Distribution

fu (1) = % (£} texp(- (1))

Sw ) =exp(- (1))

tand o, >0

3. Survival Mixture Model of Different

Distributions

Mixture models are commonly employed in survival analysis
for their flexibility. They are preferred over the pure
classical parametric survival models when the data are of
heterogeneous nature [19] and [21]. Survival mixture model
of three components is used when it is believed that the data
consist of three subpopulation or subgroups. Equation (1)
represents a parametric survival mixture model of three
components.

Jxr.plt:®) =m fy(t8x)+ 7 (16) +73fp(t 6g) (1)

G): 1 19 L 16
Where the vector (73,772, 6. 6 Q), represents the
vector the parameters of the mixture model. The functions

fx 60x), Ty (G&) gng fQ(t;HQ)are the probability density
functions corresponding to each component with some

0 .
parameters Ox+ gnd @ respectively.

In this paper a three components survival mixture model of
different distributions is proposed to model heterogeneous
survival data. The proposed model consists of the
Exponential, Gamma and Weibull distributions and is
defined as

fEfoW t:0)=x fe(tA) + 7, fs (G, B) + 7, fy (G 2y, B)

where 7;’s are the mixing probability and Zi 7, =1 -
The functions f_, f_ and f, are the probability density

functions of the Exponential, the Gamma and the Weibull
distributions respectively corresponding to the components
of model.

3.1 Expectation maximization (EM) and survival
mixture model

One of the most efficient and effective methods commonly
employed to estimate the maximum likelihood estimators of
finite mixture models is the EM [20].

Let t;, t5,...,7, be a set of observations of n incomplete data
and z;,25,2sbe a set of missing observations, where
Zi=zk(t;))=1, if the observation belongs to the K component
and 0 otherwise for k=1,2,3 and i=1,..,n. On the
implementation of the EM to the mixture model, the
variables z's are considered as missing values. The EM
consists of two different steps, the first one is the

Volume 8 Issue 5, May 2019

WWW.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Paper ID: ART20198166

10.21275/ART20198166

1745



International Journal of Science and Research (1JSR)
ISSN: 2319-7064
ResearchGate Impact Factor (2018): 0.28 | SJIF (2018): 7.426

Expectation step or the E-step and the second one is the  maximization of Equation (2) with respect to
Maximization step or the M-step.

ey, 1@z, B2 gng i The mixing probabilities’ri

#9+D ,Zz(g)/n .
can be updated by 1=123 |n order to
get the updated maximum likelihood estimate of the model

The zvariables are treated as missing observations in the E-
step, the hidden variable vector zi=[zy;,2,i,Z5i] are estimated
by the evaluation of the expectation E(z4t;).

Thus parameters & @10 B @2, B2 Equation  (2) will be
E(zy |t) = ;i (ti0x) : different!ated Wi_th.respect to _each of thes_e parameters.
71 (530x )+ fy (436 )+ 73 o (4360) Now, differentiating Equation (2) with respect to the
25 =E(zy %) = 7y (iity) : A . - .
71 Fx (30 )75 Fy (46 )+73 To (4:00) parameter the updated maximum likelihood estimate of
R 730 (ti6g) the first component model parameter can be obtained in
25 = B(z5i [6) = a0 mm b G 6 7 T G 00) closed form
. . Zn: z{§’t;
The functions E(zylt;), E(zailt]) and E(zsilt;) calculated in the GGevny _ =
E-step will be maximized in the M-step of the EM under the Z 295,
1j

condition the sum of %i S equals to 1. The evaluation of the

'S This completes the M-step. The E-step on the (g+1)"
1

mixing  probabilities and vector of parameter jteration is to update the current conditional expectation of

HZ[QX’QY’QQ], is by the implementation of the Lagrange 1 the ob d dat g th ¢ model
method. The mixing probabilities will be obtained by; , given the observed data, using the current mode

n n n parameters fit,
Zfﬂ/ Ziz/ me/
A== f 2= A and 2= A 20 :;[fg)[fl(tj;i(g)]a. [Si(tj;i]l—ﬁj ,[ﬁ(g)[f t_;i(g)] [ ; 1]1

The proposed model can be expressed as defined above:
where f_(t; 1) with unknown parameter A, 0l e 501l o ]1

fo (t; oy, B,) With  unknown  parameters ¢, /3 and +ig [f 40 s po | }

f, (t;a,, 3,) With unknown parameters «,, /3, are the

Exponential, Gamma and Weibull density functions
respectively. The parameters satisfy the conditions A >0,
ey = 0LF =0 6, 20,8 =0

Again, differentiating Equation (2) with respect to the
parameter . B yields:

22(9)5 [ log s, +‘P(al)+logtj]

6a1
The log-likelihood function of the complete-data of the (@ 1 0
+ ) 27 @-0j)lo —————— (. t;/
mixture of the Exponential, Gamma and Weibull Z ( )|log B+ C(ey.t; 1 fy) Oay (@, 1 A1) 3
distributions is: ) 3
n aQ t; 0
log Lc(t;ﬂ.,al,ﬂl,az,[iz,ﬁi):ZZ”[logn'li +5; log(le ™)+ (1-5;) logle ™™ )] aﬁi_gzggj)l:_éj(ﬁi+ﬂf)+waﬂlr(al’tj /:Bl):l @
i=1 =

+iz iqlogz, +&; log| 1 (—jja_leai +(1—5-)I09[M}
. “2] 27 N B e | i T, Now, the incomplete gamma function can be differentiated

=1

with respect to B using Leibnitz’s rule, and we then obtain

ot (7 from Equation(4) that:
+2231 {|09ﬂ3 + 5 Iog|: X2 )(LJ e [/).ZJ :| rom equa IOn( ) al

=1 B2 N B2
n n n
b= dtilag+ Y 238 ley—» ————
1 12:1: 2j 1 ; 2j9%j 1 12:1:0‘1,51% 1F(a1,tj /ﬁl) (5)

a "J’lﬁl
te

2(9)
The EM starts with the E-step. After the g™ iteration, B s
The RHS of Equation(5) can be evaluated at the current

the conditional expectation of Zi iven the observed data :
p 9 ' parameter value to obtain the updated parameter

Then the current conditional expectation of the complete- ) (g+1) ) )
data log-likelihood is given by estimate 1" . Upon expanding the incomplete gamma

function as an infinite series, then differentiating and

— (9)
Qe Ao B ) Zzlg fogz, +5,0g 2~ 1)) - 1= 5)) 1] simplifying the expression, Equation (3) can be expressed as:

£yt 2 INCRINTD)
+Zzggl){log7r2 +6 Iog{b’llj&al) {;‘1] e™ :|+(1(Sj)|09[ ‘7‘11_0:1 2 }}

j=1

+Zn:z§?){log7r3+o‘j Iog|: az tjz 7197[%] }Jf(lb‘j)[ t—JZ az}JL N @+
= (ﬂ J[ﬁ J ['B J + 328, (1—61-)|:|Og(tj 1 8y) —log(t; /ﬂl)/{l el ”’127“ ') p}

(2) = g 0(ay+ p+1)
The M-step on the (g+1)" iteration requires the global
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P ey +p+1) = T(ay +p+1)

e /A ¥ i) /{1_5‘1“’1 N H
e (6)
Setting equating (6) to zero, the equation can be solved

(221

. . . (9+D)
numerically for to obtain the current estimate 1" by

(9+1)

using for B .

The E-step on the (g+1)" iteration is to update the current
. . VAT
conditional expectation of ", given the observed data,
using the current model parameters fit,

2497 = #0[t ;60,9 [s ;09,0 ,[,;l(m[f @, 20 [s ¢ ]
+,,(g)[f (569, 3 r[s 588, ﬁ‘.(g)}*"
+,,39)[f t): 68, (g)]" [S t): 68, ﬂ(g)]L’JIJ

Again, differentiating equation (2) with respect to the

parameters “2- P yields:
!

_'Z '3 | Fu

logF, +logr, —Z siE i i loge, -leg 5 | (T)

:-,:a| ~

[+ - -
-8, L g, g "t 3
["'-ﬁ_. &, 157 8] , (&)

0 &
G _Z'=.-

should be solved for the values of the parameters *2and B2

The system of Equations (8) can be written as:

' Z slehye '

: l_lng ELL— (9)

;a: Z:':'_:J_. |

By = exp

Plug Equations (9) back to Equation(7) to obtain:

n
(9) ¢«
n 1 1 Zz3j tjz
i—1
> 2§ | ————log-———+logt; |—
— o,  as
> 2595
-1
n n
(9 (Do
n 224, 1 Zz3jt12
Zzég)t”‘2 2 llogt; ——logt—|-0
= (24
R T S
i=t = (10)

Then equations (10) can be solved to obtain the estimates
for #2. Plug the estimates of %2 back to equations (9) to
obtain the estimates for 52, This completes the M-step. The
E-step on the (g+1)" iteration is to update the current

. . Zy: .
conditional expectation of “31, given the observed data,
using the current model parameters fit:

e O S O L O U
Még)[f t;:69, ﬂ(m] [5 (tj;dl‘g),/}fg)]l’é‘
il 0, 491 00 401

The M-step and E-step iterate alternatively till the

convergence criterion is met.

4. Data Analysis

The performance of the proposed model was investigated by
employing simulated data generated from survival mixture
model of Exponential, Gamma and Weibull distributions.
Three censoring percentages (10%, 20% and 40%) with two
different sets of mixing probabilities for the three
components were considered to evaluate the model. The first
set of mixing probabilities in ascending order (10% , 40%
and 50%) and the second one in descending order (50%,
30% and 20%). Survival data of size 500 observations were
generated based on each of the three censoring percentages
and the two sets of the mixing probabilities. The parameter
considered for the first component of Exponential

A=15

distribution is , the parameters for the second

component of Gamma distribution are (%= 2 | B =2y
and the parameters of the third component of Weibull

distribution are (%2 =2, B2 =10y samples of size 500
were generated from the Exponential distribution for the
censored time C with (b), where the value of b depends
solely of the percentage of the observations that are
censored. In this study 10%, 20% and 40% censoring
observations were considered for each of the sample
generated in which, t=min(T;,C;) was taken as the minimum
of the survival time and the censored time of the observed
time T where

5i :1,
T=
5i = 0,

4.1 Mixing Probabilities in Ascending Order

if X <C,
if X>C.

The proposed model corresponding to mixing probabilities
in ascending order was formed by substituting the values of
the parameters mentioned earlier. Thus:

) =00 A =13) + 04 x f (g = 5.8, =2) + 03 % fy (i, = 9., = 10)

where the density functions fg, fg and fy represent the
Exponential, the Gamma and the Weibull probability density
functions respectively.

The simulated data were used to estimate the parameters of
the proposed model by employing the EM. Table 1 displays
the result of the estimates of the parameters of the proposed
model for the three different censoring percentages with
mixing probabilities in ascending order.

Table 1: The Estimated Parameters of the Simulated Data
Sample size 500 observations and 10% censoring
Parameter | Ty Ty A Gy g By [
Postulate | 0.10 | 0.40 | 1.50 | 5.00 | 9.00 | 2.00 |10.00
Estimates | 0.11 | 0.40 | 1.52 | 5.25 | 9.00 | 2.03 |10.02
Sample size 500 observations and 20% censoring
Parameter | Ty Ty A &y £y By 8,
Postulate | 0.10 | 0.40 | 1.50 | 5.00 | 9.00 | 2.00 |10.00
Estimates | 0.10 | 0.40 | 1.49 | 481 | 9.00 | 2.04 |10.00
Sample size 500 observations and 40% censoring
Parameter | 7y Ty A &y Gy By £y

Postulate | 0.10 | 0.40 | 1.50 | 5.00 | 9.00 | 2.00 |10.00
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|Estimates | 0.10 [ 0.39 | 1.48 [ 4.84 [ 9.00 | 1.99 [ 9.94 |

The parameters of the three samples with different censoring
percentages were estimated successfully. Table 1 showed
that the estimated parameters are all close to the postulated
parameters used in the data generation. Also the parameter
for the simulated set of data with 10% censoring are more
closer the true parameters compared to that of the 20% and
40% censored observations. The probability density function
of the simulated data of the proposed model, with 10%, 20%,
40% censoring percentages respectively, and the probability
density functions of pure classical survival model (E, G and
W) corresponding to the components of the proposed model

o
=
w
& o~
0o
(=) E el SR -,
< T T T T T T 1
0 2 4 5] 8 10 12
time

Figure 1: Density Function of the Simulated Data with 10%
Censored Observations.
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Figure 2: Density Function of the Simulated Data and 20%
Censoring.
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Figure 3: Density Function of the Simulated Data and 40%
Censoring.

Table 2: The Repeated Simulation of Set of the Three
Samples

Sample zize 500 and 10%0 cemoring

Paramewer] 1, T3 - &, a4 =) =3
Posmhes| 0.1 04 15 3.00 S0 200 | 1000
Esumaes| 011 040 145 490 .00 200 | 1001

MSE 1.84e-7 | 227e-8 234e-2 3.52¢-4 | 0.00e+0 [551e-T|150e-5
RMSE | 430e-4 | 151e-4 4.48.-3 3.82e-4 | 00040 |742e-4]3.87e-3
Sample zize 00 and 20%% cemoring

Paamewr] T2 i &, a4 = 2
Pozmhaed]| 0.1 04 13 300 9.00 200 | 1000
Esumes| 0.10 040 144 459 EX) 201 EES

MSE 199e-7 | 1.78-7 236e-5 422e-4 | 0.00e+0 | 5.80e-7|130e-3

FOMSE | 44604 | 421e-4 | 506e-3 | 2052

0.00e+0 | 7.61e-4|3.87e-3

Paramatary ) Ka Z & a. A B
Posmfaed| 0.1 15 00 EX 200 | 1000
Esumawes| 009 136 464 X 204 | 996

MSE |201e-7 |1 238e-3 521e-4 | 0.00e+0 [6.19e-7[150e-5
RMSE | 44924 4.5%a-3 228e-2 | 0.00e+0 |7.572-4|3.88-3

The simulation of the three sets of the generated data with
10%, 20% and 40% censored observations were repeated
300 times to check the consistency and stability of the
proposed model. The averages, the mean square errors
(MSE) and root mean square error (RMSE) of estimated
parameters were listed in Table 2.

The averages of the estimated parameters are close to the
parameters of the postulated model with MSE and RMSE
relatively small, which suggests that, the EM performed
consistently in estimating the parameters. The MSE and
RMSE corresponding to the mixing probabilities are
relatively smaller for the 10% censoring as compared to the
20% and 40% censoring. Also the MSE for the parameters of
the components are smaller for the 10% censoring compared
to that of the 20% and 40%. Generally, the estimation of the
mixing probabilities and the parameters are seemed to be
closer to the true value with smaller censoring percentage
10% than with 20% and 40%.

The hazard functions of the three simulated data
corresponding to the 10%, 20% and 40% censoring
percentages were presented in Fig. 4.

Sample of size 500 with 10% censoring Sample of size 500 with 20% censoring

e b

Sample of size 500 with 40% censoring

-
[
=
| =
5
=
=
(=3

Figure 4: Hazard Functions of Simulated Data for 10%,
20% and 40% Censored Observation

The hazard function of the set of simulated data with 10%
censoring observations is higher when compared with that of
20% and 40% censoring. As the number of censored
observations increases the hazard tends to be lower and
lower.

4.2 Mixing Probabilities in Descending Order
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The proposed model corresponding to mixing probabilities in
descending order was formed by substituting the values of the
parameters mentioned earlier. Thus:

FO = 05x% £ (A=15)+03x f(tray =58, = 2 +02% fy (b, = 8§, = 10)

where the density functions fz, fg and fy represent the
Exponential, the Gamma and the Weibull probability density
functions respectively. The simulated data were employed to
evaluate the parameters of the proposed model. The mixing
probabilities considered are in descending order. Table 3
displays the result of the estimates of the parameters of the
proposed model for the three different censoring
percentages.

Table 3: The Estimated Parameters the Simulated Data of size

500 Observations

Sample size 500 observations and 10% censoring
Parameter | my | ®y | A | @y | og | By B
Postulate |0.50(0.30| 1.5 |5.00/9.00(2.00| 10.00
Estimates |0.51/0.25|1.50(4.63/9.00(2.02| 9.81
Sample size 500 observations and 20% censoring
Parameter | @y | @y | A | @y | @z | By | B2
Postulate |0.50|0.30| 1.5 |5.00]9.00|2.00| 10.00
Estimates |0.47]0.29|1.52|4.52]9.00|2.03| 9.85
Sample size 500 observations and 40% censoring
Parameter Ty | Wg A oy g _Ej_ _E:
Postulate |0.50(0.30| 1.5 |5.00/9.00(2.00| 10.00
Estimates |0.46|0.17|1.56|4.50/9.00(2.65| 9.42

The parameters for the three sets of the simulated data were
estimated successfully. From Table 3, it can be seen that the
estimated parameters are all close to the postulated
parameters used in the data generation. Also the parameter
for the simulated set of data with 10% censoring are more
closer the true parameters compared to that of the 20% and
40% censored observations.

The estimation of the mixing probabilities was more accurate
in sample with 10% censoring. The probability density
function of the simulated data of the proposed model, with
10%, 20%, and 40% censoring percentages respectively,
and the probability density functions of pure classical
survival model (E, G and W) corresponding to the
components of the proposed model are displayed in Figures
56and 7.

Density

00 02 04 086

d 2 4 8
time
Figure 5: Density Function of the Simulated Data with 10%
Censored Observations
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Figure 6: Density Function of the Simulated Data and 20%
Censored Observations
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Figure 7: Density Function of the Simulated Data and 40%
Censoring.

The simulation of the three sets of the generated data with
10%, 20% and 40% censored observations were repeated
300 times to check the consistency and stability of the
proposed model. The averages, the mean square errors
(MSE) and root mean square error (RMSE) of estimated
parameters were listed in Table 4.

The averages of the parameters are close to the parameters of
the postulated with MSE and RMSE relatively small, which
suggests that, the EM performed consistently in estimating
the parameters. The MSE corresponding to the mixing
probabilities are relatively smaller for the 10% censoring as
compared to the 20% and 40% censoring. Also the MSE for
the parameters of the components are smaller for the 10%
censoring compared to that of 20% and 40%. Generally, the
estimation of the mixing probabilities and the parameters are
seemed to be closer to the true value with smaller censoring
percentage 10% than with 20% and 40%.

Table 4: The Repeated Simulation of Set of 500
Observations

Semzie 3z 200 an2 10N camaceng

Teamizn

Tl a:

Himen

23124
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The hazard functions of the three simulated data

corresponding to 10%, 20% and 40% censoring percentages
were presented in Figure 8.
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Figure 8: The Hazard Functions of Simulated Data for
10%, 20% and 40% Censored Observations.
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The hazard function of the set of simulated data with 10%
censoring observation is higher when compared with that of
20% and 40% censoring. As the number of censored
observations increases the hazard tends to be decrease.

The estimation of the parameters of the model was
successful for both the ascending and descending order of
the mixing probabilities. For both the sets of mixing
probabilities the estimation of parameters were closer the
true postulate parameters which indicates the stability of the
proposed model. It is also observed that the estimates of the
parameters were much better for small censoring
percentages. The estimation of the mixing probabilities for
the ascending order was better than that of the descending
with relatively small values for MSE. In general, it was
observed that the mixing probabilities of ascending order
performed better than the descending order as the censoring
percentages increase.

5. Conclusion

The paper proposed a three components survival mixture
model of different distributions, namely; the Exponential, the
Gamma and the Weibull distributions to model
heterogeneous survival data. Simulated data were used to
evaluate and assess the performance of the proposed model.
The EM algorithm was employed in estimating the maximum
likelihood estimator of the parameters of the model. The
simulated data used to compare the effect of different
censoring percentages revealed that the model performed
much better with small percentage of censored observations.
It was also observed that the model performed well with both
the ascending and descending order of the mixing
probabilities. However the model with mixing probabilities
in ascending order performed better the descending order.
Samples with higher percentage of censored observations
seemed to have lower hazard compared to the smaller
censored observations. The proposed model showed that the
survival mixture models are flexible and maintain the feature
of pure classical parametric survival models and they are
better options to model heterogeneous survival data.
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