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A B S T R A C T   

Conventional data envelopment analysis (DEA) models make the assumption of controllable inputs and desirable 
outputs. However, in many real-world applications, there are two major issues facing the management of 
decision-making units. The first one is how to deal with uncontrollable inputs whose levels are determined by 
exogenous fixed factors. The second is how to deal with undesirable outputs that are accompanied by desirable 
outputs. The effect of the operating environment is frequently captured by uncontrollable inputs and undesirable 
outputs. The modulation of these two factors into a directional DEA model is still in its infancy in the DEA 
literature. This paper proposes new directional mix-efficiency measure and slacks-based measure models. These 
two efficiency models are proposed in the context of uncontrollable inputs and undesirable outputs. The new 
metric looks at how well the input and/or output mix should change to achieve a fully efficient status by 
decreasing controllable inputs and undesirable outputs and/or increasing desirable outputs while keeping un
controllable inputs constant. The new mix-efficiency measure is based on the directional distance function and 
the slacks-based measure. The usefulness and applicability of the proposed models are assessed by measuring the 
eco-efficiency of the Organization for Economic Co-Operation and Development (OECD) countries. The aim of 
the application is to measure efficiency in the context of NetZero, with a specific focus on reducing CO2 emis
sions. The findings reveal that six countries—France, Luxembourg, Germany, Norway, Sweden, and the 
UK—have achieved eco-efficiency; therefore, these countries function in the constant returns-to-scale (CRS) 
region.   

1. Introduction 

The eco-efficiency of countries, particularly developed nations, is 
imperative for achieving carbon neutrality and sustainable develop
ment. Sustainable development necessitates the efficient use of scarce 
resources, contributing to the realisation of eco-efficiency and over
coming environmental degradation. Environmental degradation can 
occur when scarce resources are used inefficiently. To control and 
mitigate environmental degradation, green technology should be 
developed. Developing green technology involves the use of renewable 
energy sources, leading to a further reduction in CO2 emissions and the 
achievement of NetZero (Mandel et al., 2023). In the context of 
achieving NetZero emissions, a low-carbon economy is urgently 
required in many developed countries that consume a large amount of 

energy, such as OECD countries. Various activities have been developed 
and implemented by academics and policymakers in OECD countries to 
mitigate CO2 emissions and achieve NetZero. As a result, achieving 
NetZero has recently become a complex target and a multidisciplinary 
task that can be addressed using Multi-Criteria Decision-Making 
(MCDM) problems (Taleb et al., 2023). One of the most common tech
niques of MCDM that does not require the imposition of subjective 
weights on inputs and outputs from decision-makers is Data Envelop
ment Analysis (DEA). 

Charnes et al. (1978) proposed DEA, a non-parametric approach 
based on linear programming. DEA evaluates the relative efficiency of a 
peer set of entities called decision-making units (DMUs), which consume 
multiple inputs to produce multiple outputs. In the field of performance 
measurement, DEA has emerged as a reliable technique for assessing 
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efficiency and establishing targets by identifying benchmarks (Charles 
et al., 2016; Charles et al., 2018). In this sense, also, DEA can be posi
tioned as a prescriptive analytics-oriented technique (Charles et al., 
2022). The relative efficiency of DMUs can be measured without prior 
weights on the inputs and outputs. This ability has made DEA a popular 
data-enabled efficiency evaluation approach (Charles et al., 2021; Zhu, 
2022; Zhu & Charles, 2021) when compared to other frontier ap
proaches, such as multiple regression analysis and stochastic frontier 
analysis. Furthermore, DEA takes into account two types of efficiency 
measures: radial and non-radial. The efficiency score of a radial model 
reflects the proportional extension of outputs or the proportional 
reduction of inputs, depending on whether the model is output-oriented 
or input-oriented. The oriented models ignore the existence of input 
and/or output slacks in their efficiency scores (Taleb et al., 2023). 
Therefore, the obtained efficiency scores do not reflect all the in
efficiency of an inefficient DMU, which may mislead decision-makers. 
The excesses of each input and/or shortfalls of each output can be 
identified by projecting the inefficient DMU onto the efficient frontier. 
Thus, the radial models enhance the inefficient DMU to decrease its 
inputs while preserving outputs at a given level (input-oriented) and/or 
increase its outputs while preserving inputs at their given levels 
(output-oriented). 

To address the problem, Färe and Knox Lovell (1978) proposed the 
Russell efficiency measure that simultaneously deals with inputs and 
outputs. Later, Pastor et al. (1999) developed a new version of the 
Russell model that combines inputs and outputs into a ratio form known 
as the Enhanced Russell-graph efficiency measure (ERGM). Chambers 
et al. (1996, 1998) proposed a non-radial directional distance function 
(DDF) model that does not require discrimination between input- 
oriented and output-oriented models to allow simultaneous input 
reduction and output augmentation. Subsequently, Tone (2001) pro
posed a novel non-radial slacks-based measure (SBM) model under the 
assumption that inputs and outputs can be allowed to decrease and in
crease at different rates by simultaneously dealing with input and output 
slacks. This characteristic has been identified as a significant advantage 
of non-radial models over radial models (Taleb et al., 2019). SBM has 
three variations: input-oriented, output-oriented, and non-oriented. A 
detailed comparison of radial and non-radial models can be found in 
Avkiran et al. (2008). Therefore, it assesses the efficiency of the output 
or input mix as well as the aggregate efficiency, where ‘mix’ refers to the 
proportions in which outputs or inputs are produced or consumed, 
respectively. 

The efficiency scores generated by an input- or output-oriented 
model of Charnes et al. (1978), termed the CCR model, and an ori
ented SBM model (i.e., input- or output-oriented SBM) are used to 
evaluate mix-efficiency. As a result, Cooper et al. (2006) introduced 
output mix-efficiency and input mix-efficiency measures using the 
output-oriented and input-oriented versions of the CCR model and SBM 
model, respectively. In fact, the mix-efficiency measure has been 
considered by several studies, such as Herrero et al. (2006), Puri and 
Yadav (2013), Saranga (2009), Taleb (2023), and Visbal-Cadavid et al. 
(2017). However, these studies ignored the impact of uncontrollable 
inputs (i.e., inputs subject to exogenous fixed factors, such as average 
precipitation, airport apron capacity, and soil characteristics) and un
desirable outputs (i.e., a bad output that can be abated by reducing its 
level in a production process) (Kuosmanen, 2005). This argument holds 
true in a wide range of real-world applications of efficiency measures, 
such as CO2 emissions, waste water, and the number of delayed flights at 
an airport (Lozano & Gutiérrez, 2011). Furthermore, all of these studies 
examined mix-efficiency from either an input-oriented or an 
output-oriented perspective. 

Consequently, the main questions addressed in this research are:  

1. How can uncontrollable inputs and undesirable outputs be modelled 
into non-radial DDF and SBM models?  

2. How can the infeasibility issue that may arise from uncontrollable 
inputs be rectified?  

3. How can the directional mix-efficiency be measured from a non- 
oriented perspective?  

4. How can the effect of uncontrollable inputs and undesirable outputs 
on the eco-efficiency of OECD countries be measured?  

5. How can the returns-to-scale be identified in the context of the 
proposed DDF and SBM? 

To address the gap, we propose a new directional mix-efficiency 
measure, denoted MIX-NCIUO, that simultaneously considers both the 
inputs used and the outputs produced from the perspectives of inputs 
and outputs. This is achieved by introducing non-oriented DDF and SBM 
models in the presence of uncontrollable inputs and undesirable outputs. 
The newly proposed measure incorporates uncontrollable inputs and 
undesirable outputs into their respective input and output constraints, as 
well as the target function of the standard non-oriented DDF and SBM. 
The goal of using non-oriented DDF and SBM to measure mix-efficiency 
is that each of these models combines both output-oriented and input- 
oriented models into a non-oriented model, resolving the infeasibility 
issue that arises from integrating uncontrollable inputs into an output- 
oriented model. Additionally, the proposed non-oriented models are 
more applicable in addressing real-life situations that require reductions 
in controllable inputs and undesirable outputs, along with an augmen
tation of desirable outputs, such as eco-efficiency. To illustrate the 
practicality of the proposed efficiency measures, MIX-NCIUO is 
employed to measure and analyse the efficiency of 25 countries from the 
Organization for Economic Co-Operation and Development (OECD). 
This research introduces several novel contributions to the DEA 
literature:  

• Both input- and output-oriented DDF and SBM models have been 
extended to incorporate uncontrollable inputs and undesirable 
outputs. 

• A directional mix-efficiency measure from a non-oriented perspec
tive is proposed to address uncontrollable inputs and undesirable 
outputs under constant returns-to-scale (CRS) and variable returns- 
to-scale (VRS).  

• The proposed DDF and SBM models ensure the feasibility condition 
under CRS and VRS technologies, marking this as their prominent 
feature. 

• Returns-to-scale in the context of uncontrollable inputs and unde
sirable outputs of the DDF and SBM models have been measured.  

• Given that the proposed models handle uncontrollable inputs and 
undesirable outputs, reflecting many real-life situations, they pro
vide a platform for a comprehensive quantitative approach to mea
sure and improve system efficiency. This aspect helps decision- 
makers better understand and evaluate their systems. 

The paper is organised into seven sections. Section 2 presents a re
view of previous efficiency studies involving undesirable outputs and 
uncontrollable inputs. Section 3 provides background information on 
existing models relevant to the development of MIX-NCIUO. Section 4 
outlines the MIX-NCIUO research methodology. Section 5 examines data 
from 25 OECD countries and presents the efficiency results as measured 
by the proposed models. Section 6 considers the academic and mana
gerial implications of the proposed methodology. Finally, Section 7 
concludes with a summary, concluding remarks, and future research 
directions. 

2. Literature review 

Anthropogenic pollution can be globally balanced by eliminating 
CO2 emissions over a specified time period; therefore, achieving net-zero 
CO2 emissions is possible. The overlapping concepts of net-zero CO2 
emissions and carbon neutrality can be applied at different levels 
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(Jeudy-Hugo et al., 2021). Human activities contributing to net-zero 
CO2 emissions include not only industrial production and energy ser
vices, but also agriculture and land use, all of which must be entirely 
eliminated to achieve this goal (Davis et al., 2018). Furthermore, the 
realisation of net-zero can be affected by the energy systems in use (Pye 
et al., 2021). The discourse on net-zero has rapidly evolved in recent 
years, prompting countries, especially OECD members, to strive for the 
net-zero CO2 emissions target by balancing emission reductions and 
carbon utilisation in the coming years. 

In an effort to combat global warming, an increasing number of 
nations, including the OECD, aim to achieve net-zero CO2 emissions by 
2050, eliminating as much CO2 as they produce. To effectively limit 
global warming and mitigate the worst effects of climate change, OECD 
countries must take responsibility for all their undesirable (negative) 
environmental impacts, considering various scientific measures that can 
be adopted to reduce them efficiently. Attaining carbon neutrality is 
crucial for meeting the goal of keeping global temperature increases 
below 1.5 ◦C, necessitating the achievement of net-zero CO2 emissions. 
Balancing CO2 emissions through effective measures can lead to net-zero 
emissions (Wang et al., 2022; Zheng, 2023). In 2021, a climate change 
conference (COP26) was held in Glasgow to discuss the achievement of 
net-zero emissions. Among the various frontier approaches explored for 
assessing eco-efficiency, such as stochastic frontier analysis (SFA) 
(Aigner et al., 1977) and free disposal hull (FDH) (Tulkens, 1993), a 
powerful non-parametric approach proposed by Charnes et al. (1978), 
data envelopment analysis (DEA), has been effectively used to evaluate 
the eco-efficiency of DMUs. In the DEA literature, the evaluation of net- 
zero CO2 emissions using DEA models is still relatively new and has been 
explored by a few studies (e.g., Azadi et al., 2022; Emrouznejad et al., 
2023; Taleb et al., 2023; Xiao et al., 2021). 

DEA considers two efficiency models: radial and non-radial. The 
radial models focus on the proportionate reduction of an input increase 
(input-oriented) or the proportionate expansion of an output decrease 
(output-oriented) (Debnath et al., 2008; Taleb et al., 2022). Therefore, 
oriented models can force evaluated DMUs to decrease (increase) their 
inputs (outputs) at a fixed rate to a maximum proportion obtained for 
the inputs and/or outputs (Cooper et al., 1999). Non-radial models (i.e., 
non-oriented models), on the other hand, effectively deal with input and 
output slacks. As a result, inputs and outputs can be decreased and 
increased disproportionally at the same time. This is a distinguishing 
feature of non-oriented models over oriented models because decreasing 
inputs and/or increasing outputs are independent of one another 
(Rashidi et al., 2015). 

The SBM model, proposed by Tone (2001), is one of the most popular 
non-radial models for evaluating the efficiency of DMUs in various set
tings. The model deals with input excesses and output shortfalls simul
taneously and effectively discriminates the inefficiency of inefficient 
DMUs (Taleb et al., 2018; Zhou et al., 2007). Moreover, its target 
function is unit-invariant and a monotone function of input and output 
slacks. To improve inputs and outputs, SBM computes the ratio of the 
average input reduction to the average output augmentation (Lozano & 
Gutiérrez, 2011). As a result, its target function value is regarded as the 
product of input and output inefficiencies (Taleb et al., 2023). Tone 
(2001) considered the procedure of oriented SBM to produce an oriented 
SBM model in terms of input-oriented or output-oriented. For this, the 
efficiency scores resulting from input- or output-oriented SBM and CCR 
models can be used to calculate the mix-efficiency measure, as proposed 
by Cooper et al. (2006). The mix-efficiency is a metric that identifies the 
inefficiency caused by incorrect input or output composition. However, 
all of the studies on mix-efficiency assumed that all inputs and outputs 
are discretionary (i.e., inputs and outputs can be controlled by a DMU’s 
management) and desirable (i.e., good outputs, whose levels should be 
increased appropriately). These assumptions do not hold true in many 
real-world applications. Hence, ignoring both uncontrollable and un
desirable factors may lead to inaccurate efficiency measures. 

In real-world settings, the outputs of a DMU may be accompanied by 

undesirable outputs such as CO2 emissions in industries, aeroplane delay 
time in airports, and waste water. Numerous efficiency studies with 
undesirable outputs have been conducted to evaluate DMU performance 
using radial and non-radial DEA models (see Liu et al., 2010, p. 180). 
Radial models are widely used in a variety of settings to assess efficiency 
when undesirable outputs are present. For example, Färe et al. (1989) 
used a radial model to assess the efficiency of 30 US mills. They assumed 
weak disposability1 for undesirable outputs. The findings revealed that 
the performance of DMUs is sensitive to the presence of undesirable 
outputs. A radial model was also used by Camarero et al. (2013) to 
measure the eco-efficiency of 22 OECD countries. Emrouznejad (2003) 
proposed an alternative dynamic efficiency model for measuring the 
efficiency of the OECD countries. To explore carbon emission abatement 
(CEA) in Chinese manufacturing industries, Li et al. (2020) proposed an 
integrated game DEA approach. Moreover, Färe and Grosskopf (2004), 
Scheel (2001), Seiford and Zhu (2002), and Tyteca (2016), among 
others, introduced radial models with undesirable outputs. Additionally, 
Mandal (2010), Watanabe and Tanaka (2007), Yang and Pollitt (2009) 
introduced various efficiency studies in the energy and industrial sec
tors. These studies emphasised the critical role of incorporating unde
sirable outputs into different-radial DEA models in order to avoid 
overestimation of efficiency measures. 

Undesirable outputs have also been incorporated into non-radial 
models. Tone (2003), for example, integrated undesirable outputs into 
Tone’s (2001) SBM model to propose an SBM model that deals with 
undesirable outputs. In Zhou et al. (2006), the undesirable output of CO2 
emissions was integrated into the SBM model to evaluate the ecological 
efficiency of 30 OECD countries. Choi et al.’s (2012) study took CO2 
emissions as an undesirable output into account. Later, Lee et al. (2014) 
examined the efficiency of port cities using an SBM model with unde
sirable outputs. Their undesirable outputs were CO2, sulphur oxide 
(SOx), and nitrogen oxide (NOx). Similarly, many studies, such as Pang 
et al. (2015), Zhang and Choi (2013), and Zhou et al. (2006) have 
introduced SBM models with undesirable outputs in various real-life 
situations. Chambers et al. (1996) proposed a DDF model that demon
strated the possibility of simultaneously decreasing inputs and 
increasing outputs. The DDF model was then improved to deal with 
undesirable outputs and environmental factors, as demonstrated by 
studies such as Daraio and Simar (2014), Ramli et al. (2013), Singh and 
Gundimeda (2021), and Watanabe and Tanaka (2007). However, all of 
the studies that looked at radial or non-radial DEA models in the context 
of undesirable outputs ignored the impact of uncontrollable inputs on 
efficiency measures. 

DMU inefficiencies are likely to occur due to poor management. This 
assumption was made by classical DEA models that did not account for 
the effect of uncontrollable inputs and/or outputs on DMU performance 
evaluation. Many efficiency studies have been conducted to investigate 
the effects of uncontrollable inputs and/or outputs on efficiency mea
sures, including Banker and Morey (1986), Estelle et al. (2010), Lotfi 
et al. (2007), Patel and Pande (2013), and Taleb et al. (2019). Despite 
their prominent features, these studies did not take into account the 
effect of integrating uncontrollable inputs and undesirable outputs into 
efficiency measures at the same time. Some efficiency studies have taken 
both factors into account. For example, Yang and Pollitt (2009) inte
grated uncontrollable inputs and undesirable outputs into a four-stage 
radial model to evaluate the efficiency of coal-fired power plants in 
China. Noorizadeh et al. (2014) conducted a study that classified un
controllable factors into two categories: permanent and temporary. The 
uncontrollable and undesirable outputs were incorporated into a radial 
super efficiency model for supplier ranking. These studies, however, did 

1 Any decrease in undesirable outputs and/or increase in undesirable inputs 
will result in a proportional reduction and/or increase in desirable outputs and/ 
or inputs (Lozano et al., 2013; Taleb, Khalid, Emrouznejad et al., 2023; Taleb 
et al., 2023). 

M. Taleb et al.                                                                                                                                                                                                                                   



Computers & Industrial Engineering 189 (2024) 109967

4

not examine the effects of both factors on the efficiency measures of a 
non-radial model. Because of the radial model’s limitations, researchers 
have integrated both factors into non-radial models. 

Yahia et al. (2018) combined undesirable outputs and uncontrollable 
inputs to propose a new DDF production possibility set (PPS). Lozano 
and Gutiérrez (2011) proposed an SBM model to measure the efficiency 
of 39 Spanish airports while simultaneously dealing with uncontrollable 
inputs and undesirable outputs. Rashidi et al. (2015) investigated the 
efficiency of 25 OECD countries. They developed a non-radial measure 
by combining the range-adjusted measure (RAM) model of Cooper et al. 
(1999) and the SBM model of Tone (2001) with uncontrollable inputs 
and controllable and uncontrollable desirable and undesirable outputs 
in order to simultaneously decrease controllable inputs and controllable 
undesirable outputs, as well as increase controllable desirable outputs, 
while keeping uncontrollable inputs and outputs at their fixed levels. 
Hua et al. (2007) proposed a non-radial model with both factors for 
measuring and analysing the eco-efficiency of paper mills in China. They 
also considered the impact of uncontrollable inputs on the returns-to- 
scale (RTS) of DMUs. The RTS is an economic measure that examines 
the proportionate augmentation of outputs obtained from inputs to 
determine the efficiency level of a DMU (Taleb et al. 2019). The DMU 
falls into one of three RTS regions: constant returns-to-scale (CRS), 
decreasing returns-to-scale (DRS), or increasing returns-to-scale (IRS). 
The CRS reflects that when inputs are increased, outputs can be 
increased proportionally. As a result, RTS is constant for each efficient 
DMU. IRS or DRS, on the other hand, reflects whether outputs have 
increased proportionally more or less than inputs (Taleb et al., 2022). 

In the presence of undesirable outputs, the RTS technology has 
evolved to include environmental assessment, as introduced by Sueyoshi 
and Goto (2011, 2013). They proposed a new technology known as 
Damages-to-Scale (DTS), designed to examine the RTS in DEA models 
with undesirable outputs. Although the mathematical concepts of RTS 
and DTS are similar, the economic implications of these techniques are 
diametrically opposed. For example, if an increase in inputs results in a 
proportionally higher increase in undesirable outputs, the RTS functions 
under increasing DTS (IDTS). Consequently, the operational size of an 
evaluated DMU may increase, and the DMU will produce additional 
damage (i.e., undesirable outputs). To avoid this and improve the 
environmental efficiency of the DMU, its operational size should be 
reduced. Conversely, the DTS decreases when an increase in inputs re
sults in a proportionally smaller increase in undesirable outputs (i.e., less 
damage). Decreasing DTS (DDTS) implies that increasing inputs can 
proportionally result in a smaller increase in undesirable outputs. 
Consequently, it is acceptable for the DMU to increase its operational 
size to enhance its environmental efficiency. 

It is worth mentioning that the DTS technology of Sueyoshi and Goto 
(2011, 2013) was introduced under two different concepts of dispos
ability, which are natural disposability2 and managerial disposability.3 

This research considers undesirable outputs under the weak dispos
ability technology, while inputs and desirable outputs are considered 
under the strong disposability.4 Therefore, RTS for uncontrollable inputs 
and undesirable outputs is identified based on Seiford and Zhu’s (1999) 
study. A summary of the literature review on relevant DEA studies 
integrating uncontrollable inputs and/or undesirable outputs and their 
limitations is reported in Table 1. 

To the best of our knowledge, no studies have considered the 
directional mix-efficiency measure from the perspectives of both inputs 
and outputs in the presence of uncontrollable inputs and undesirable 

Table 1 
A selected review on uncontrollable inputs and/or undesirable outputs in DEA 
models.  

Author(s) Topic or field of 
evaluation 

DEA model used Limitation(s) 

Apergis et al. 
(2015) 

Evaluating the 
eco-efficiency of 
OECD countries 

SBM model with 
undesirable 
outputs  

• Uncontrollable 
inputs were not 
taken into 
consideration.  

• The directional 
proportions in 
which outputs or 
inputs are 
produced or 
consumed were 
not measured. 

Diabat et al. 
(2015) 

Evaluating the 
efficiency of 
Information 
Technology firms 
that operate in 
India 

Non-radial range 
DDF model  

• It considers DDF 
undesirable 
outputs.  

• It did not measure 
the RTS of the 
evaluated DMUs. 

Emrouznejad 
(2003) 

Measuring the 
efficiency of OECD 
countries 

Dynamic 
efficiency DEA 
model  

• It is a radial model.  
• It did not consider 

environmental 
factors, such as 
undesirable 
outputs and 
uncontrollable 
inputs. 

Fukuyama 
and Weber 
(2009) 

Measuring the 
efficiency of 
financial services 
provided by 
Japanese banks 

Directional slacks- 
based measure 
model  

• The proposed 
model assumes 
that all inputs are 
controllable, and 
outputs are 
desirable. 

Iram et al. 
(2020) 

Measuring the 
environmental 
and energy 
efficiency of 26 
OECD countries 

SBM model 
considering 
undesirable 
outputs  

• It only considers 
undesirable 
outputs as 
environmental 
factors.  

• It did not consider 
the directional 
mix-efficiency 
measure. 

Ramli et al. 
(2013) 

Measuring the 
eco-efficiency of 
the manufacturing 
sector in Malaysia 

Radial DDF model  • It considers the 
scale DDF model 
as a radial 
measure.  

• It did not evaluate 
uncontrollable 
inputs and 
undesirable 
outputs.  

• It did not consider 
both non-radial 
SBM and DDF 
models. 

Rashidi et al. 
(2015) 

Assessing the eco- 
efficiency of OECD 
countries 

SBM model and 
range-adjusted 
measure (RAM) 
considering 
uncontrollable 
inputs and 
undesirable 
outputs  

• It did not consider 
the directional 
proportional rate 
of decreasing 
inputs and 
increasing outputs 
concurrently.  

• It did not measure 
the RTS in 
uncontrollable 
inputs and 
undesirable 
outputs. 

Taleb (2023) Evaluating the 
environmental 
and energy 
efficiency of land 
transportation 
system in China 

Radial efficiency 
measures with 
mixed integer- 
value data and 
undesirable 
outputs  

• It considers 
output-oriented 
SBM and BCC effi
ciency measures.  

• It did not consider 
uncontrollable 

(continued on next page) 

2 Any decrease in the inputs of a DMU will be accompanied by a decrease in 
undesirable outputs.  

3 A DMU increases an input, but decreases undesirable outputs (Sueyoshi & 
Goto, 2012).  

4 A term that refers to any reduction in controllable inputs that can most 
likely occur without any reduction in desirable outputs. 
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outputs. To address this gap, this paper incorporates both factors into 
the standard non-oriented DDF and SBM models before developing new 
non-oriented DDF and SBM models. For the first time, the proposed 
models are used to propose a new directional mix-efficiency measure 
from both input and output perspectives in order to evaluate environ
mental efficiency while assuming net-zero CO2 emissions. The pre
liminaries of the existing models are discussed in the following section, 
playing a crucial role in proposing the methodology of this paper, as 
shown in Section 4. 

3. Background 

3.1. Directional distance function (DDF) model 

DDF is a generalisation of the radial input-oriented and output- 
oriented models proposed by Chambers et al. (1996) to assess the effi
ciency of a set of J DMUs (DMUj, j = 1, …, J) (Ray, 2008). Each DMU 
consumes m inputs that can be observed by xij, i = 1, …, m to produce s 
outputs that can be observed by yrj, r = 1, …, s. Let xij denote the positive 
amount of the ith input used by the jth DMU, and yrj denote the positive 
amount of the rth output produced by the jth DMU. The jth DMU can also 
be denoted by DMUo, which represents the evaluated unit under the 

DDF efficiency model. The DDF model measures the distance from a 
particular combination of input–output (x, y) ∈ R

m+s to the efficient 
frontier of the technology set T in a direction vector determined by 
formula (1) g = (gx, gy) ∈ Rm+s, g ∕= 0, 

DT
̅→

(x, y; g) = max
[
β ∈ [0, 1)

⃒
⃒
(
x − βgx, y + βgy) ∈ T

]
(1) 

Färe and Grosskopf (2000) proposed the DDF model of DMUo along 
the direction vector g = (gx, gy) under the VRS technology, which is 
expressed in model (2). Färe and Charles (2018) showed that DDF is free 
from non-Archimedean estimation. 

max βo (2) 

subject to: 

∑J

j=1
xijηj⩽ xio(1 − βo) i = 1 , . . . , m,

∑J

j=1
yrjηj ⩾yro(1 + βo) r = 1 , . . . , s,

∑J

j=1
ηj = 1,

ηj⩾0 j = 1 , . . . , J  

βo ∈ [0, 1),

xio, yro ∈ Rm+s
+

By setting the direction vector gx(gy) = 0, an input (output) oriented 
model can be obtained. A proportional rate to decrease the input and 
increase the output concurrently in the ith input and the rth output of 
DMUo is released by βo. Therefore, the βo value is maximised in the 
target function of model (2). The non-zero directional vector of g is given 
as (gx, gy) = (gx1 , . . . , gxm , gy1 , . . . , gys ) along with the inputs to be 
decreased and the extended outputs (Toloo et al., 2018). For example, if 
βo = 0.15, we decrease all inputs by 0.15, while increasing all outputs by 
0.15. A non-negative intensity vector serving to construct the convex 
combination of inputs and outputs of evaluated DMUs is denoted by ηj. 
Model (2) is a straightforward linear programming (LP) problem that 
can be solved easily. 

Since the values of both inputs and outputs are positive, the value of 
the proportional rate is 0⩽βj < 1, j = 1, . . . , J. The proportional value of 
the direction vector is equal to zero for each efficient DMU, whereas it is 
either greater than zero or less than one for each inefficient DMU. Thus, 
based on the proportional rate computed by model (2), the relative ef
ficiency score computed by DDF model (2) is equal to one for each 
efficient DMU; otherwise, the DMU is DDF inefficient. Therefore, to 
compute the relative efficiency score of the evaluated DMUo using a 
non-oriented version of model (2), the model’s target function should be 
changed to that stated in Eq. (3). 

min θDDF
o =

1 − βo

1 + βo
(3)  

Proposition 1. DMUo is said to be fully efficient if and only if it satisfies 
βo = 0. This condition is equivalent to all directional vectors of inputs and 
outputs being zero, thus guaranteeing Pareto-Koopmans efficiency. The 
directional vectors of inputs and outputs reflect the slacks of input excesses 
and output shortfalls of DMUo (βoxio, βoyro), respectively. However, 
decreasing inputs and increasing outputs are proportional because they are 
dependent on a single directional value (i.e., βo), as stated in the preceding 
example. 

There are two special cases that can be derived from the oriented 

Table 1 (continued ) 

Author(s) Topic or field of 
evaluation 

DEA model used Limitation(s) 

inputs and 
undesirable 
outputs 
simultaneously.  

• It did not consider 
the directional 
mix-efficiency 
measure. 

Yahia et al. 
(2018) 

Measuring the 
efficiency of 
education 

DDF model with 
uncontrollable 
inputs and 
undesirable 
outputs  

• The study did not 
explicitly state 
that a DDF model 
considers 
uncontrollable 
inputs and 
undesirable 
outputs since it 
only considers the 
PPS of DDF under 
different 
disposability 
assumptions.  

• The study did not 
consider the 
directional mix- 
efficiency 
measure.  

• RTS based on the 
DDF model, with 
uncontrollable 
inputs and 
undesirable 
outputs, was not 
measured. 

Yang and 
Pollitt 
(2009) 

Measuring the 
efficiency of 
Chinese coal-fired 
power plants 

Radial DEA with 
uncontrollable 
inputs and 
undesirable 
outputs  

• It considers a 
radial model.  

• It did not consider 
the directional 
mix-efficiency 
measure. 

Zhou et al. 
(2006) 

Measuring the 
environmental 
and energy 
efficiency of OECD 
countries 

SBM model with 
undesirable 
outputs of CO2 

emissions  

• It only considers 
SBM with 
undesirable 
outputs.  

• The study did not 
consider the non- 
radial mix-effi
ciency measure.  
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DDF model: the directional input distance function (DIDF) model and 
the directional output distance function (DODF) model. The DIDF is 
calculated by assuming that the direction vector of outputs is equal to 
zero (i.e., gy = 0), whereas the DODF is calculated by assuming that the 
direction vector of inputs is equal to zero (i.e., gx = 0). The technology 
sets that generate DIDF and DODF are formulated in (4) and (5), 
respectively (Yahia et al., 2018). 

D→(x, y ; gx) = max [β|(x − βgx, y) ∈ T ] (4)  

D→(x, y ; gy) = max
[
β
⃒
⃒
(
x, y + βgy) ∈ T

]
(5) 

In an oriented DDF model, the efficiency score depends on the pro
portional reduction of inputs (input-oriented), or the proportional 
expansion of outputs (output-oriented). Thus, the efficiency score of 
DMUo under the DIDF model or the DODF model can be computed using 
model (6) or model (7). 

min θDIDF = 1 − βo (6) 

subject to: 

∑J

j=1
xijηj⩽ xio(1 − βo) i = 1 , . . . , m,

∑J

j=1
yrjηj ⩾yro r = 1 , . . . , s,

∑J

j=1
ηj = 1,

ηj⩾0 j = 1 , . . . , J  

βo ∈ [0, 1),

xio, yro ∈ Rm+s
+

min θDODF
o =

1
1 + βo

(7) 

subject to: 

∑J

j=1
xijηj⩽ xio i = 1 , . . . , m,

∑J

j=1
yrjηj ⩾yro(1 − βo) r = 1 , . . . , s,

∑J

j=1
ηj = 1,

ηj⩾0 j = 1 , . . . , J  

βo ∈ [0, 1),

xio, yro ∈ Rm+s
+

Based on the technology set T in the direction vector proposed by 
Chambers et al. (1996), as stated in (1), Chung et al. (1997) improved 
the main concept of the DDF model to include undesirable outputs, as 
outlined in the technology set (8). 

DT
̅→

(x, yG, yB; gx, gyG , − gyB ) = max
[
β

∈ [0, 1)
⃒
⃒
(
x − βgx, yG + βgyG , yB − βgyB )

∈ T
]

(8)  

The distance function on the technology set (8) determines the reduction 

in inputs and undesirable outputs, as well as the extension in desirable 
outputs, by considering their directions in gx, gG

y , and gB
y . The direction 

vector g measures increases in desirable outputs and decreases in inputs 
and undesirable outputs, stated as (x, yG, − yB). The direction value β 
proportionally seeks to increase desirable outputs and decrease inputs 
and undesirable outputs (Ramli et al., 2013). To state the DDF model 
with undesirable outputs, some notations are introduced. Let x ∈ Rm

+

represent an input vector, yG ∈ Rs1
+ denote a desirable output vector, 

yB ∈ Rs2
+ stand for an undesirable output vector. The DDF model in the 

presence of undesirable outputs under VRS can be expressed as in model 
(9) (Diabat et al., 2015). 

max βo (9) 

subject to: 

∑J

j=1
xijηj⩽ xio(1 − βo) i = 1 , . . . , m,

∑J

j=1
yr1 jηj ⩾yG

r1o(1 + βo) r1 = 1 , . . . , s1,

∑J

j=1
yr2 jηj ⩽yB

r2o(1 − βo) r2 = 1 , . . . , s2,

∑J

j=1
ηj = 1,

ηj⩾0 j = 1 , . . . , J  

βo ∈ [0, 1),

where βo is as previously defined, the parameters ηj and the input var
iable xij are the same as those defined in model (2), yG

r1 
and yB

r2 
are the 

desirable and undesirable outputs of the jth DMU. Based on the direction 
value βo, the efficiency scores of efficient and inefficient DMUs are 
calculated using the target function 1-βo. 

3.2. Non-oriented SBM model 

Tone (2001) proposed the SBM model, which is a powerful non- 
oriented DEA model that considers both input excesses and output 
shortfalls simultaneously while dealing with their slacks. It projects an 
inefficient DMU onto the efficient frontier. In addition, the SBM effi
ciency score leaves no output or input uncalculated because the target 
function takes into account all potential improvements to outputs and 
inputs (Lozano & Gutiérrez, 2011). The SBM model evaluates the effi
ciency of DMUj (j = 1, …, J) by solving the fractional programme pre
sented in model (10) (see Lo & Lu, 2009, p. 345). 

ρO = min
1 − 1

m

∑m
i=1

a−i
xio

1 + 1
s

∑s
r=1

b+r
yro

(10) 

subject to: 

∑J

j=1
xijηj = xio − a−

i i = 1 , . . . , m,

∑J

j=1
yrjηj = yro + b+

r r = 1 , . . . , s,

∑J

j=1
ηj = 1,
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ηj⩾0 j = 1 , . . . , J,

a−
i ⩾0, b+

r ⩾0,

xio, yro ∈ Rm+s
+

where a−
i and b+r are the non-radial slacks of input excesses and output 

shortfalls, and ηj is as defined in model (2). The SBM’s target function 
calculates the ratio of the average input contraction to the average 
output extension by computing the relative contraction rate of input i by 
the term a−i

xio
; the term 1

m
∑m

i=1
a−

i
xio 

computes the average reduction rate of 
the input i. On the other hand, the relative extension rate of the output r 
is computed by the term b+r

yro
; the term 1

s
∑s

r=1
b+r
yro 

computes the average 
extension rate of the output r. Thus, the target function is a monotone 
decreasing function with respect to input excesses and output shortfalls, 
as well as unit-invariant since it does not depend on the measurement 
unit for inputs and outputs. To ensure that both inputs and outputs 
improve, the computed ratio of the target function should be appropri
ately minimised; therefore, the model is non-radial. 

Proposition 2. DMUo is efficient in the SBM model (10) if and only if its 
efficiency score is equal to one (ρO = 1). This condition is equivalent to all 
input and output slacks being zero (i.e.,a−

i = b+r = 0). If the efficiency score is 
equal to one (ρO = 1), and some input and/or output slacks are positive, then 
DMUo is weak-efficient. If the efficiency score is less than one, then DMUo is 
SBM inefficient. 

Model (10) is a non-oriented SBM. Tone (2001) was the first to lay 
out the idea of an oriented SBM model (i.e., input- or output-oriented). 
The oriented SBM model was then improved by Cooper et al. (2006, p. 
142) to calculate the mix-efficiency measure. The input-oriented SBM (I- 
SBM) model and output-oriented SBM (O-SBM) model can be expressed 
as in (11) and (11.1). 

ρI - SBM
O = min 1 −

1
m

∑m

i=1

a−
i

xio
(11) 

or 

ρO - SBM
O = min

[

1 +
1
s
∑m

i=1

b+
r

yro

]− 1

(11.1)  

subject to: 

∑J

j=1
xijηj = xio − a−

i i = 1 , . . . , m,

∑J

j=1
yrjηj = yro + b+

r r = 1 , . . . , s,

ηj⩾0, j = 1 , . . . , J,
a−

i , b+
r ⩾0,

xio, yro ∈ Rm+s
+

Definitions of the input and output data, input and output slack 
variables, and the intensity vector of model (11) are the same as those 
defined in model (10). 

Proposition 3. DMUo is said to be input-oriented SBM efficient after 
running model (11) if and only if (i) its efficiency score is equal to one 
(ρI - SBM

O = 1), and (ii) all input and output slacks are zero (i.e., a−
i = b+r =

0). If condition (ii) is not satisfied, then DMUo is weakly efficient. If neither 
condition (i) nor condition (ii) is satisfied, then DMUo is I-SBM inefficient. 

Tone’s (2001) non-oriented SBM model, presented in (10), considers 
all inputs and outputs as desirable factors, which may conflict with 

many real-world applications. To overcome this limitation, Tone (2003) 
developed a new SBM model that deals with undesirable outputs. In 
considering Tone’s (2003) SBM model, we first examine the model’s 
technology set, as outlined in (12). 

T =
{(

yG, yB)
⃒
⃒x can produce (yG, yB), Xη⩽x, YGη⩾yG, YBη⩽yB, η⩾0

}

(12)  

The parameters and variables of the technology set (12) are the same as 
those in model (9). Tone’s (2003) SBM incorporates undesirable outputs 
into the target function and the relevant undesirable output constraint. 
Hence, the SBM model dealing with undesirable outputs can be pre
sented as follows: 

τo = min
1 −

(
1
m

)(
∑m

i=1
a−i
xio

)

1 +

(
1

s1+s2

)(
∑s1

r1=1
bG+

r1
yG

r1 o
+
∑s2

r2=1
bB−

r2
yB

r2 o

) (13) 

subject to: 

∑J

j=1
xijηj = xio − a−

i i = 1 , . . . , m,

∑J

j=1
yG

r1 jηj = yG
r1o + bG+

r1
r1 = 1 , . . . , s1,

∑J

j=1
yB

r2 jηj = yB
r2o − bB−

r2
r2 = 1 , . . . , s2,

∑J

j=1
ηj = 1,

ηj⩾0 j = 1 , . . . , J,

a−
i , bG+

r1
, bB−

r2
⩾0,

xio, yG
r1
, yB

r2
∈ Rm+s1+s2

+

where m is the number of inputs, s1 and s2 are the number of desirable 
and undesirable outputs, respectively, s−i represents the potential 
reduction of inputs (input excesses), sG+

r1 
represents the potential 

enhancement of desirable outputs (good output shortfalls), and sB−
r2 

represents the potential reduction of undesirable outputs (bad output 
excesses). 

Due to the salient features of both oriented DDF and SBM models in 
inputs and outputs, considered in DIDF model (6), DODF model (7), I- 
SBM model (11), and O-SBM model (11.1), the efficiency scores gener
ated by these efficiency measures can be incorporated to identify the 
mix-efficiency measure in input- or output-oriented cases. 

3.3. Mix-efficiency 

The mix-efficiency (MIX) is a measure that estimates the level and 
mix of inputs or outputs required to efficiently produce or consume a 
given level of outputs or inputs (i.e., it reflects the degree to which the 
input mix or output mix should change to achieve the efficient status) 
(Puri & Yadav, 2013). In order to define the MIX of DMUo, the ratio of 
the oriented SBM model (input- or output-oriented SBM) (see Cooper 
et al., 2006, p. 142) to the oriented DDF model (DIDF or DODF model) 
(see Chung et al., 1997, p. 231; Ramli et al., 2013, p. 387) should be 
calculated. Therefore, the directional input or output mix-efficiency 
(DIMIX or DOMIX) of DMUo is defined as: 
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ψDIMIX
o =

ρI - SBM
o

θDIDF
o

(14)  

or 

ψDOMIX
o =

ρO - SBM
o

θDODF
o

(15) 

Since the values of inputs and outputs in the data set are assumed to 
be positive, the efficiency scores obtained from the DIDF and I-SBM in 
models (6) and (11) are 0 < θDIDF

O ⩽1 and 0 < ρISBM
O ⩽1 for o = 1 , . . . , J. 

Note that ρI - SBM
O ⩽θDIDF

O reflects that the value resulted by applying Eq. 
(14) or Eq. (15) is less than or equal to one (i.e., 0 < ψDIMIX

o ⩽1). The 
directional input mix-efficiency measure can achieve unity (ψDIMIX

O = 1) 
if and only if (θDIDF

o = ρI - SBM
o ). This implies that DMUo has the most 

efficient combination of inputs, but it may be technically inefficient. 
Due to the key role of the standard efficiency measures presented in 

model (2), model (6), model. (7), model (11), as well as Eq. (14) and Eq. 
(15), in proposing new efficiency measures, an illustration of these 
standard efficiency measures is given by considering an example. The 
data set for our considered example was retrieved from a study con
ducted by Färe and Charles (2018). Two inputs and one unique output of 
five DMUs are considered, as follows: A (1, 2, 1), B (1, 1, 1), C (2, 1, 1), D 
(2, 2, 1), and E (2, 4, 1). Now, to demonstrate DIMIX and DOMIX, the 
DIDF and DODF in (6) and (7), as well as I-SBM and O-SBM in (11) and 
(11.1), should be run. The I-SBM and O-SBM models are run using target 
functions (11) and (11.1), as input- or output-oriented SBM models, 
subject to the same combination of input and output constraints. The 
aim of considering I-SBM and O-SBM models under the same set of input 
and output constraints is to avoid the infeasibility issue that may occur 
in the case of removing the output slack from the output constraint of I- 
SBM or the input slack from the input constraint of O-SBM. All of the 
considered efficiency measures are run under VRS to evaluate these five 

DMUs, whose results are tabulated in Table 2. 
As observed in Table 2, the efficiency scores of all the evaluated units 

resulting from the I-SBM model (column 4) are less than or equal to 
those obtained from the DIDF model (column 2). In the same context, 
the efficiency scores resulting from the O-SBM model (column 5) are 
equal to those obtained using the DODF model (column 3). Besides, by 
using Eq. (14) and Eq. (15), the DIMIX and DOMIX efficiency measures 
were calculated, as shown in columns 6 and 7, respectively. Since all the 
efficiency scores obtained from DODF are equal to one and are the same 
as those obtained from the O-SBM model, the efficiency scores obtained 
from DIMIX in Eq. (13) are smaller than or equal to those resulting from 
DOMIX in Eq. (15). As a result, we can deduce that all the efficiency 
measures have been appropriately run and calculated. In terms of 
DIMIX, only DMUs B and D efficiently produce their given levels of 
output based on the input mix consumed, while all of the DMUs are 

efficient under DOMIX since they efficiently consume the given levels of 
their inputs based on the output mix produced. In order to demonstrate 
that the directional mix-efficiency measure obtained by Eq. (14) or Eq. 
(15) is less than or equal to one, theorem 1 is introduced. 

Theorem 1. The optimal efficiency scores of both DIMIX ψDIMIX
o and 

DOMIX ψDOMIX
o are less than or equal to one. 

Proof. Suppose that DMU(xo, yo) is DIDF inefficient, then we have 
βxio ∕= 0. In the same context, suppose that DMU(xo, yo) is I-SBM inefficient, 
then we have at least one slack of inputs that has a positive value (i.e., 
a−

i ∕= 0). The equality of θDIDF
o = ρI− SBM

o holds if and only if the reduction 
rate of inputs obtained from the I-SBM model is the same as that of the DIDF 
model since βxio of DIDF is equivalent to input slack a−

i of I-SBM. Therefore, 
the input mix-efficiency is equal to one. On the other hand, the DIMIX will be 
less than one if and only if ρI− SBM

o < θDIDF
o . Since the definitions of inefficient 

and efficient are mutually exclusive, theorem 1 is proven.□ 
The optimality condition ρO− SBM

o < θDODF
o of DOMIX can be proven in 

the same manner as DIMIX, but the proof is omitted here for brevity. 

4. Methodology 

To build the mathematical formula for the proposed non-oriented 
DDF and SBM models in the presence of uncontrollable inputs and un
desirable outputs, we consider a production system comprised of J 
DMUs. Each DMU has four factors: controllable inputs, uncontrollable 
inputs, desirable outputs, and undesirable outputs. The vectors of the 
controllable and uncontrollable inputs are described as xC ∈ Rm1

+ ,

xNC ∈ Rm2
+ , while the vectors of the desirable (good) and undesirable 

(bad) outputs are described as yG ∈ Rs1
+ , yB ∈ Rs2

+ . The matrices of these 
four vectors are defined as:   

All the values of the controllable and uncontrollable inputs and 
desirable and undesirable outputs are assumed to be positive (i. 
e.,XC > 0, XNC > 0, YG > 0, YB > 0). Because non-oriented efficiency 
measures have a higher discrimination power in assessing the efficiency 
of the DMUs, this paper proposes a new mix-efficiency measure based on 
non-oriented DDF and SBM models with uncontrollable inputs and un
desirable outputs. The new DDF and SBM models seek to decrease 
controllable inputs and undesirable outputs, as well as increase desirable 
outputs, while preserving uncontrollable inputs at their fixed levels, as 
defined by the empirical PPS of the DDF and the SBM in (17) and (18). In 
order to consider the technology of DDF with uncontrollable inputs and 
undesirable outputs, assume (gxC ∕= 0, gxNC = 0, gyG ∕= 0, gyB∕= 0) yields 
the directional distance function in the existence of uncontrollable in
puts and undesirable outputs, as formulated in (17). We set the direc
tional vector of uncontrollable inputs to zero because their levels are 
beyond management’s control. 

DT
̅→

(xC, xNC, yG, yB; g) = max
[
β

∈ [0, 1)
⃒
⃒
(
xC − βgxC , xNC, yG + βgyG , yB − βgyB )

∈ T
]

(17) 

The DDF technology in (17) allows the controllable inputs to be 

Table 2 
Results of DMUs.  

DMU DIDF DODF I-SBM O-SBM DIMIX DOMIX 

A 1 1 0.750 1 0.750 1 
B 1 1 1 1 1 1 
C 1 1 0.750 1 0.750 1 
D 0.500 1 0.500 1 1 1 
E 0.500 1 0.375 1 0.750 1  

XC =
[
xC

ij

]
=
[
xC

1 , . . . , xC
J

]
∈ Rm1 ×J

+ , XNC =
[
xNC

lj

]
=
[
xNC

1 , . . . , xNC
J

]
∈ Rm2 ×J

+ , YG =
[
yG

r1 j

]
=
[
yG

1 , . . . , yG
J

]
∈ Rs1×J

+ ,

YB =
[
yB

r2 j

]
=
[
yB

1 , . . . , yB
J

]
∈ Rs2×J

+

(16)   
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decreased in the direction of gx
C, while the uncontrollable inputs remain 

constant in the direction of gx
NC since the direction is zero. In contrast, it 

seeks to increase desirable outputs in the gy
G direction while decreasing 

undesirable outputs in the gy
B direction. In other words, a proportional 

rate β attempts to decrease controllable inputs and undesirable outputs, 
while symmetrically increasing desirable outputs. This measurement 
reduces controllable inputs and undesirable outputs and increases 
desirable outputs by the direction vector of g. The technology set rep
resenting all feasible combinations of controllable and uncontrollable 
inputs, as well as desirable and undesirable outputs, is denoted by T. 

The proposed empirical technology set (T) of DDF measures the 
distance from a particular combination of controllable and uncontrol
lable inputs, as well as desirable and undesirable outputs (xC, xNC, yG,

yB) ∈ Rm1+m2+s1+s2
+ , to a point located on the efficient frontier in a 

directional vector determined by g = (gxC ∕= 0, gxNC = 0, gyG ∕= 0,
gyB ∕= 0) ∈ Rm1+m2+s1+s2

+ . 
The properties of the DDF technology set are the same as those of 

SBM since the two models seek to reduce controllable inputs and un
desirable outputs, as well as increase desirable outputs simultaneously, 
while preserving uncontrollable inputs at their fixed levels. Hence, the 
technology set of the two proposed models depends on identifying the 
vector of input and output combinations and matrices of the data set (see 
Tone, 2001, p.499). Thus, the technology set of the proposed DDF and 
SBM models considers a convex linear combination of the inputs and 
outputs, as formulated in (17) and (18). However, a difference between 
DDF and SBM is that the former depends on proportional changes in the 
directional vector of inputs and outputs to determine efficiency mea
sures (see Chambers et al., 1998), while the latter depends on dispro
portional changes in the input and output slacks to identify efficiency 
measures. 

T =
[(

xC, xNC, yG, yB) ∈ Rm1+m2+s1+s2
+

⃒
⃒XCη⩽xC, XNCη

= xNC, YGη⩾yG, YBη⩽yB, η = 1, η⩾0
]

(18) 

In the PPS of DDF and SBM, η is defined as in model (2). Controllable 
inputs are formulated as inequality, implying that these inputs are 
strongly disposable. Because uncontrollable inputs are beyond the 
management’s control, their levels are considered fixed, leading to the 
formulation of the uncontrollable input constraint as an equality. 
However, to prevent potential issues of infeasibility, the uncontrollable 
input constraint was formulated as an inequality. The linear combina
tion of DMUs with controllable inputs XCη is less than or equal to the 
actual level of its related inputs xC, but equal to the actual level of its 
related uncontrollable inputs of DMUo (i.e., XCη = xNC). The weak 
disposability assumption,5 on the other hand, has been imposed on both 
desirable and undesirable outputs. Therefore, the inequalities between 
desirable and undesirable outputs are consistent with the assumption 
that these outputs are null-joint6 (Li & Hu, 2012). The linear combina
tion of desirable outputs (YGη) is greater than or equal to the actual level 
of its related factor of DMUo. By contrast, the linear combination of 
undesirable outputs (YBη) is formulated similarly to that of controllable 
inputs because the feature of undesirable outputs in decreasing their 
levels is the same as that of controllable inputs. Reference sets, in gen
eral, reveal the actual level of controllable and uncontrollable inputs, as 
well as desirable and undesirable outputs, when compared to their linear 

combinations (a set of all efficient DMUs, which can be a benchmark for 
inefficient DMUs). It should be noted that in (18) is proposed under the 
VRS technology. 

The following are the mathematical nomenclatures of data and 
variables in the two new models proposed: 

4.0.1. Parameters 

i: 1, …, m1 index of controllable (i.e., discretionary) inputs. 
m1: number of controllable inputs. 
l: 1, …, m2 index of uncontrollable (i.e., non-discretionary) inputs. 
m2: number of uncontrollable inputs. 
r1: 1, …, s1 index of desirable (i.e., good) outputs. 
s1: number of desirable outputs. 
r2: 1, …, s2 index of undesirable (i.e., bad) outputs. 
s2: number of undesirable outputs. 
j: 1, …, J index of evaluated DMUs. 
o: subscript factor revealing a specific DMU whose efficiency is being 

measured. 
J: number of DMUs whose efficiency is being measured. 
xC

io: positive amount of controllable input i of DMUo. 
xNC

lo : positive amount of uncontrollable input l of DMUo. 
yG

r1o : positive amount of desirable output r1 of DMUo. 
yB

r2o : positive amount of undesirable output r2 of DMUo. 

4.0.2. Variables 

(η1, . . . , ηJ): non-negative multipliers used for calculating a refer
ence set of evaluated DMUs in the data set. 

aC−
io : controllable input slack (i.e., potential reduction) of controllable 

input i of DMUo. 
aNC−

lo : uncontrollable input slack of uncontrollable input l of DMUo. 
bG +

r1o : desirable output slack (i.e., potential expansion) of desirable 
output r1 of DMUo. 

bB−
r2o: undesirable output slack (i.e., potential reduction) of undesir

able output r2 of DMUo. 

4.1. Improved non-oriented DDF model 
By relying on the theoretical concepts of the DDF model introduced 

in Chambers et al. (1998), Diabat et al. (2015), Ramli et al. (2013), and 
Yahia et al. (2018), we derive a non-oriented DDF model in the presence 
of uncontrollable inputs and undesirable outputs (DDF-NCIUO) for 
evaluating DMUo as formulated in (19): 

min τNCIUO
o =

1 − βo

1 + βo
(19) 

subject to: 

∑J

j=1
xC

ij ηj ⩽ xC
io(1 − βo) i = 1 , . . . , m1, (19a)  

∑J

j=1
xNC

lj ηj ⩽ xNC
lo l = 1 , . . . , m2, (19b)  

∑J

j=1
yG

r1 jηj ⩾ yG
r1o(1 + βo) r1 = 1 , . . . , s1, (19c)  

∑J

j=1
yB

r2 jηj ⩽yB
r2o(1 − βo) r2 = 1 , . . . , s2, (19d)  

∑J

j=1
ηj = 1 (19e)

5 The undesirable outputs have two facets under the disposability technology. 
On the one hand, some undesirable outputs, such as CO2 emissions from a coal- 
fired power generation, can only be formulated under the weak disposability 
technology. On the other hand, the strong disposability technology can be 
imposed on DEA models dealing with some undesirable outputs, such as SO2 
emissions (Yang & Pollitt, 2009). For simplicity, this paper makes the 
assumption of weak disposability on the constraint of undesirable outputs.  

6 It reveals that if desirable outputs of a production process are produced, 
then some undesirable outputs should be produced as well (Arabi et al., 2014). 
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ηj⩾0, j = 1, . . . , J (19f)  

βo ∈ [0, 1)

xC
io, xNC

lo , yG
r1o, yB

r2o ∈ Rm1+m2+s1+s2
+ .

Model (19) is a non-oriented DDF model that takes uncontrollable inputs 
and undesirable outputs into account. A DMUo assessed by model (19) 
guarantees efficient status if and only if βo = 0, and all slacks are zero 
(see Proposition 1). Otherwise, DMUo is inefficient. The DDF in model 
(19) depends on a direction vector value (i.e., βo) to identify the pro
portionate decrease in controllable inputs and undesirable outputs and 
the increase in desirable outputs. The uncontrollable input constraint 
(19b) should not incorporate the directional value since the levels of 
these inputs are beyond the control of the DMU’s management. Despite 
this, constraint (19b) is formulated as an inequality to preempt potential 
infeasibility issues (refer to Rashidi et al., 2015, p.5; Taleb et al., 2018, 
p.17). Such efficiency minimisation should only be identified based on 
the directional vectors of controllable inputs, as well as desirable and 
undesirable outputs. However, the constraint of uncontrollable inputs 
should be considered in the efficiency model to ensure fair evaluations 
(Saati et al., 2011, p. 47). The proposed DDF model satisfies the feasi
bility condition under the CRS and VRS technologies because it simul
taneously takes into account the reduction in controllable inputs and 
undesirable outputs, as well as the increase in desirable outputs, by 
considering their directional vectors. 

Further, it is costly to reduce undesirable outputs without a reduction 
in desirable outputs. Therefore, desirable outputs should also be reduced 
to make sure that the new vector of controllable inputs, uncontrollable 
inputs, desirable outputs, and undesirable outputs (xC, xNC, yG, yB) is 
feasible. In particular, each reduction in undesirable outputs cannot 
occur freely (Yahia et al., 2018, p.122; Ramli et al., 2013, p.287; Toloo 
et al., 2018, p.3). Thus, the assumption of weak disposability has been 
imposed on the undesirable output constraint (19d). As a result, this 
constraint is formulated as an inequality. Since the DDF model (19) is a 
generalised version of the DIDF and DODF models, whose target func
tions are considered in models (6) and (7), the efficiency score is the 
product of the distance in the DIDF model and the distance in the DODF 
model (i.e., models (6) and (7)). 

Proposition 4. DMUo is Pareto-Koopmans efficient in the DDF-NCIUO 
model if and only if its directional input and output vector values are zero 
(i.e., βo = 0). This condition is equivalent to the efficiency score of DMUo 
being equal to one (i.e., τNCIUO

o = 1). If the directional vector value lies in the 
interval (0, 1), then DMUo is inefficient. 

4.2. Improved non-oriented SBM model 
We modify the SBM model of Tone (2003) by incorporating uncon

trollable inputs into a specific input constraint of the model. The slack of 
uncontrollable inputs is omitted from the model’s (20) target function 
because the efficiency evaluation only depends on controllable vari
ables, whereas the slack of uncontrollable inputs can be considered in its 
relevant constraint to avoid the infeasibility issue (see Esmaeili, 2009, 
p.4823). Thus, under the VRS technology, an SBM for the case of un
controllable inputs and undesirable outputs (SBM-NCIUO) is proposed 
for evaluating DMUo, as follows: 

δNCIUO
o = min

1 − 1
m1

(
∑m1

i=1
aC−

i
xC

io

)

1 + 1
s1+ s2

(
∑s1

r1=1
bG+

r1
yG

r1 o
+
∑s2

r2=1
bB−

r2
yB

r2 o

) (20) 

subject to: 

∑J

j=1
xC

ij ηj = xC
io − aC−

i i = 1, . . . ,m1, (20a)  

∑J

j=1
xNC

lj ηj = xNC
lo − aNC−

l l = 1, . .. , m2, (20b)  

∑J

j=1
yG

r1 jηj = yG
r1o + bG+

r1
r1 = 1 , . . . , s1, (20c)  

∑J

j=1
yB

r2 jηj = yB
r2o − bB−

r2
r2 = 1 , . . . , s2, (20d)  

constraints (19e and 19f) 

aC−
i ⩾0, aNC−

l ⩾0, bG+
r1

⩾0, bB−
r2

⩾0,

xC
io, xNC

lo , yG
r1o, yB

r2o ∈ Rm1+m2+s1+s2
+ .

Model (20) computes the ratio of the average reduction rate of 
controllable inputs to the average of desirable output expansion and 
undesirable output reduction based on the slacks of controllable input 
excesses (aC−

i ), desirable output shortfalls (bG+
r1

), and undesirable output 
excesses (bB−

r2
) to determine whether DMUo is efficient or not. The slacks 

of controllable inputs and undesirable outputs consider how much 
controllable inputs and undesirable outputs can be decreased, while the 
slacks of desirable outputs consider how much desirable outputs can be 
increased to achieve efficient status. Note that the VRS technology has 
been imposed on model (20) by adding the convexity constraint (19e). 
Model (20), which is a fractional programme, must be converted into a 
linear programme to obtain the optimal efficiency measures. The opti
mality of the efficiency measures can be obtained by solving the linear 
programme presented in model (A.2) in Appendix A. 

Theorem 2. The proposed SBM model with uncontrollable inputs and 
undesirable outputs always achieves feasibility conditions under CRS and 
VRS technologies. 

Proof. Radial models do not concurrently impose input and output slacks 
in their relevant input and output constraints. As a result, the efficiency scores 
derived from these models do not reflect all the inefficiencies of inefficient 
DMUs, leading to increased infeasibility, especially in some cases of VRS. In 
contrast, Tone (2001) demonstrated that the SBM model (10) is always 
feasible under CRS and VRS. Therefore, we assert that the proposed non- 
radial SBM model (20) also achieves feasibility under CRS and VRS 
because its input and output constraints concurrently address both 
controllable and uncontrollable input slacks, as well as desirable and 
undesirable output slacks. Simultaneous consideration of input and 
output slacks ensures that the right-hand side of each constraint equals 
the left-hand side of the relevant constraint. This implies that 
∑J

j=1xC
ij ηj = xC

io − sC−
i ,i = 1,...,m1,sC−

i =
(

xC
io −
∑J

j=1xC
ij

)
≥ 0,

∑J
j=1xNC

lj ηj =

xNC
lo − sNC−

l ,l = 1,...,m2,sNC−
l =

(
xNC

lo −
∑J

j=1xNC
lj

)
≥ 0,

∑J
j=1yG

r1 jηj = yG
r1o +

sG+
r1

, r1 = 1, ...,

s1, sG+
r1

=

(
∑J

j=1
yG

r1 jηj − yG
r1o

)

≥ 0,
∑J

j=1
yB

r2 jηj = yB
r2o − sB−

r2
, r2 = 1, ..., s2, sB−

r2

=

(

yB
r2o −

∑J

j=1
yB

r2 jηj

)

≥ 0.

□Hence, 
(

η, sC−
i , sNC−

l , sG+
r1

, sB−
r2

)
is a feasible solution to the proposed 

SBM model. 

Proposition 5. DMUo is efficient under SBM-NCIUO (20) if and only if its 
efficiency score is equal to one (δNCIUO

o = 1). This condition is satisfied if all 
the slacks of controllable inputs, desirable outputs, and undesirable outputs 
are zero, while the slack of uncontrollable inputs is not required to be zero 
because its mathematical term is not considered in the model’s (20) target 
function. Otherwise, DMUo is inefficient. 

M. Taleb et al.                                                                                                                                                                                                                                   



Computers & Industrial Engineering 189 (2024) 109967

11

At this point, the efficiency scores using DDF-NCIUO (19) and SBM- 
NCIUO (20) can be calculated. The computed ratio of efficiency scores 
resulting from model (20) to DDF-NCIUO efficiency scores represents a new 
directional mix-efficiency measure with uncontrollable inputs and undesir
able outputs (MIX-NCIUO). MIX-NCIUO of DMUo (ψNCIUO

o ) is calculated as 
in (21): 

ψNCIUO
o =

δNCIUO
o

τNCIUO
o

, τNCIUO
o ∕= 0 (21)  

5. Numerical results and discussion of net-zero 

5.1. Data and variables 

To illustrate the applicability and usefulness of the proposed effi
ciency measures, data on the eco-efficiency of 25 OECD countries were 
used. The data set was retrieved from Rashidi et al.’s (2015) study and is 
presented in Table B1 in Appendix B. Each country was assigned the 
status of DMU and its efficiency measures were calculated. To measure 
the OECD countries’ directional mix-efficiency, six significant factors 
related to controllable and uncontrollable inputs, as well as desirable 
and undesirable outputs, were chosen (Fig. 1). The controllable inputs 
are the labour force, coal consumption, and petroleum consumption, 
while the uncontrollable input is the average precipitation. The desir
able and undesirable outputs are gross domestic product (GDP) and CO2 
emissions. Table 3 presents the characteristics of the data set for the 25 
OECD countries. 

To effectively discriminate between efficient DMUs, the number of 
evaluated DMUs in a DEA model should be, according to a common rule 
of thumb, at least three times larger than the total number of inputs and 
outputs. Otherwise, the problem of discrimination may arise. Further
more, DEA approaches are based on the assumption that the relationship 
between inputs and outputs is linear (Lu, 2012; Taleb et al., 2019). The 
relationship between GDP, which is commonly used in macroeconomics, 
and the labour force was positive, i.e., 0.629. As a result, the labour force 
plays a crucial role in economic prosperity. Furthermore, the relation
ship between GDP and CO2 emissions was strongly positive, i.e., 0.920. 
Färe et al. (2004) obtained a comparable result. Average precipitation is 
one of the most important environmental factors in pollution reduction. 
Furthermore, because their relationship was positive, i.e., 0.631, both 
petroleum and coal consumption are relevant environmental factors for 
measuring eco-efficiency. 

5.2. Eco-efficiency analysis of OECD countries 

Table 4 reports the efficiency scores obtained from models (19), (20), 
and (21). The efficiency scores of models (19) and (20) under the CRS 
technology are presented in columns 2 and 3, while their efficiency 
scores under the VRS technology are presented in columns 5 and 6. The 

efficiency scores were then used to compute the directional mix- 
efficiency measure under both technologies, which is shown in col
umns 4 and 7. Lingo software version 14 was used to obtain all of the 
optimal efficiency score values. 

According to Propositions 4 and 5 under the CRS technology, only six 
countries achieved eco-efficiency (efficiencies of 100 %) in the DDF- 
NCIUO (19) and SBM-NCIUO (20) models, as reported in columns 2 
and 3. As a result, they achieved directional mix-efficiency under a full- 
efficient status. This indicates that these are the countries in the sample 
with the most effective environmental performance. It can also be seen 
that the efficiency scores of the majority of eco-inefficient countries 
produced by model (19) under CRS and VRS were rather high. In 
contrast, among the eco-inefficient countries yielded by model (20) 
under CRS, 11 inefficient countries have efficiency scores of less than 40 
% (i.e., Australia, Canada, the Czech Republic, Greece, Hungary, The 
Netherlands, Poland, Portugal, Slovakia, South Korea, and Turkey). In 
the same context as model (19), 10 eco-inefficient countries achieved 
low efficiencies (below 40 %) under VRS. As a result, inefficient coun
tries that scored high on efficiency under models (19) and (20) also 
scored high on directional mix-efficiency. 

According to columns 5 and 6 of Table 4 under the VRS technology, 
14 countries achieved the eco-efficient status in model (19), while 10 
countries achieved the eco-efficient status in model (20) because it was 
considered that Australia, Canada, Hungary, and Slovakia were eco- 
inefficient. The efficiency scores of the DDF model (19) were observed 
to be greater than or equal to those of the SBM model (20), indicating the 
main relationship between the DDF and SBM models (see Färe & Gros
skopf, 2010, p. 321). Column 7 shows that there are six directional mix- 
inefficient countries with efficiency scores obtained from Eq. (21) under 
VRS that are less than 40 % (i.e., Australia, the Czech Republic, Hungary, 
Poland, Slovakia, and Turkey). These countries were low-efficient under 
model (20), while their efficiency scores obtained from model (19) 
under VRS were relatively high, causing low mix-efficiency. 

Under the RTS technology, the CRS efficiency scores of models (19) 
and (20) were less than or equal to the VRS efficiency scores of both 
models. In contrast, not all directional mix-inefficiency scores under CRS 
were lower than those under VRS, as shown in columns 4 and 7. The 
main reason for that is that the difference between the efficiency scores 
obtained from the SBM model (20) and the DDF model (19) (i.e., the 
numerator and denominator of Eq. (21)) under VRS is greater than that 
obtained from CRS. For example, the difference between the SBM and 
DDF efficiency scores of Australia under CRS is 0.0928, while it is equal 
to 0.6265 under VRS for the same DMU. Therefore, we deduce that the 
efficiency scores of input or output mix-efficiency under VRS need not be 
greater than those under CRS (Taleb, 2023). 

Spearman’s rank correlation7 was used to ensure that the efficiency 
scores obtained from models (19), (20), and Eq. (21) under the CRS and 
VRS technologies were consistent. The correlations between the effi
ciency scores of models (19) and (20) under CRS and VRS were strongly 
positive, i.e., 0.9017 with a p-value of zero and 0.7364 with a p-value of 
0.00003, respectively. More specifically, the correlation between the 
efficiency scores of model (19) under the two technologies was 0.6475 
with a p-value of 0.0004. The efficiency scores of model (20) under CRS 
and VRS were also strongly correlated, i.e., 0.8967 with a p-value of 
zero. Similarly, the correlation coefficient resulting from Eq. (21) be
tween the CRS and VRS directional mix-efficiency scores was strongly 
positive, i.e., 0.8094 with a p-value of zero. Up to this point, the CRS and 

Fig. 1. Production model of OECD countries.  

7 A statistical measure that analyses the linear relationship between two 
variables; thus, it is suitable for use in DEA. The value of correlation ranges 
between +1 and –1. The value of +1 indicates that the relationship between the 
two variables is positive, implying that an increase in one variable will result in 
an increase in the other variable. In contrast, the value of –1 indicates that the 
relationship between the two variables is negative, implying that an increase in 
one variable will result in a decrease in the other variable. 
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VRS efficiency scores generated by the three proposed models for the 25 
OECD countries have been calculated and interpreted. In addition, the 
correlation coefficients between the resulting efficiency scores were 
investigated. In order to illustrate the effect of proposing new factors on 
the efficiency scores of standard models, the overall performance of the 
proposed new efficiency models must be evaluated. 

5.3. Evaluation of the overall performance of the proposed models 

Because the proposed directional mix-efficiency measure in (21) is 
dependent on the proposed non-oriented DDF in model (19) and the 
proposed SBM in model (20), Spearman’s rank correlation is examined 
between the efficiency scores of model (19) and those of the standard 
DDF model in (2), as well as the efficiency scores of model (20) and those 
of the standard SBM model in (10), under the CRS and VRS technologies. 
This comparison aims to ensure that uncontrollable inputs and unde
sirable outputs have been appropriately integrated into the standard 
models by achieving a strong positive correlation. In this case, the 
overall performance of the two proposed efficiency models over the 

evaluation period has been achieved. The efficiency scores of the stan
dard models and the proposed models under CRS and VRS are reported 
in Table 5. 

Table 5 reveals the efficiency scores of the standard models in (2) and 
(10) under CRS and VRS in columns 2 to 5, while the efficiency scores of 
the proposed models in (19) and (20) under CRS and VRS, retrieved from 
Table 4, are presented in columns 6 to 9. To be noted that the efficiency 
levels resulting from a DEA model are sensitive to different integrated 
factors (Taleb, Khalid, Emrouznejad et al., 2023). In particular, because 
DEA is a non-parametric approach, the linear relationship between the 
efficiency scores obtained from two compared DEA models could be 
measured using the non-parametric measure of Spearman’s correlation 
coefficient. Therefore, it is imperative to establish whether the resultant 
rankings from models (19) and (20), as well as models (2) and (10), are 
similarly affected. In doing so, Spearman’s rank correlation coefficients 
between the efficiencies of the standard models and the proposed 
models were examined, as reported in Table 6. 

Table 6 reports the rank correlation coefficients between the stan
dard model in (2) and the proposed model in (19), as well as the 

Table 3 
Characteristics of the data set of the 25 OECD countries.  

Factors Mean Std. dev. Unit Category Notation 

Labour force1  186.618  208.630 One hundred thousand workers Controllable input xC
1j 

Coal2 consumption  57.933  71.956 Million tons/year Controllable input xC
2j 

Petroleum3 consumption  102.256  113.018 Ten thousand barrels/day Controllable input xC
3j 

Average precipitation4  876.64  359.802 Millimetre/year Uncontrollable input xNC
1j 

GDP5  1003.727  1135.677 Billion US$ Desirable output yG
1j 

CO2 emissions6  269.554  290.201 Million tons/year Undesirable output yB
1j  

1 It refers to everyone who meets the requirements to be counted among the employed. 
2 It represents one of the main energy sources used in the industrial, transportation, education, and residential sectors. 
3 It refers to both crude oil occurring unprocessed and petroleum products consisting of refined oil. 
4 Condensation of atmospheric water that falls under clouds contributes to producing precipitation, rain, drizzle, sleet, and snow are the main forms of precipitation. 

Therefore, precipitation and temperature are obvious instances of uncontrollable factors in the environment (Rashidi et al., 2015). 
5 A monetary measure of economic activities related to final goods and services production. 
6 They involve carbon dioxide emissions produced during the burning of fossil fuels, as well as consumption of liquid, solid, and gas fuels. 

Table 4 
Results of various efficiency measures.  

DMU Efficiency scores under CRS technology Efficiency scores under VRS technology 
τNCIUO 

Model (19) 

δNCIUO 

Model (20) 

ψNCIUO Model (21) τNCIUO 

Model (19) 

δNCIUO 
Model (20) ψNCIUO 

Model (21) 

Australia 0.4595 0.3667 0.7980 1 0.3735 0.3735 
Austria 0.7645 0.4347 0.5686 0.7827 0.4523 0.5778 
Belgium 0.8698 0.4469 0.5137 0.9176 0.4534 0.4941 
Canada 0.8755 0.3851 0.4398 1 0.4425 0.4425 
The Czech Republic 0.5090 0.1724 0.3387 0.6511 0.2181 0.3349 
Denmark 0.9853 0.6952 0.7055 1 1 1 
Finland 0.7928 0.4004 0.5050 1 1 1 
France 1 1 1 1 1 1 
Germany 1 1 1 1 1 1 
Greece 0.5638 0.2329 0.4130 0.6242 0.2776 0.4447 
Hungary 0.5024 0.1810 0.3602 1 0.3211 0.3211 
Iceland 0.9525 0.5700 0.5984 1 1 1 
Italy 0.9452 0.7196 0.7613 0.9501 0.7196 0.7573 
Japan 0.7276 0.4120 0.5662 1 1 1 
Luxembourg 1 1 1 1 1 1 
The Netherlands 0.5788 0.2751 0.4752 0.5953 0.2778 0.4666 
Norway 1 1 1 1 1 1 
Poland 0.5018 0.1794 0.3575 0.6192 0.1913 0.3089 
Portugal 0.4693 0.2218 0.4726 0.5294 0.2685 0.5071 
Slovakia 0.5949 0.1576 0.2649 1 0.2385 0.2385 
South Korea 0.4428 0.1953 0.4410 0.4439 0.2070 0.4663 
Spain 0.7124 0.4509 0.6329 0.9870 0.4526 0.4585 
Sweden 1 1 1 1 1 1 
Turkey 0.5795 0.2397 0.4136 0.7115 0.2450 0.3443 
UK 1 1 1 1 1 1 
Average 0.7530 0.5094 0.6250 0.8724 0.6055 0.6614  
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standard model in (10) and the proposed model in (20), under CRS and 
VRS. The obtained efficiencies are positive and relatively highly corre
lated, especially those obtained under the VRS technology. Therefore, 
the overall performance of the proposed models has been achieved. This 
indicates that uncontrollable inputs and undesirable outputs have been 
properly integrated into the standard models and confirms that the 

efficiency scores of the proposed models have been calculated effi
ciently. Additionally, varying levels of efficiency indicate that the 
rankings are significant and remarkable (Johnes & Li, 2008, p.689). 

To visually illustrate the overall performance evaluation of the pro
posed models, graphical representations are displayed in Fig. 2. The 
figure showcases the efficiency scores resulting from both the standard 
and the proposed DDF models in (a) and those generated by the standard 
and proposed SBM models in (b). In both figures, it is evident that the 
efficiency scores generated by the proposed DDF and SBM models, 
depicted by black bars, are either less than or equal to those generated 
by the corresponding standard models, depicted by grey bars, for all 
evaluated OECD countries. Lower efficiency scores coincide with more 
substantial decreases in inputs and increases in outputs, contributing to 
the accurate efficiency performance of the DMUs by eliminating bias in 
efficiency measures. Consequently, uncontrollable inputs and undesir
able outputs significantly impact the proposed DDF and SBM models. 

Table 5 
The efficiency scores of the standard and proposed models.  

Country Efficiency scores of the standard models Efficiency scores of the proposed models 

DDF Model 
(2) 
CRS 

DDF Model 
(2) 
VRS 

SBM Model 
(10) 
CRS 

SBM Model 
(10) 
VRS 

DDF-NCIUO Model 
(19) 
CRS 

DDF-NCIUO Model 
(19) 
VRS 

SBM-NCIUO Model 
(20) 
CRS 

SBM-NCIUO Model 
(20) 
VRS 

Australia 1 1 1 1 0.4595 1 0.3667 0.3735 
Austria 0.8981 0.9211 0.7061 0.8326 0.7645 0.7827 0.4347 0.4523 
Belgium 0.9979 1 0.8993 1 0.8698 0.9176 0.4469 0.4534 
Canada 1 1 1 1 0.8755 1 0.3851 0.4425 
The Czech 

Republic 
1 1 1 1 0.5090 0.6511 0.1724 0.2181 

Denmark 0.9961 1 0.8163 1 0.9853 1 0.6952 1 
Finland 1 1 1 1 0.7928 1 0.4004 1 
France 1 1 1 1 1 1 1 1 
Germany 1 1 1 1 1 1 1 1 
Greece 0.6981 0.7223 0.4554 0.5707 0.5638 0.6242 0.2329 0.2776 
Hungary 0.9859 1 0.5306 1 0.5024 1 0.1810 0.3211 
Iceland 0.7152 1 0.4295 1 0.9525 1 0.5700 1 
Italy 1 1 1 1 0.9452 0.9501 0.7196 0.7196 
Japan 0.9232 1 0.8289 1 0.7276 1 0.4120 1 
Luxembourg 1 1 1 1 1 1 1 1 
The Netherlands 0.6830 0.7757 0.4311 0.4886 0.5788 0.5953 0.2751 0.2778 
Norway 1 1 1 1 1 1 1 1 
Poland 1 1 1 1 0.5018 0.6192 0.1794 0.1913 
Portugal 0.7362 0.8543 0.4859 0.6356 0.4693 0.5294 0.2218 0.2685 
Slovakia 1 1 1 1 0.5949 1 0.1576 0.2385 
South Korea 0.8005 0.8156 0.4814 0.4889 0.4428 0.4439 0.1953 0.2070 
Spain 0.8349 0.9805 0.7454 0.8762 0.7124 0.9870 0.4509 0.4526 
Sweden 0.9380 1 1 1 1 1 1 1 
Turkey 0.9280 0.9815 0.7177 0.8195 0.5795 0.7115 0.2397 0.2450 
UK 1 1 1 1 1 1 1 1  

Table 6 
Matrix correlations of standard and proposed efficiencies.   

DDF model 
(19)-CRS 

DDF model 
(19)-VRS 

SBM model 
(20)-CRS 

SBM model 
(20)-VRS 

DDF model 
(2)-CRS 

0.3647 – – – 

DDF model 
(2)-VRS 

– 0.7527 – – 

SBM model 
(10)-CRS 

– – 0.3181 – 

SBM model 
(10)-VRS 

– – – 0.5098  
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(a) Efficiency scores of the DDF models. (b) Efficiency scores of the SBM models. 

Fig. 2. Evaluating the performance of the proposed DDF and SBM models.  
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5.4. Estimating the returns-to-scale for OECD countries 

The proposed models (19) and (20) were used to compute the effi
ciency scores of 25 OECD countries under the CRS and VRS technologies. 
Each of these models is employed to identify the RTS region of the 
evaluated countries. 

As a result, the RTS region for each country is identified, whether it is 
CRS, IRS, or DRS. Table 7 shows the classification of their regions. The 
three conditions proposed by Zhu and Shen (1995) are used to estimate 
the nature of RTS. These conditions depend on the value of the intensity 
variable,ηj, which corresponds to the CRS efficiency scores. Thus, the 
nature of RTS can be defined as follows:  

i. If the efficiency scores of DMUo obtained from the DDF-NCIUO 
model (19) under CRS and VRS are equal (i.e., τNCIUO

CRS =

τNCIUO
VRS ), and the intensity factor value corresponding to the CRS 

efficiency score is one (i.e.,
∑J

j=1ηj = 1), then the returns-to-scale 
of DMUo function under a CRS region.  

ii. If the efficiency scores of DMUo resulting from model (19) are not 
equal under CRS and VRS (i.e., τNCIUO

CRS ∕= τNCIUO
VRS ), and the intensity 

factor value corresponding to the CRS efficiency score is less than 
one (

∑J
j=1ηj < 1), then DMUo functions under an IRS region.  

iii. If (τNCIUO
CRS ∕= τNCIUO

VRS ) of DMUo obtained from model (19) are not 
equal under CRS and VRS, and the intensity factor value corre
sponding to the CRS efficiency score is greater than one 
(
∑J

j=1ηj > 1), then DMUo functions under a DRS region. 

The three conditions of RTS are also used to identify the RTS region 
based on the SBM-NCIUO model (20), as displayed in columns 6 to 9 in 
Table 7. An inefficient DMU can be projected onto the efficient frontier 
to estimate its RTS classification (Seiford & Zhu, 1999). Here, it is worth 
noting that RTS provides a clear meaning only if DMUo can be projected 
onto the efficient frontier constructed by the VRS technology. 

Columns 2, 3, 6, and 7 contain the efficiency scores of models (19) 
and (20) under CRS and VRS, retrieved from Table 4. Using the three 
RTS conditions, the identified RTS regions by each of the proposed 
models in (19) and (20) are shown in columns 5 and 9. The findings 

reveal that six countries—France, Luxembourg, Germany, Norway, 
Sweden, and the UK—function in the CRS region in models (19) and (20) 
because they achieved efficient status under CRS and VRS. This implies 
that their production frontier is operating under the optimal condition. 
The remaining 19 countries are CRS-inefficient and are classified in the 
IRS or DRS region. 

On the IRS side, the majority of the CRS-inefficient countries, which 
are 17 countries in model (19) and 18 countries in model (20), function 
in the IRS region. This indicates that they were not operating at optimal 
levels during the time period under consideration. They had excesses in 
their controllable inputs and/or undesirable outputs, and any additional 
amount of desirable output would result in higher returns. Therefore, to 
increase their environmental performance and achieve the most pro
ductive scale size, these countries must focus on their controllable inputs 
and undesirable outputs (Ahn et al., 1989). 

On the DRS side, among the 19 CRS-inefficient countries, two 
countries—Japan and the Netherlands—function in the DRS region in 
model (19), while only Japan functions in the DRS region in model (20) 
since the DRS of the Netherlands changed to the IRS in model (20). The 
reason behind that change is that Zhu and Shen’s (1995) RTS conditions 
depend on identifying the sum of intensity variables regarding the CRS 
technology of DDF and SBM, as well as the CRS and VRS efficiency 
scores resulting from the DDF and SBM models. Thus, the Netherlands 
was classified as DRS in DDF and IRS in SBM. The DRS reflects that any 
additional amounts of controllable inputs and/or undesirable output 
will decrease the returns for these countries (i.e., Japan and the 
Netherlands). This suggests that these inefficient countries should in
crease their desirable outputs in order to achieve better environmental 
performance. Italy’s inefficiency scores in model (20) were the same 
under both technologies. However, it did not function in the CRS region 
because the sum of its intensity variable values was not equal to one and 
its efficiency score was less than one (i.e., inefficient status). 

6. Academic and managerial implications 

Both the academic and managerial implications of this research are 
considered in this section. From an academic standpoint, the need for a 
more effective environment has become increasingly urgent in this age 
of economic competition. In this regard, this study contributes to the 

Table 7 
Classifications of RTS for the 25 OECD countries.  

Country Efficiency measures of model (19) Efficiency measures of model (20) 

τNCIUO
CRS τNCIUO

VRS 
∑

η RTS δNCIUO
CRS δNCIUO

VRS 
∑

η RTS 

Australia 0.4595 1 0.6297 Increasing 0.3667 0.3735 0.4577 Increasing 
Austria 0.7645 0.7827 0.7914 Increasing 0.4347 0.4523 0.7862 Increasing 
Belgium 0.8698 0.9176 0.6192 Increasing 0.4469 0.4534 0.6226 Increasing 
Canada 0.8755 1 0.5786 Increasing 0.3851 0.4425 0.5337 Increasing 
The Czech Republic 0.5090 0.6511 0.4815 Increasing 0.1724 0.2181 0.3238 Increasing 
Denmark 0.9853 1 0.5036 Increasing 0.6952 1 0.5046 Increasing 
Finland 0.7928 1 0.3859 Increasing 0.4004 1 0.3865 Increasing 
France 1 1 1 Constant 1 1 1 Constant 
Germany 1 1 1 Constant 1 1 1 Constant 
Greece 0.5638 0.6242 0.4726 Increasing 0.2329 0.2776 0.4696 Increasing 
Hungary 0.5024 1 0.4175 Increasing 0.1810 0.3211 0.2542 Increasing 
Iceland 0.9525 1 0.0490 Increasing 0.5700 1 0.0518 Increasing 
Italy 0.9452 0.9501 0.8615 Increasing 0.7196 0.7196 0.8513 Increasing 
Japan 0.7276 1 1.9355 Decreasing 0.4120 1 1.6792 Decreasing 
Luxembourg 1 1 1 Constant 1 1 1 Constant 
The Netherlands 0.5788 0.5953 1.1635 Decreasing 0.2751 0.2778 0.6233 Increasing 
Norway 1 1 1 Constant 1 1 1 Constant 
Poland 0.5018 0.6192 0.4463 Increasing 0.1794 0.1913 0.4319 Increasing 
Portugal 0.4693 0.5294 0.6778 Increasing 0.2218 0.2685 0.4594 Increasing 
Slovakia 0.5949 1 0.2680 Increasing 0.1576 0.2385 0.1562 Increasing 
South Korea 0.4428 0.4439 0.9430 Increasing 0.1953 0.2070 0.9521 Increasing 
Spain 0.7124 0.9870 0.6273 Increasing 0.4509 0.4526 0.6172 Increasing 
Sweden 1 1 1 Constant 1 1 1 Constant 
Turkey 0.5795 0.7115 0.4554 Increasing 0.2397 0.2450 0.4375 Increasing 
UK 1 1 1 Constant 1 1 1 Constant  
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establishment of the main concept revealing the environmental effi
ciency of OECD countries considering net-zero. This research proposes a 
new directional mix-efficiency measure considering the impacts of both 
uncontrollable inputs and undesirable outputs on environmental effi
ciency. Thus, this research proposes a methodology that incorporates 
both environmental factors into the standard DDF and SBM efficiency 
measures. The proposed efficiency measures contribute to the exami
nation of the impacts of uncontrollable inputs and undesirable outputs 
on environmental efficiency. This research can thus lead to further 
application and refinement of the proposed environmental efficiency 
measures. Many DEA studies have been conducted to assess the envi
ronmental efficiency of OECD countries (e.g., Emrouznejad, 2003; 
Emrouznejad & Thanassoulis, 2010; Färe et al., 2004; Rashidi et al., 
2015; Zhou & Ang, 2008; Ziolo et al., 2020). However, these studies did 
not account for the simultaneous effect of uncontrollable inputs and 
undesirable outputs on the mix-efficiency measure and returns-to-scale, 
as well as net-zero. Therefore, this research is meaningful and can pro
vide new avenues for future research in another area of ecological 
economics. The ability of the proposed methodology to measure and 
analyse the environmental efficiency of OECD countries makes it an 
effective methodology for assessing the impact of CO2 emissions on the 
realisation of net-zero. 

From another perspective, this research has several managerial im
plications. First, the findings from the proposed efficiency measures 
confirm that among the ten eco-efficient countries, six of them (i.e., 
France, Germany, Luxembourg, Norway, Sweden, and the UK) have the 
capacity to achieve net-zero CO2 emissions during the examined period, 
as these six countries have achieved the eco-efficient status under all of 
the proposed efficiency measures and have been operating in the CRS 
region. Second, the classification of inputs as controllable and uncon
trollable, as well as outputs as desirable and undesirable, enables the 
management of OECD countries to determine sources of inefficiency, 
allowing for the improvement of eco-inefficient countries. Third, based 
on the proposed efficiency measures, the OECD management can 
determine the returns-to-scale for efficient and inefficient countries in 
order to identify the impact of a proportional increase in inputs that 
leads to a proportional increase or decrease in outputs. Fourth, the 
measure of the directional output mix-efficiency can be used to deter
mine the degree to which a desirable or undesirable output should 
change in order to achieve eco-efficient status. Fifth, achieving net-zero 
CO2 emissions can support the management of eco-efficient OECD 
countries in order to achieve prosperity in various sectors. 

7. Conclusions, limitations, and directions for future research 

In real-life production processes, some inputs are uncontrollable, and 
some outputs are undesirable. Conventional DEA models cannot handle 
these situations because they assume that all inputs are controllable, and 
all outputs are desirable. As a result, the models’ reference targets may 
be inaccurate, leading decision-makers to be misled. To obtain a more 
accurate efficiency measure, this paper proposes a new directional mix- 
efficiency measure with uncontrollable inputs and undesirable outputs, 
called MIX-NCIUO. MIX-NCIUO is based on two proposed non-oriented 
models, which are DDF and SBM. Furthermore, the efficiency measures 
of the proposed models have been obtained under the two RTS tech
nologies (i.e., CRS and VRS). 

MIX-NCIUO was measured based on the newly proposed non- 
oriented models to assess the ecological efficiency of 25 OECD coun
tries. Each country is treated as an independent DMU, with controllable 
and uncontrollable inputs producing desirable and undesirable outputs. 
The efficiency measures have been obtained under the CRS and VRS 
technologies. Under CRS, six countries achieved directional mix- 
efficiency. Meanwhile, ten countries achieved directional mix- 
efficiency under VRS. This implies that, when compared to other 
OECD countries, these countries have achieved effective environmental 
performance. Additionally, the efficiency scores obtained by the 

proposed non-oriented DDF model were greater than or equal to those 
obtained by the proposed non-oriented SBM model under CRS and VRS. 
This indicates that the main relationship between the DDF and SBM 
models has been achieved. The Spearman’s rank correlation between the 
efficiency scores resulting from the proposed and standard DDF models, 
as well as between the proposed and standard SBM models under CRS 
and VRS, was examined to ensure that uncontrollable inputs and un
desirable outputs have been properly integrated into the standard 
models. 

The RTS regions of the proposed DDF and SBM models have also 
been identified. The identification process relied on the intensity vari
able values, which corresponded to the efficiency scores under the CRS 
technology of the proposed models. The proposed models under CRS and 
VRS technologies were used to achieve the eco-efficient status of RTS. 
The countries that operated in the CRS region are France, Germany, 
Luxembourg, Norway, Sweden, and the UK, all of which achieved 
ecological efficiency status. Thus, these countries operated at the 
optimal level of environmental performance, as well; therefore, they 
could achieve net-zero CO2 emissions during the evaluation period. The 
remaining 19 countries are CRS-inefficient. Thus, they operated in the 
IRS or DRS region. They did not operate at the level of optimal scale 
because they had excesses in some of their controllable inputs and/or 
undesirable outputs, causing some of their desirable outputs to decrease. 

This research not only contributes to the research methodology of 
DEA efficiency measurements, but it also examines the managerial im
plications necessary to achieve a sustainable economy and eco- 
efficiency. Our findings indicate that eco-efficiency must be imple
mented by introducing eco-efficiency technologies. Specifically, eco- 
efficiency can enhance industries and diversify ecological sources, 
particularly in developing OECD countries. Thus, the classification of 
inputs and outputs according to environmental and undesirable factors 
can effectively contribute to achieving net-zero CO2 emissions by 
removing pollution sources and achieving eco-efficiency. Furthermore, 
the identification of RTS as a DEA approach helps OECD management 
determine the impact of increasing inputs on output expansion, thereby 
allowing inefficient countries to improve their inputs and outputs. RTS 
can be used to identify countries that are most likely to achieve net-zero 
CO2 emissions. OECD countries should consider a balance in the rela
tionship between eco-efficiency and sustainable economies when 
developing strategies based on these policies. 

In summary, the proposed efficiency measures can be regarded as an 
improved combination of features of both uncontrollable inputs and 
undesirable outputs on non-radial DDF and SBM models. Under the 
proposed efficiency measures, (i) a new directional mix-efficiency 
measure considering uncontrollable inputs and undesirable outputs 
relying on the improved non-oriented DDF and SBM models has been 
proposed. The measure reflects the degree to which the directional mix- 
efficiency should change in order to achieve a fully efficient status by 
decreasing the controllable inputs of labour, coal consumption, and 
petroleum consumption, increasing desirable output of GDP and 
reducing undesirable output of environmental pollution from CO2 
emissions; (ii) the infeasibility issue that may occur under VRS and in 
some cases of CRS in terms of uncontrollable inputs of DDF and SBM 
models has been tackled; and (iii) the eco-efficiency of OECD countries 
in the presence of uncontrollable inputs and undesirable outputs has 
been assessed. To the best of our knowledge, such an assessment has not 
been considered by any study in the literature on directional mix- 
efficiency. In fact, no efficiency study has been conducted that con
siders net-zero CO2 emissions using non-oriented DEA models in the 
presence of uncontrollable inputs and undesirable outputs. As a confir
mation of the applicability and usefulness of methodical innovation, this 
paper reveals strong correlation coefficients between the efficiency 
scores of the conventional models and the proposed models. Thus, it can 
be deduced that uncontrollable inputs and undesirable outputs have 
been properly integrated into the standard DDF and SBM models. 

This paper has some limitations. First, the proposed efficiency 
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models do not account for the presence of fuzzy data, which may mislead 
the results. Second, the proposed efficiency measures treat the DMUs as 
a black box. The black box considers the DMU as a single process, dis
regarding its internal structure. Third, the data set only covered the year 
2007 (i.e., one-year cross-sectional data), and some data regarding the 
main sources of air pollutant emissions that belong to undesirable out
puts, such as diesel particulate matter (PM), sulphur oxide (SO2), and 
nitrogen oxide (NOx), were not available. Fourth, the proposed effi
ciency measures did not simultaneously consider energy efficiency and 
eco-efficiency, despite the fact that these efficiencies can significantly 
contribute to achieving net-zero CO2 emissions. Fifth, the proposed ef
ficiency measures were evaluated using the full model, which entails the 
utilisation of a comprehensive combination of inputs and outputs. 
However, it is crucial to note that relying solely on the full model may be 
misleading for decision-makers, given the sensitivity of DEA to the use of 
an entire set of inputs and outputs. 

As a result of the limitations raised, the following future research 
extensions have been proposed for each of them. First, a fuzzy direc
tional mix-efficiency measure model with uncontrollable inputs and 
undesirable outputs can be proposed, given that the vast majority of data 
sets from real-world applications are uncertain or fluctuating. Second, a 
two-stage network system based on the proposed efficiency measures in 
which all outputs from the first stage are considered inputs to the second 
stage (i.e., intermediate products) can be suggested. Third, to capture 
the extra-dynamic nature of the OECD countries, panel data should be 
collected and used. In order to investigate the mechanisms underlying 
changes in eco-efficiency, the proposed efficiency measures can be 
extended to evaluate changes over time. The Malmquist Productivity 
Index approach of DDF and SBM models can be proposed for this pur
pose. Fourth, on the basis of the proposed efficiency measures, it is 
possible to simultaneously measure energy efficiency and eco-efficiency 
by categorising inputs as energy, non-energy, controllable, and uncon
trollable, and outputs as desirable and undesirable. Fifth, to prevent the 
potential misguidance of efficiency scores derived from the full model, it 
is essential to assess the internal validity through sensitivity analysis. We 

anticipate that these future extensions will be thoroughly documented in 
published papers. 
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Appendix A 

To calculate the efficiency score of each DMU using the proposed SBM model (20), its fractional programme should be converted into a linear 
programme by introducing a positive scalar variable (i.e., h > 0), as shown in model (A1) (see Taleb et al., 2023). 

ϕNCIUO
o = min h −

1
m1

(
∑m1

i=1

aC−
i

xC
io

)

(A.1)  

subject to: 

h +
1

s1 + s2

(
∑s1

r1=1

bG+
r1

yG
r1o

+
∑s2

r2=1

bB−
r2

yB
r2o

)

= 1,

∑J

j=1
xC

ij ηj = xC
io − aC−

i i = 1, . . . ,m1,

∑J

j=1
xNC

lj ηj = xNC
lo − aNC−

l l = 1, . .. , m2,

∑J

j=1
yG

r1 jηj = yG
r1o + bG+

r1
r1 = 1 , . . . , s1,

∑J

j=1
yB

r2 jηj = yB
r2o − bB−

r2
r2 = 1 , . . . , s2,
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∑J

j=1
ηj = 1,

Now, we define: 

SC−
i = haC−

i , SG+
r1

= hbG+
r1

, SB−
r2

= hbB−
r2
, Λj = hλj  

Thus, the linear programme of model (A.1) in SC−
i , SG+

r1
, SB−

r2
, and Λj is formulated in (A2) as follows: 

ϕNCIUO
o = min h −

1
m1

(
∑m1

i=1

SC−
i

xC
io

)

(A.2)  

subject to: 

h+
1

s1 + s2

(
∑s1

r1=1

SG+
r1

yG
r1o

+
∑s2

r2=1

SB−
r2

yB
r2o

)

= 1  

∑J

j=1
xC

ij Λj + SC−
i = hxC

io i = 1, . . . ,m1,

∑J

j=1
xNC

lj Λj + SNC−
l = hxNC

lo l = 1, . .. , m2,

∑J

j=1
yG

r1 jΛj − SG+
r1

= hyG
r1o r1 = 1 , . . . , s1,

∑J

j=1
yB

r2 jΛj + SB−
r2

= hyB
r2o r2 = 1 , . . . , s2,

∑J

j=1
Λj = h,

SC−
i , SG+

r1
, SB−

r2
, Λj⩾0, h > 0.

We let an optimal solution of (A.2) be denoted by SC− *
i , SG+*

r1
, SB− *

r2
, Λ*

j , h*. Hence, the optimal solution of (A.2) is generated by ϕ* = κ*, sC− *
i = SC− *

i /

h*, sG+*
r1

= SG+*
r1

/h*, sB− *
r2

= SB− *
r2

/h*, λ*
j = Λ*

j /h*.

Appendix B  

Table B1 
The data set of the 25 OECD countries.  

Country Labour force 
(105) 

Coal consumption 
(106 tons) 

Petroleum consumption 
(104 barrels/day) 

Precipitation 
(millimetre /year) 

GDP 
109 US$ 

CO2 
106 tons 

Australia  111.12  156.53 97.6 534  850.32  381.36 
Austria  42.14  6.17 29.3 1110  375.04  69.01 
Belgium  47.66  7.33 64 847  459.62  102.53 
Canada  179.46  63.62 228.3 537  1424.06  560.8 
The Czech Republic  51.98  64.25 21.1 677  180.51  123.95 
Denmark  28.93  8.75 19 703  311.42  49.87 
Finland  26.95  8.4 22.7 536  246.13  63.92 
France  286.2  22.43 197.9 867  2582.39  375.68 
Germany  415.9  281.44 241.6 700  3323.81  787.24 
Greece  49.18  73.95 44.9 652  305.43  98.25 
Hungary  42.38  13.02 16 589  136.1  55.86 
Iceland  1.82  0.18 2 1940  20.43  2.34 
Italy  247.28  27.95 172.8 832  2127.18  461.13 
Japan  666.9  207.58 503.7 1668  4356.33  1251.17 
Luxemburg  3.43  0.13 6 934  51.32  10.75 
The Netherlands  877.96  14.86 111.1 778  782.57  171.77 
Norway  25.07  1.32 23.1 1414  393.48  45.12 
Poland  169.09  149.58 52 600  425.32  315.2 
Portugal  56.18  5.23 30.8 854  231.74  60.87 
Slovak  264.92  8.82 8.3 824  84.11  36.6 
South Korea  242.16  98.23 224 1247  1049.24  495.84 
Spain  221.9  46.15 161.1 636  1441.43  358.24 
Sweden  48.38  3.83 35 624  462.51  48.06 

(continued on next page) 
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Table B1 (continued ) 

Country Labour force 
(105) 

Coal consumption 
(106 tons) 

Petroleum consumption 
(104 barrels/day) 

Precipitation 
(millimetre /year) 

GDP 
109 US$ 

CO2 
106 tons 

Turkey  252.76  108.92 68.9 593  647.16  284.66 
UK  305.72  69.67 175.2 1220  2825.53  528.63  

Appendix C. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2024.109967. 
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Färe, R., & Grosskopf, S. (2010). Directional distance functions and slacks-based 
measures of efficiency. European Journal of Operational Research, 200(1), 320–322. 
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