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Conventional data envelopment analysis (DEA) models make the assumption of controllable inputs and desirable
outputs. However, in many real-world applications, there are two major issues facing the management of
decision-making units. The first one is how to deal with uncontrollable inputs whose levels are determined by
exogenous fixed factors. The second is how to deal with undesirable outputs that are accompanied by desirable
outputs. The effect of the operating environment is frequently captured by uncontrollable inputs and undesirable
outputs. The modulation of these two factors into a directional DEA model is still in its infancy in the DEA
literature. This paper proposes new directional mix-efficiency measure and slacks-based measure models. These
two efficiency models are proposed in the context of uncontrollable inputs and undesirable outputs. The new
metric looks at how well the input and/or output mix should change to achieve a fully efficient status by
decreasing controllable inputs and undesirable outputs and/or increasing desirable outputs while keeping un-
controllable inputs constant. The new mix-efficiency measure is based on the directional distance function and
the slacks-based measure. The usefulness and applicability of the proposed models are assessed by measuring the
eco-efficiency of the Organization for Economic Co-Operation and Development (OECD) countries. The aim of
the application is to measure efficiency in the context of NetZero, with a specific focus on reducing CO, emis-
sions. The findings reveal that six countries—France, Luxembourg, Germany, Norway, Sweden, and the
UK—have achieved eco-efficiency; therefore, these countries function in the constant returns-to-scale (CRS)
region.

1. Introduction energy, such as OECD countries. Various activities have been developed

and implemented by academics and policymakers in OECD countries to

The eco-efficiency of countries, particularly developed nations, is
imperative for achieving carbon neutrality and sustainable develop-
ment. Sustainable development necessitates the efficient use of scarce
resources, contributing to the realisation of eco-efficiency and over-
coming environmental degradation. Environmental degradation can
occur when scarce resources are used inefficiently. To control and
mitigate environmental degradation, green technology should be
developed. Developing green technology involves the use of renewable
energy sources, leading to a further reduction in CO5 emissions and the
achievement of NetZero (Mandel et al., 2023). In the context of
achieving NetZero emissions, a low-carbon economy is urgently
required in many developed countries that consume a large amount of

mitigate COy emissions and achieve NetZero. As a result, achieving
NetZero has recently become a complex target and a multidisciplinary
task that can be addressed using Multi-Criteria Decision-Making
(MCDM) problems (Taleb et al., 2023). One of the most common tech-
niques of MCDM that does not require the imposition of subjective
weights on inputs and outputs from decision-makers is Data Envelop-
ment Analysis (DEA).

Charnes et al. (1978) proposed DEA, a non-parametric approach
based on linear programming. DEA evaluates the relative efficiency of a
peer set of entities called decision-making units (DMUs), which consume
multiple inputs to produce multiple outputs. In the field of performance
measurement, DEA has emerged as a reliable technique for assessing
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efficiency and establishing targets by identifying benchmarks (Charles
et al., 2016; Charles et al., 2018). In this sense, also, DEA can be posi-
tioned as a prescriptive analytics-oriented technique (Charles et al.,
2022). The relative efficiency of DMUs can be measured without prior
weights on the inputs and outputs. This ability has made DEA a popular
data-enabled efficiency evaluation approach (Charles et al., 2021; Zhu,
2022; Zhu & Charles, 2021) when compared to other frontier ap-
proaches, such as multiple regression analysis and stochastic frontier
analysis. Furthermore, DEA takes into account two types of efficiency
measures: radial and non-radial. The efficiency score of a radial model
reflects the proportional extension of outputs or the proportional
reduction of inputs, depending on whether the model is output-oriented
or input-oriented. The oriented models ignore the existence of input
and/or output slacks in their efficiency scores (Taleb et al., 2023).
Therefore, the obtained efficiency scores do not reflect all the in-
efficiency of an inefficient DMU, which may mislead decision-makers.
The excesses of each input and/or shortfalls of each output can be
identified by projecting the inefficient DMU onto the efficient frontier.
Thus, the radial models enhance the inefficient DMU to decrease its
inputs while preserving outputs at a given level (input-oriented) and/or
increase its outputs while preserving inputs at their given levels
(output-oriented).

To address the problem, Fare and Knox Lovell (1978) proposed the
Russell efficiency measure that simultaneously deals with inputs and
outputs. Later, Pastor et al. (1999) developed a new version of the
Russell model that combines inputs and outputs into a ratio form known
as the Enhanced Russell-graph efficiency measure (ERGM). Chambers
et al. (1996, 1998) proposed a non-radial directional distance function
(DDF) model that does not require discrimination between input-
oriented and output-oriented models to allow simultaneous input
reduction and output augmentation. Subsequently, Tone (2001) pro-
posed a novel non-radial slacks-based measure (SBM) model under the
assumption that inputs and outputs can be allowed to decrease and in-
crease at different rates by simultaneously dealing with input and output
slacks. This characteristic has been identified as a significant advantage
of non-radial models over radial models (Taleb et al., 2019). SBM has
three variations: input-oriented, output-oriented, and non-oriented. A
detailed comparison of radial and non-radial models can be found in
Avkiran et al. (2008). Therefore, it assesses the efficiency of the output
or input mix as well as the aggregate efficiency, where ‘mix’ refers to the
proportions in which outputs or inputs are produced or consumed,
respectively.

The efficiency scores generated by an input- or output-oriented
model of Charnes et al. (1978), termed the CCR model, and an ori-
ented SBM model (i.e., input- or output-oriented SBM) are used to
evaluate mix-efficiency. As a result, Cooper et al. (2006) introduced
output mix-efficiency and input mix-efficiency measures using the
output-oriented and input-oriented versions of the CCR model and SBM
model, respectively. In fact, the mix-efficiency measure has been
considered by several studies, such as Herrero et al. (2006), Puri and
Yadav (2013), Saranga (2009), Taleb (2023), and Visbal-Cadavid et al.
(2017). However, these studies ignored the impact of uncontrollable
inputs (i.e., inputs subject to exogenous fixed factors, such as average
precipitation, airport apron capacity, and soil characteristics) and un-
desirable outputs (i.e., a bad output that can be abated by reducing its
level in a production process) (Kuosmanen, 2005). This argument holds
true in a wide range of real-world applications of efficiency measures,
such as CO; emissions, waste water, and the number of delayed flights at
an airport (Lozano & Gutiérrez, 2011). Furthermore, all of these studies
examined mix-efficiency from either an input-oriented or an
output-oriented perspective.

Consequently, the main questions addressed in this research are:

1. How can uncontrollable inputs and undesirable outputs be modelled
into non-radial DDF and SBM models?
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2. How can the infeasibility issue that may arise from uncontrollable
inputs be rectified?

3. How can the directional mix-efficiency be measured from a non-
oriented perspective?

4. How can the effect of uncontrollable inputs and undesirable outputs
on the eco-efficiency of OECD countries be measured?

5. How can the returns-to-scale be identified in the context of the
proposed DDF and SBM?

To address the gap, we propose a new directional mix-efficiency
measure, denoted MIX-NCIUO, that simultaneously considers both the
inputs used and the outputs produced from the perspectives of inputs
and outputs. This is achieved by introducing non-oriented DDF and SBM
models in the presence of uncontrollable inputs and undesirable outputs.
The newly proposed measure incorporates uncontrollable inputs and
undesirable outputs into their respective input and output constraints, as
well as the target function of the standard non-oriented DDF and SBM.
The goal of using non-oriented DDF and SBM to measure mix-efficiency
is that each of these models combines both output-oriented and input-
oriented models into a non-oriented model, resolving the infeasibility
issue that arises from integrating uncontrollable inputs into an output-
oriented model. Additionally, the proposed non-oriented models are
more applicable in addressing real-life situations that require reductions
in controllable inputs and undesirable outputs, along with an augmen-
tation of desirable outputs, such as eco-efficiency. To illustrate the
practicality of the proposed efficiency measures, MIX-NCIUO is
employed to measure and analyse the efficiency of 25 countries from the
Organization for Economic Co-Operation and Development (OECD).
This research introduces several novel contributions to the DEA
literature:

e Both input- and output-oriented DDF and SBM models have been
extended to incorporate uncontrollable inputs and undesirable
outputs.

A directional mix-efficiency measure from a non-oriented perspec-

tive is proposed to address uncontrollable inputs and undesirable

outputs under constant returns-to-scale (CRS) and variable returns-
to-scale (VRS).

e The proposed DDF and SBM models ensure the feasibility condition

under CRS and VRS technologies, marking this as their prominent

feature.

Returns-to-scale in the context of uncontrollable inputs and unde-

sirable outputs of the DDF and SBM models have been measured.

e Given that the proposed models handle uncontrollable inputs and
undesirable outputs, reflecting many real-life situations, they pro-
vide a platform for a comprehensive quantitative approach to mea-
sure and improve system efficiency. This aspect helps decision-
makers better understand and evaluate their systems.

The paper is organised into seven sections. Section 2 presents a re-
view of previous efficiency studies involving undesirable outputs and
uncontrollable inputs. Section 3 provides background information on
existing models relevant to the development of MIX-NCIUO. Section 4
outlines the MIX-NCIUO research methodology. Section 5 examines data
from 25 OECD countries and presents the efficiency results as measured
by the proposed models. Section 6 considers the academic and mana-
gerial implications of the proposed methodology. Finally, Section 7
concludes with a summary, concluding remarks, and future research
directions.

2. Literature review

Anthropogenic pollution can be globally balanced by eliminating
CO emissions over a specified time period; therefore, achieving net-zero
CO, emissions is possible. The overlapping concepts of net-zero CO5
emissions and carbon neutrality can be applied at different levels
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(Jeudy-Hugo et al., 2021). Human activities contributing to net-zero
CO, emissions include not only industrial production and energy ser-
vices, but also agriculture and land use, all of which must be entirely
eliminated to achieve this goal (Davis et al., 2018). Furthermore, the
realisation of net-zero can be affected by the energy systems in use (Pye
et al., 2021). The discourse on net-zero has rapidly evolved in recent
years, prompting countries, especially OECD members, to strive for the
net-zero CO, emissions target by balancing emission reductions and
carbon utilisation in the coming years.

In an effort to combat global warming, an increasing number of
nations, including the OECD, aim to achieve net-zero CO, emissions by
2050, eliminating as much CO; as they produce. To effectively limit
global warming and mitigate the worst effects of climate change, OECD
countries must take responsibility for all their undesirable (negative)
environmental impacts, considering various scientific measures that can
be adopted to reduce them efficiently. Attaining carbon neutrality is
crucial for meeting the goal of keeping global temperature increases
below 1.5 °C, necessitating the achievement of net-zero CO, emissions.
Balancing CO, emissions through effective measures can lead to net-zero
emissions (Wang et al., 2022; Zheng, 2023). In 2021, a climate change
conference (COP26) was held in Glasgow to discuss the achievement of
net-zero emissions. Among the various frontier approaches explored for
assessing eco-efficiency, such as stochastic frontier analysis (SFA)
(Aigner et al., 1977) and free disposal hull (FDH) (Tulkens, 1993), a
powerful non-parametric approach proposed by Charnes et al. (1978),
data envelopment analysis (DEA), has been effectively used to evaluate
the eco-efficiency of DMUs. In the DEA literature, the evaluation of net-
zero CO3 emissions using DEA models is still relatively new and has been
explored by a few studies (e.g., Azadi et al., 2022; Emrouznejad et al.,
2023; Taleb et al., 2023; Xiao et al., 2021).

DEA considers two efficiency models: radial and non-radial. The
radial models focus on the proportionate reduction of an input increase
(input-oriented) or the proportionate expansion of an output decrease
(output-oriented) (Debnath et al., 2008; Taleb et al., 2022). Therefore,
oriented models can force evaluated DMUs to decrease (increase) their
inputs (outputs) at a fixed rate to a maximum proportion obtained for
the inputs and/or outputs (Cooper et al., 1999). Non-radial models (i.e.,
non-oriented models), on the other hand, effectively deal with input and
output slacks. As a result, inputs and outputs can be decreased and
increased disproportionally at the same time. This is a distinguishing
feature of non-oriented models over oriented models because decreasing
inputs and/or increasing outputs are independent of one another
(Rashidi et al., 2015).

The SBM model, proposed by Tone (2001), is one of the most popular
non-radial models for evaluating the efficiency of DMUs in various set-
tings. The model deals with input excesses and output shortfalls simul-
taneously and effectively discriminates the inefficiency of inefficient
DMUs (Taleb et al., 2018; Zhou et al., 2007). Moreover, its target
function is unit-invariant and a monotone function of input and output
slacks. To improve inputs and outputs, SBM computes the ratio of the
average input reduction to the average output augmentation (Lozano &
Gutiéerrez, 2011). As a result, its target function value is regarded as the
product of input and output inefficiencies (Taleb et al., 2023). Tone
(2001) considered the procedure of oriented SBM to produce an oriented
SBM model in terms of input-oriented or output-oriented. For this, the
efficiency scores resulting from input- or output-oriented SBM and CCR
models can be used to calculate the mix-efficiency measure, as proposed
by Cooper et al. (2006). The mix-efficiency is a metric that identifies the
inefficiency caused by incorrect input or output composition. However,
all of the studies on mix-efficiency assumed that all inputs and outputs
are discretionary (i.e., inputs and outputs can be controlled by a DMU’s
management) and desirable (i.e., good outputs, whose levels should be
increased appropriately). These assumptions do not hold true in many
real-world applications. Hence, ignoring both uncontrollable and un-
desirable factors may lead to inaccurate efficiency measures.

In real-world settings, the outputs of a DMU may be accompanied by
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undesirable outputs such as CO, emissions in industries, aeroplane delay
time in airports, and waste water. Numerous efficiency studies with
undesirable outputs have been conducted to evaluate DMU performance
using radial and non-radial DEA models (see Liu et al., 2010, p. 180).
Radial models are widely used in a variety of settings to assess efficiency
when undesirable outputs are present. For example, Fare et al. (1989)
used a radial model to assess the efficiency of 30 US mills. They assumed
weak disposability’ for undesirable outputs. The findings revealed that
the performance of DMUs is sensitive to the presence of undesirable
outputs. A radial model was also used by Camarero et al. (2013) to
measure the eco-efficiency of 22 OECD countries. Emrouznejad (2003)
proposed an alternative dynamic efficiency model for measuring the
efficiency of the OECD countries. To explore carbon emission abatement
(CEA) in Chinese manufacturing industries, Li et al. (2020) proposed an
integrated game DEA approach. Moreover, Fare and Grosskopf (2004),
Scheel (2001), Seiford and Zhu (2002), and Tyteca (2016), among
others, introduced radial models with undesirable outputs. Additionally,
Mandal (2010), Watanabe and Tanaka (2007), Yang and Pollitt (2009)
introduced various efficiency studies in the energy and industrial sec-
tors. These studies emphasised the critical role of incorporating unde-
sirable outputs into different-radial DEA models in order to avoid
overestimation of efficiency measures.

Undesirable outputs have also been incorporated into non-radial
models. Tone (2003), for example, integrated undesirable outputs into
Tone’s (2001) SBM model to propose an SBM model that deals with
undesirable outputs. In Zhou et al. (2006), the undesirable output of CO,
emissions was integrated into the SBM model to evaluate the ecological
efficiency of 30 OECD countries. Choi et al.’s (2012) study took CO4
emissions as an undesirable output into account. Later, Lee et al. (2014)
examined the efficiency of port cities using an SBM model with unde-
sirable outputs. Their undesirable outputs were CO,, sulphur oxide
(SOx), and nitrogen oxide (NOy). Similarly, many studies, such as Pang
et al. (2015), Zhang and Choi (2013), and Zhou et al. (2006) have
introduced SBM models with undesirable outputs in various real-life
situations. Chambers et al. (1996) proposed a DDF model that demon-
strated the possibility of simultaneously decreasing inputs and
increasing outputs. The DDF model was then improved to deal with
undesirable outputs and environmental factors, as demonstrated by
studies such as Daraio and Simar (2014), Ramli et al. (2013), Singh and
Gundimeda (2021), and Watanabe and Tanaka (2007). However, all of
the studies that looked at radial or non-radial DEA models in the context
of undesirable outputs ignored the impact of uncontrollable inputs on
efficiency measures.

DMU inefficiencies are likely to occur due to poor management. This
assumption was made by classical DEA models that did not account for
the effect of uncontrollable inputs and/or outputs on DMU performance
evaluation. Many efficiency studies have been conducted to investigate
the effects of uncontrollable inputs and/or outputs on efficiency mea-
sures, including Banker and Morey (1986), Estelle et al. (2010), Lotfi
et al. (2007), Patel and Pande (2013), and Taleb et al. (2019). Despite
their prominent features, these studies did not take into account the
effect of integrating uncontrollable inputs and undesirable outputs into
efficiency measures at the same time. Some efficiency studies have taken
both factors into account. For example, Yang and Pollitt (2009) inte-
grated uncontrollable inputs and undesirable outputs into a four-stage
radial model to evaluate the efficiency of coal-fired power plants in
China. Noorizadeh et al. (2014) conducted a study that classified un-
controllable factors into two categories: permanent and temporary. The
uncontrollable and undesirable outputs were incorporated into a radial
super efficiency model for supplier ranking. These studies, however, did

1 Any decrease in undesirable outputs and/or increase in undesirable inputs
will result in a proportional reduction and/or increase in desirable outputs and/
or inputs (Lozano et al., 2013; Taleb, Khalid, Emrouznejad et al., 2023; Taleb
et al., 2023).
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not examine the effects of both factors on the efficiency measures of a
non-radial model. Because of the radial model’s limitations, researchers
have integrated both factors into non-radial models.

Yahia et al. (2018) combined undesirable outputs and uncontrollable
inputs to propose a new DDF production possibility set (PPS). Lozano
and Gutiérrez (2011) proposed an SBM model to measure the efficiency
of 39 Spanish airports while simultaneously dealing with uncontrollable
inputs and undesirable outputs. Rashidi et al. (2015) investigated the
efficiency of 25 OECD countries. They developed a non-radial measure
by combining the range-adjusted measure (RAM) model of Cooper et al.
(1999) and the SBM model of Tone (2001) with uncontrollable inputs
and controllable and uncontrollable desirable and undesirable outputs
in order to simultaneously decrease controllable inputs and controllable
undesirable outputs, as well as increase controllable desirable outputs,
while keeping uncontrollable inputs and outputs at their fixed levels.
Hua et al. (2007) proposed a non-radial model with both factors for
measuring and analysing the eco-efficiency of paper mills in China. They
also considered the impact of uncontrollable inputs on the returns-to-
scale (RTS) of DMUs. The RTS is an economic measure that examines
the proportionate augmentation of outputs obtained from inputs to
determine the efficiency level of a DMU (Taleb et al. 2019). The DMU
falls into one of three RTS regions: constant returns-to-scale (CRS),
decreasing returns-to-scale (DRS), or increasing returns-to-scale (IRS).
The CRS reflects that when inputs are increased, outputs can be
increased proportionally. As a result, RTS is constant for each efficient
DMU. IRS or DRS, on the other hand, reflects whether outputs have
increased proportionally more or less than inputs (Taleb et al., 2022).

In the presence of undesirable outputs, the RTS technology has
evolved to include environmental assessment, as introduced by Sueyoshi
and Goto (2011, 2013). They proposed a new technology known as
Damages-to-Scale (DTS), designed to examine the RTS in DEA models
with undesirable outputs. Although the mathematical concepts of RTS
and DTS are similar, the economic implications of these techniques are
diametrically opposed. For example, if an increase in inputs results in a
proportionally higher increase in undesirable outputs, the RTS functions
under increasing DTS (IDTS). Consequently, the operational size of an
evaluated DMU may increase, and the DMU will produce additional
damage (i.e., undesirable outputs). To avoid this and improve the
environmental efficiency of the DMU, its operational size should be
reduced. Conversely, the DTS decreases when an increase in inputs re-
sults in a proportionally smaller increase in undesirable outputs (i.e., less
damage). Decreasing DTS (DDTS) implies that increasing inputs can
proportionally result in a smaller increase in undesirable outputs.
Consequently, it is acceptable for the DMU to increase its operational
size to enhance its environmental efficiency.

It is worth mentioning that the DTS technology of Sueyoshi and Goto
(2011, 2013) was introduced under two different concepts of dispos-
ability, which are natural disposability” and managerial disposability.”
This research considers undesirable outputs under the weak dispos-
ability technology, while inputs and desirable outputs are considered
under the strong disposability.” Therefore, RTS for uncontrollable inputs
and undesirable outputs is identified based on Seiford and Zhu’s (1999)
study. A summary of the literature review on relevant DEA studies
integrating uncontrollable inputs and/or undesirable outputs and their
limitations is reported in Table 1.

To the best of our knowledge, no studies have considered the
directional mix-efficiency measure from the perspectives of both inputs
and outputs in the presence of uncontrollable inputs and undesirable

2 Any decrease in the inputs of a DMU will be accompanied by a decrease in
undesirable outputs.

3 A DMU increases an input, but decreases undesirable outputs (Sueyoshi &
Goto, 2012).

4 A term that refers to any reduction in controllable inputs that can most
likely occur without any reduction in desirable outputs.
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Table 1
A selected review on uncontrollable inputs and/or undesirable outputs in DEA
models.
Author(s) Topic or field of DEA model used Limitation(s)
evaluation
Apergis et al. Evaluating the SBM model with e Uncontrollable
(2015) eco-efficiency of undesirable inputs were not
OECD countries outputs taken into
consideration.

e The directional
proportions in
which outputs or
inputs are
produced or
consumed were
not measured.

Diabat et al. Evaluating the Non-radial range o It considers DDF
(2015) efficiency of DDF model undesirable
Information outputs.
Technology firms o It did not measure
that operate in the RTS of the
India evaluated DMUs.
Emrouznejad Measuring the Dynamic e Itisaradial model.
(2003) efficiency of OECD efficiency DEA o It did not consider
countries model environmental
factors, such as
undesirable
outputs and
uncontrollable
inputs.
Fukuyama Measuring the Directional slacks- e The proposed
and Weber efficiency of based measure model assumes
(2009) financial services model that all inputs are
provided by controllable, and
Japanese banks outputs are
desirable.
Iram et al. Measuring the SBM model e It only considers
(2020) environmental considering undesirable
and energy undesirable outputs as
efficiency of 26 outputs environmental
OECD countries factors.

o It did not consider
the directional
mix-efficiency
measure.

Ramli et al. Measuring the Radial DDF model e It considers the
(2013) eco-efficiency of scale DDF model

Rashidi et al.
(2015)

Taleb (2023)

the manufacturing
sector in Malaysia

Assessing the eco-
efficiency of OECD
countries

Evaluating the
environmental
and energy
efficiency of land
transportation
system in China

SBM model and
range-adjusted
measure (RAM)
considering
uncontrollable
inputs and
undesirable
outputs

Radial efficiency
measures with
mixed integer-
value data and
undesirable
outputs

as a radial
measure.
It did not evaluate

uncontrollable
inputs and
undesirable
outputs.

It did not consider
both non-radial
SBM and DDF
models.

It did not consider
the directional
proportional rate
of decreasing
inputs and
increasing outputs
concurrently.

It did not measure
the RTS in
uncontrollable
inputs and
undesirable
outputs.

It considers
output-oriented
SBM and BCC effi-
ciency measures.
It did not consider
uncontrollable

(continued on next page)
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Table 1 (continued)

Author(s)

Topic or field of
evaluation

DEA model used

Limitation(s)

Yahia et al.

(2018)

Yang and
Pollitt
(2009)

Zhou et al.
(2006)

Measuring the
efficiency of
education

Measuring the
efficiency of
Chinese coal-fired
power plants

Measuring the
environmental
and energy
efficiency of OECD

DDF model with
uncontrollable
inputs and
undesirable
outputs

Radial DEA with
uncontrollable
inputs and
undesirable
outputs

SBM model with
undesirable
outputs of CO,
emissions

inputs and
undesirable
outputs
simultaneously.

It did not consider
the directional
mix-efficiency
measure.

The study did not
explicitly state
that a DDF model
considers
uncontrollable
inputs and
undesirable
outputs since it
only considers the
PPS of DDF under
different
disposability
assumptions.

The study did not
consider the
directional mix-
efficiency
measure.

RTS based on the
DDF model, with
uncontrollable
inputs and
undesirable
outputs, was not
measured.

It considers a
radial model.

It did not consider
the directional
mix-efficiency
measure.

It only considers
SBM with
undesirable
outputs.

The study did not
consider the non-
radial mix-effi-
ciency measure.

countries

outputs. To address this gap, this paper incorporates both factors into
the standard non-oriented DDF and SBM models before developing new
non-oriented DDF and SBM models. For the first time, the proposed
models are used to propose a new directional mix-efficiency measure
from both input and output perspectives in order to evaluate environ-
mental efficiency while assuming net-zero CO5 emissions. The pre-
liminaries of the existing models are discussed in the following section,
playing a crucial role in proposing the methodology of this paper, as
shown in Section 4.

3. Background
3.1. Directional distance function (DDF) model

DDF is a generalisation of the radial input-oriented and output-
oriented models proposed by Chambers et al. (1996) to assess the effi-
ciency of a set of J DMUs (DMUj, j = 1, ..., J) (Ray, 2008). Each DMU
consumes m inputs that can be observed by x;;, i — 1, ..., m to produce s
outputs that can be observed by y;j,r =1, ..., s. Let x;; denote the positive
amount of the ith input used by the jth DMU, and y;; denote the positive
amount of the rth output produced by the jth DMU. The jth DMU can also
be denoted by DMUo, which represents the evaluated unit under the
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DDF efficiency model. The DDF model measures the distance from a
particular combination of input-output (x, y) € R™" to the efficient
frontier of the technology set T in a direction vector determined by
formula (1) g = (g, &) € R™*, g#0,

Dy (x, y; §) = max[f € [0,1)|(x — fgu v+ f5,) €T ] m

Fare and Grosskopf (2000) proposed the DDF model of DMUo along
the direction vector g = (g, g,) under the VRS technology, which is
expressed in model (2). Fare and Charles (2018) showed that DDF is free
from non-Archimedean estimation.

max f3, (2

subject to:

J
inj"lj-SX,‘g(l _ﬂo) i=1,...,m,
=1
J
Symve(l+4,) r=1,....5,
=1

J
an:L

=

17,20 j=1,...,J

Po €10, 1),
Xios Yro € R:ﬁ“‘

By setting the direction vector g(g,) = 0, an input (output) oriented
model can be obtained. A proportional rate to decrease the input and
increase the output concurrently in the ith input and the rth output of
DMUo is released by f,. Therefore, the $, value is maximised in the
target function of model (2). The non-zero directional vector of g is given
as (g, &) = (& ---s &u> &1s ---» &,) along with the inputs to be
decreased and the extended outputs (Toloo et al., 2018). For example, if
B, = 0.15, we decrease all inputs by 0.15, while increasing all outputs by
0.15. A non-negative intensity vector serving to construct the convex
combination of inputs and outputs of evaluated DMUs is denoted by 7;.
Model (2) is a straightforward linear programming (LP) problem that
can be solved easily.

Since the values of both inputs and outputs are positive, the value of
the proportional rate is 0<f; < 1, j =1, ..., J. The proportional value of
the direction vector is equal to zero for each efficient DMU, whereas it is
either greater than zero or less than one for each inefficient DMU. Thus,
based on the proportional rate computed by model (2), the relative ef-
ficiency score computed by DDF model (2) is equal to one for each
efficient DMU; otherwise, the DMU is DDF inefficient. Therefore, to
compute the relative efficiency score of the evaluated DMUo using a
non-oriented version of model (2), the model’s target function should be
changed to that stated in Eq. (3).

1-5
HDDF — o
P = Trs ®

min

Proposition 1. DMUo is said to be fully efficient if and only if it satisfies
B, = 0. This condition is equivalent to all directional vectors of inputs and
outputs being zero, thus guaranteeing Pareto-Koopmans efficiency. The
directional vectors of inputs and outputs reflect the slacks of input excesses
and output shortfalls of DMUo (B,Xio, P,Yro), Tespectively. However,
decreasing inputs and increasing outputs are proportional because they are
dependent on a single directional value (i.e., f3,), as stated in the preceding
example.

There are two special cases that can be derived from the oriented
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DDF model: the directional input distance function (DIDF) model and
the directional output distance function (DODF) model. The DIDF is
calculated by assuming that the direction vector of outputs is equal to
zero (i.e., gy = 0), whereas the DODF is calculated by assuming that the
direction vector of inputs is equal to zero (i.e., gx = 0). The technology
sets that generate DIDF and DODF are formulated in (4) and (5),
respectively (Yahia et al., 2018).

D (x, y; &)= max [f|(x — fg, y) € T] )

D (x, y; g) = max [B|(x, y + fig,) € T] )

In an oriented DDF model, the efficiency score depends on the pro-
portional reduction of inputs (input-oriented), or the proportional
expansion of outputs (output-oriented). Thus, the efficiency score of
DMUo under the DIDF model or the DODF model can be computed using
model (6) or model (7).

min """ =1-p, (6)

subject to:

me, Xo(1=B,) i=1,....,m,
J
Zyrjﬂj>ym r=1,...,s,

J
don=1,
=

B, €100, 1),
Xios Yro S RTJr:

1
. JDODF
min 6, =133 7, )

subject to:

J
E <X i=1,...,m,

J
Zyrjrljzym(l _ﬁa) r= 1~, cee s S,

B, €10,1),

m-+s
Xios Yro S R+

Based on the technology set T in the direction vector proposed by
Chambers et al. (1996), as stated in (1), Chung et al. (1997) improved
the main concept of the DDF model to include undesirable outputs, as
outlined in the technology set (8).

—
Dr (xﬁ yGﬁ }’B§ 8xs 8)6, 78\‘”) = max[ﬁ

€ 10, 1)|(x — Bgx, y° + Bgye, Y* — Begya)

eT] (8)

The distance function on the technology set (8) determines the reduction
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in inputs and undesirable outputs, as well as the extension in desirable
outputs, by considering their directions in g, g)‘f ,and g)lf . The direction
vector g measures increases in desirable outputs and decreases in inputs
and undesirable outputs, stated as (x,y°, —y?). The direction value g
proportionally seeks to increase desirable outputs and decrease inputs
and undesirable outputs (Ramli et al., 2013). To state the DDF model
with undesirable outputs, some notations are introduced. Let x € R
represent an input vector, y¢ € R denote a desirable output vector,
¥® € R stand for an undesirable output vector. The DDF model in the
presence of undesirable outputs under VRS can be expressed as in model
(9) (Diabat et al., 2015).

max f3, €©)

subject to:

J
ZX,;/'LSX;U(I 7/}0) i= 17 sy M

=1

J
Zyr.ﬂv,/y,.o +B,) n=1,..., s,

J

Sy E,(0=p) n=1,... .5
Jj=1

J

Z’iz‘:

=

;20 j=1,...,J

B, €10, 1),

where f, is as previously defined, the parameters #; and the input var-
iable x; are the same as those defined in model (2), y¢ and y? are the
desirable and undesirable outputs of the jth DMU. Based on the direction
value f,, the efficiency scores of efficient and inefficient DMUs are
calculated using the target function 1-4,.

3.2. Non-oriented SBM model

Tone (2001) proposed the SBM model, which is a powerful non-
oriented DEA model that considers both input excesses and output
shortfalls simultaneously while dealing with their slacks. It projects an
inefficient DMU onto the efficient frontier. In addition, the SBM effi-
ciency score leaves no output or input uncalculated because the target
function takes into account all potential improvements to outputs and
inputs (Lozano & Gutiérrez, 2011). The SBM model evaluates the effi-
ciency of DMUj (j = 1, ..., J) by solving the fractional programme pre-
sented in model (10) (see Lo & Lu, 2009, p. 345).
po = min ki ]X"‘ (10)

L1y =

subject to:

J
E Xy = Xip —a; i=1,...,m
=1

J
Zyr/'”j = Yro + b:r

J=1

J
J=
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m—+s
Xios Yro € R

where a; andb; are the non-radial slacks of input excesses and output
shortfalls, and 1 is as defined in model (2). The SBM’s target function
calculates the ratio of the average input contraction to the average
output extension by computing the relative contraction rate of input i by
the term Zi, the term %Zf;lzi computes the average reduction rate of
the input i. On the other hand, the relative extension rate of the output r
is computed by the term )% ; the term %Zﬁzl;% computes the average
extension rate of the output r. Thus, the target function is a monotone
decreasing function with respect to input excesses and output shortfalls,
as well as unit-invariant since it does not depend on the measurement
unit for inputs and outputs. To ensure that both inputs and outputs
improve, the computed ratio of the target function should be appropri-
ately minimised; therefore, the model is non-radial.

Proposition 2. DMUo is efficient in the SBM model (10) if and only if its
efficiency score is equal to one (p, = 1). This condition is equivalent to all
input and output slacks being zero (i.e.,a; =b;" = 0). If the efficiency score is
equal to one (p, = 1), and some input and/or output slacks are positive, then
DMUo is weak-efficient. If the efficiency score is less than one, then DMUo is
SBM inefficient.

Model (10) is a non-oriented SBM. Tone (2001) was the first to lay
out the idea of an oriented SBM model (i.e., input- or output-oriented).
The oriented SBM model was then improved by Cooper et al. (2006, p.
142) to calculate the mix-efficiency measure. The input-oriented SBM (I-
SBM) model and output-oriented SBM (O-SBM) model can be expressed
as in (11) and (11.1).

m -

1

pg SBM — min 1 —— 4 an

‘=1 Xio
or

1 < bt -1

P97 = min 1_,’__2_’] (11.1)
S 4= Yro

subject to:

J
E Xl = Xip —a; i=1,...,m,
J=1

J
Yrj’?/:)Jerbf r=1,...,5,
=1
”j?oa j=1,. J
a; ) b0,

m-+s
Xios Yro S R+

Definitions of the input and output data, input and output slack
variables, and the intensity vector of model (11) are the same as those
defined in model (10).

Proposition 3. DMUo is said to be input-oriented SBM efficient after
running model (11) if and only if (i) its efficiency score is equal to one
(P SBM =1), and (ii) all input and output slacks are zero (i.e.,a; = b} =
0). If condition (ii) is not satisfied, then DMUo is weakly efficient. If neither
condition (i) nor condition (ii) is satisfied, then DMUo is I-SBM inefficient.

Tone’s (2001) non-oriented SBM model, presented in (10), considers
all inputs and outputs as desirable factors, which may conflict with
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many real-world applications. To overcome this limitation, Tone (2003)
developed a new SBM model that deals with undesirable outputs. In
considering Tone’s (2003) SBM model, we first examine the model’s
technology set, as outlined in (12).

T = {(v% ¥*)|x canproduce (%, y*), Xn<x, Yon2y°, Y¥n<y®, 520 }

12)
The parameters and variables of the technology set (12) are the same as
those in model (9). Tone’s (2003) SBM incorporates undesirable outputs

into the target function and the relevant undesirable output constraint.
Hence, the SBM model dealing with undesirable outputs can be pre-

sented as follows:
(=)
13)

7T, = min
1 51 bff $2 bfz
() (D - S
subject to:
J
Zx,-jnj =Xo—a;, i=1,...,m,
=1
J ~
ny.j'?/ =y, b n=1, ) 81
=1
J
nyzj']/ = YZO - bf; n=1,...,9,
=1
J
dom=1
=1
’1120 j=1, I,

— G+ B—
a;, byl ) b,g 207
G B Mm-S +s2
Xios yrl ) y"z S R+

where m is the number of inputs, s; and s, are the number of desirable
and undesirable outputs, respectively, s; represents the potential
reduction of inputs (input excesses), s2+ represents the potential
enhancement of desirable outputs (good output shortfalls), and s~
represents the potential reduction of undesirable outputs (bad output
excesses).

Due to the salient features of both oriented DDF and SBM models in
inputs and outputs, considered in DIDF model (6), DODF model (7), I-
SBM model (11), and O-SBM model (11.1), the efficiency scores gener-
ated by these efficiency measures can be incorporated to identify the

mix-efficiency measure in input- or output-oriented cases.
3.3. Mix-efficiency

The mix-efficiency (MIX) is a measure that estimates the level and
mix of inputs or outputs required to efficiently produce or consume a
given level of outputs or inputs (i.e., it reflects the degree to which the
input mix or output mix should change to achieve the efficient status)
(Puri & Yadav, 2013). In order to define the MIX of DMUo, the ratio of
the oriented SBM model (input- or output-oriented SBM) (see Cooper
et al., 2006, p. 142) to the oriented DDF model (DIDF or DODF model)
(see Chung et al., 1997, p. 231; Ramli et al., 2013, p. 387) should be
calculated. Therefore, the directional input or output mix-efficiency
(DIMIX or DOMIX) of DMUo is defined as:
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pL-sBM
pmix _ Po
o = T ,DIDF ()
9(}
or
pO = SBM
poMiX _ Po
o = T DODF s
90

Since the values of inputs and outputs in the data set are assumed to
be positive, the efficiency scores obtained from the DIDF and I-SBM in
models (6) and (11) are 0 < 65"<1 and 0 < piP¥gl foro = 1,...,J.
Note that pl;” SBM<gp™F reflects that the value resulted by applying Eq.
(14) or Eq. (15) is less than or equal to one (i.e., 0 < yP™X1). The
directional input mix-efficiency measure can achieve unity (yg™* = 1)
if and only if (2™ = pl~S®™). This implies that DMU, has the most
efficient combination of inputs, but it may be technically inefficient.

Due to the key role of the standard efficiency measures presented in
model (2), model (6), model. (7), model (11), as well as Eq. (14) and Eq.
(15), in proposing new efficiency measures, an illustration of these
standard efficiency measures is given by considering an example. The
data set for our considered example was retrieved from a study con-
ducted by Fare and Charles (2018). Two inputs and one unique output of
five DMUs are considered, as follows: A (1,2,1),B(1,1,1),C(2,1,1),D
(2,2, 1), and E (2, 4, 1). Now, to demonstrate DIMIX and DOMIX, the
DIDF and DODF in (6) and (7), as well as I-SBM and O-SBM in (11) and
(11.1), should be run. The I-SBM and O-SBM models are run using target
functions (11) and (11.1), as input- or output-oriented SBM models,
subject to the same combination of input and output constraints. The
aim of considering I-SBM and O-SBM models under the same set of input
and output constraints is to avoid the infeasibility issue that may occur
in the case of removing the output slack from the output constraint of I-
SBM or the input slack from the input constraint of O-SBM. All of the
considered efficiency measures are run under VRS to evaluate these five

XC:[xg]:[xlc7.~'a

y

=0t

YP = {ym‘

DMUs, whose results are tabulated in Table 2.

As observed in Table 2, the efficiency scores of all the evaluated units
resulting from the I-SBM model (column 4) are less than or equal to
those obtained from the DIDF model (column 2). In the same context,
the efficiency scores resulting from the O-SBM model (column 5) are
equal to those obtained using the DODF model (column 3). Besides, by
using Eq. (14) and Eq. (15), the DIMIX and DOMIX efficiency measures
were calculated, as shown in columns 6 and 7, respectively. Since all the
efficiency scores obtained from DODF are equal to one and are the same
as those obtained from the O-SBM model, the efficiency scores obtained
from DIMIX in Eq. (13) are smaller than or equal to those resulting from
DOMIX in Eq. (15). As a result, we can deduce that all the efficiency
measures have been appropriately run and calculated. In terms of
DIMIX, only DMUs B and D efficiently produce their given levels of
output based on the input mix consumed, while all of the DMUs are

Table 2
Results of DMUs.
DMU DIDF DODF I-SBM O-SBM DIMIX DOMIX
A 1 1 0.750 1 0.750 1
B 1 1 1 1 1 1
C 1 1 0.750 1 0.750 1
D 0.500 1 0.500 1 1 1
E 0.500 1 0.375 1 0.750 1

g em e, X =[] <[4, .., 4 emp, vo =[] = DF -
B

¥ € R
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efficient under DOMIX since they efficiently consume the given levels of
their inputs based on the output mix produced. In order to demonstrate
that the directional mix-efficiency measure obtained by Eq. (14) or Eq.
(15) is less than or equal to one, theorem 1 is introduced.

Theorem 1. The optimal efficiency scores of both DIMIX yD™X and

DOMIX yPOMX gre less than or equal to one.

Proof. Suppose that DMU(x,,y,) is DIDF inefficient, then we have
Pxio # 0. In the same context, suppose that DMU(x,,Y,) is I-SBM inefficient,
then we have at least one slack of inputs that has a positive value (i.e.,
a; # 0). The equality of 6°™F = pL=SBM holds if and only if the reduction
rate of inputs obtained from the I-SBM model is the same as that of the DIDF
model since px;, of DIDF is equivalent to input slack a; of I-SBM. Therefore,
the input mix-efficiency is equal to one. On the other hand, the DIMIX will be
less than one if and only if p}SBM < ¢2'PF. Since the definitions of inefficient
and efficient are mutually exclusive, theorem 1 is proven.[]

The optimality condition p0-S8¥ < §POPF of DOMIX can be proven in
the same manner as DIMIX, but the proof is omitted here for brevity.

4. Methodology

To build the mathematical formula for the proposed non-oriented
DDF and SBM models in the presence of uncontrollable inputs and un-
desirable outputs, we consider a production system comprised of J
DMUs. Each DMU has four factors: controllable inputs, uncontrollable
inputs, desirable outputs, and undesirable outputs. The vectors of the
controllable and uncontrollable inputs are described as x¢ e R,
xXNC e [Ri'f, while the vectors of the desirable (good) and undesirable
(bad) outputs are described as y¢ € R*, y® € R%. The matrices of these
four vectors are defined as:

.7yﬂ S Ri‘”,
(16)

All the values of the controllable and uncontrollable inputs and
desirable and undesirable outputs are assumed to be positive (i.
e, X¢ >0, XN¢ >0, Y’ >0, Y8 > 0). Because non-oriented efficiency
measures have a higher discrimination power in assessing the efficiency
of the DMUs, this paper proposes a new mix-efficiency measure based on
non-oriented DDF and SBM models with uncontrollable inputs and un-
desirable outputs. The new DDF and SBM models seek to decrease
controllable inputs and undesirable outputs, as well as increase desirable
outputs, while preserving uncontrollable inputs at their fixed levels, as
defined by the empirical PPS of the DDF and the SBM in (17) and (18). In
order to consider the technology of DDF with uncontrollable inputs and
undesirable outputs, assume (g # 0,gwc = 0,8y # 0,87 0) yields
the directional distance function in the existence of uncontrollable in-
puts and undesirable outputs, as formulated in (17). We set the direc-
tional vector of uncontrollable inputs to zero because their levels are
beyond management’s control.

Dy (€, ¥, 39, y%; ¢) = max|[p
€10, 1)](x“ = Bgc, ¥, y9 + Bgyo, ¥* — Bgye)
€T]

a7n
The DDF technology in (17) allows the controllable inputs to be
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decreased in the direction of g, while the uncontrollable inputs remain
constant in the direction of g€ since the direction is zero. In contrast, it
seeks to increase desirable outputs in the g}cf direction while decreasing
undesirable outputs in the gf direction. In other words, a proportional
rate § attempts to decrease controllable inputs and undesirable outputs,
while symmetrically increasing desirable outputs. This measurement
reduces controllable inputs and undesirable outputs and increases
desirable outputs by the direction vector of g. The technology set rep-
resenting all feasible combinations of controllable and uncontrollable
inputs, as well as desirable and undesirable outputs, is denoted by T.

The proposed empirical technology set (T) of DDF measures the
distance from a particular combination of controllable and uncontrol-
lable inputs, as well as desirable and undesirable outputs (x¢, x"¢, y©,
¥B) € RMtmtsits2 - to a point located on the efficient frontier in a
directional vector determined by g = (g« #0, gwc = 0, ge #0,
& 7& 0) IS RT1+M2+51+52.

The properties of the DDF technology set are the same as those of
SBM since the two models seek to reduce controllable inputs and un-
desirable outputs, as well as increase desirable outputs simultaneously,
while preserving uncontrollable inputs at their fixed levels. Hence, the
technology set of the two proposed models depends on identifying the
vector of input and output combinations and matrices of the data set (see
Tone, 2001, p.499). Thus, the technology set of the proposed DDF and
SBM models considers a convex linear combination of the inputs and
outputs, as formulated in (17) and (18). However, a difference between
DDF and SBM is that the former depends on proportional changes in the
directional vector of inputs and outputs to determine efficiency mea-
sures (see Chambers et al., 1998), while the latter depends on dispro-
portional changes in the input and output slacks to identify efficiency
measures.

T = [(XC, )LJVC7 yG7 yB) c le:|+mz+s|+sz
:chv YG’/I;yG’ Y8ﬂ<y87 n=1, ’720] 18)

XCI1<XC7 XNCI’]

In the PPS of DDF and SBM, 7 is defined as in model (2). Controllable
inputs are formulated as inequality, implying that these inputs are
strongly disposable. Because uncontrollable inputs are beyond the
management’s control, their levels are considered fixed, leading to the
formulation of the uncontrollable input constraint as an equality.
However, to prevent potential issues of infeasibility, the uncontrollable
input constraint was formulated as an inequality. The linear combina-
tion of DMUs with controllable inputs Xy is less than or equal to the
actual level of its related inputs x€, but equal to the actual level of its
related uncontrollable inputs of DMUo (i.e., X’y = x"¢). The weak
disposability assumption,” on the other hand, has been imposed on both
desirable and undesirable outputs. Therefore, the inequalities between
desirable and undesirable outputs are consistent with the assumption
that these outputs are null-joint6 (Li & Hu, 2012). The linear combina-
tion of desirable outputs (Y°y) is greater than or equal to the actual level
of its related factor of DMUo. By contrast, the linear combination of
undesirable outputs (Y27) is formulated similarly to that of controllable
inputs because the feature of undesirable outputs in decreasing their
levels is the same as that of controllable inputs. Reference sets, in gen-
eral, reveal the actual level of controllable and uncontrollable inputs, as
well as desirable and undesirable outputs, when compared to their linear

5 The undesirable outputs have two facets under the disposability technology.
On the one hand, some undesirable outputs, such as CO, emissions from a coal-
fired power generation, can only be formulated under the weak disposability
technology. On the other hand, the strong disposability technology can be
imposed on DEA models dealing with some undesirable outputs, such as SO,
emissions (Yang & Pollitt, 2009). For simplicity, this paper makes the
assumption of weak disposability on the constraint of undesirable outputs.

6 It reveals that if desirable outputs of a production process are produced,
then some undesirable outputs should be produced as well (Arabi et al., 2014).
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combinations (a set of all efficient DMUs, which can be a benchmark for
inefficient DMUs). It should be noted that in (18) is proposed under the
VRS technology.

The following are the mathematical nomenclatures of data and
variables in the two new models proposed:

4.0.1. Parameters

i: 1, ..., m; index of controllable (i.e., discretionary) inputs.

mj: number of controllable inputs.

: 1, ..., my index of uncontrollable (i.e., non-discretionary) inputs.

my: number of uncontrollable inputs.

ri: 1, ..., s; index of desirable (i.e., good) outputs.

s7: number of desirable outputs.

ra: 1, ..., sz index of undesirable (i.e., bad) outputs.

so: number of undesirable outputs.

j 1, ..., J index of evaluated DMUs.

o: subscript factor revealing a specific DMU whose efficiency is being
measured.

J: number of DMUs whose efficiency is being measured.

x¢: positive amount of controllable input i of DMUo.

xC: positive amount of uncontrollable input ! of DMUo.

yfl o : positive amount of desirable output r; of DMUo.

yfz . : positive amount of undesirable output ro of DMUo.

4.0.2. Variables

@1y, - - -, n,): non-negative multipliers used for calculating a refer-
ence set of evaluated DMUs in the data set.

ag;: controllable input slack (i.e., potential reduction) of controllable
input i of DMUo.

aN¢~: uncontrollable input slack of uncontrollable input I of DMUo.

bfl(,*: desirable output slack (i.e., potential expansion) of desirable
output r; of DMUo.

b’fz;: undesirable output slack (i.e., potential reduction) of undesir-

able output r, of DMUo.

4.1. Improved non-oriented DDF model

By relying on the theoretical concepts of the DDF model introduced
in Chambers et al. (1998), Diabat et al. (2015), Ramli et al. (2013), and
Yahia et al. (2018), we derive a non-oriented DDF model in the presence
of uncontrollable inputs and undesirable outputs (DDF-NCIUO) for
evaluating DMUo as formulated in (19):

1-5
: NCIUO — 0 19
min Tu 1+ﬂ0 ( )
subject to
J
Soxn<al(1=8,) i=1,...,m, (19a)
=1
J
Do <aS I=1,....m (19b)
j=1
J ol ~
Zyﬁjﬂjzyzo(l+ﬁo) rn=1,...,s, (19¢)
j=1
J
DoAmOE,=p) n=1,... s, (19d)
j=1

inj =1 (19e)
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1,20, j=1....J (19D
6, €100, 1)
xg’ )H]\IJ)C7 yrGIm yfzo c RT|+mz+.\|+.\-2.

Model (19) is a non-oriented DDF model that takes uncontrollable inputs
and undesirable outputs into account. A DMU, assessed by model (19)
guarantees efficient status if and only if g, = 0, and all slacks are zero
(see Proposition 1). Otherwise, DMUj is inefficient. The DDF in model
(19) depends on a direction vector value (i.e., f,) to identify the pro-
portionate decrease in controllable inputs and undesirable outputs and
the increase in desirable outputs. The uncontrollable input constraint
(19b) should not incorporate the directional value since the levels of
these inputs are beyond the control of the DMU’s management. Despite
this, constraint (19b) is formulated as an inequality to preempt potential
infeasibility issues (refer to Rashidi et al., 2015, p.5; Taleb et al., 2018,
p-17). Such efficiency minimisation should only be identified based on
the directional vectors of controllable inputs, as well as desirable and
undesirable outputs. However, the constraint of uncontrollable inputs
should be considered in the efficiency model to ensure fair evaluations
(Saati et al., 2011, p. 47). The proposed DDF model satisfies the feasi-
bility condition under the CRS and VRS technologies because it simul-
taneously takes into account the reduction in controllable inputs and
undesirable outputs, as well as the increase in desirable outputs, by
considering their directional vectors.

Further, it is costly to reduce undesirable outputs without a reduction
in desirable outputs. Therefore, desirable outputs should also be reduced
to make sure that the new vector of controllable inputs, uncontrollable
inputs, desirable outputs, and undesirable outputs (x¢, xV¢, y¢, yB) is
feasible. In particular, each reduction in undesirable outputs cannot
occur freely (Yahia et al., 2018, p.122; Ramli et al., 2013, p.287; Toloo
et al., 2018, p.3). Thus, the assumption of weak disposability has been
imposed on the undesirable output constraint (19d). As a result, this
constraint is formulated as an inequality. Since the DDF model (19) is a
generalised version of the DIDF and DODF models, whose target func-
tions are considered in models (6) and (7), the efficiency score is the
product of the distance in the DIDF model and the distance in the DODF
model (i.e., models (6) and (7)).

Proposition 4. DMU, is Pareto-Koopmans efficient in the DDF-NCIUO
model if and only if its directional input and output vector values are zero
(i.e., p, = 0). This condition is equivalent to the efficiency score of DMU,
being equal to one (i.e., tNUO = 1). If the directional vector value lies in the

interval (0, 1), then DMUo is inefficient.

4.2. Improved non-oriented SBM model

We modify the SBM model of Tone (2003) by incorporating uncon-
trollable inputs into a specific input constraint of the model. The slack of
uncontrollable inputs is omitted from the model’s (20) target function
because the efficiency evaluation only depends on controllable vari-
ables, whereas the slack of uncontrollable inputs can be considered in its
relevant constraint to avoid the infeasibility issue (see Esmaeili, 2009,
p-4823). Thus, under the VRS technology, an SBM for the case of un-
controllable inputs and undesirable outputs (SBM-NCIUO) is proposed
for evaluating DMU,, as follows:

my af
2t
io

1— L

m

SN0 = min (20)
| | s WY o W
i | Zneng + Xna,
subject to:
J
C C C—
J=1

10
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J
Do =l —a e I=1, . m, (20b)
Jj=1
J
Do = v, + b =1, ) S1 (20¢)
=
J
DoV = Vi, — b n=1, ..., (20d)
Jj=1

constraints (19e and 19f)

ai™20, @) 20, b7"20, b2 >0,

C (o G B
X X0 s Yo or Y0,

my +my+s)+2
io? *lo € R+ :

Model (20) computes the ratio of the average reduction rate of
controllable inputs to the average of desirable output expansion and
undesirable output reduction based on the slacks of controllable input
excesses (af ), desirable output shortfalls (b$+), and undesirable output
excesses (bfz’) to determine whether DMU, is efficient or not. The slacks
of controllable inputs and undesirable outputs consider how much
controllable inputs and undesirable outputs can be decreased, while the
slacks of desirable outputs consider how much desirable outputs can be
increased to achieve efficient status. Note that the VRS technology has
been imposed on model (20) by adding the convexity constraint (19e).
Model (20), which is a fractional programme, must be converted into a
linear programme to obtain the optimal efficiency measures. The opti-
mality of the efficiency measures can be obtained by solving the linear
programme presented in model (A.2) in Appendix A.

Theorem 2. The proposed SBM model with uncontrollable inputs and
undesirable outputs always achieves feasibility conditions under CRS and
VRS technologies.

Proof. Radial models do not concurrently impose input and output slacks
in their relevant input and output constraints. As a result, the efficiency scores
derived from these models do not reflect all the inefficiencies of inefficient
DMUs, leading to increased infeasibility, especially in some cases of VRS. In
contrast, Tone (2001) demonstrated that the SBM model (10) is always
feasible under CRS and VRS. Therefore, we assert that the proposed non-
radial SBM model (20) also achieves feasibility under CRS and VRS
because its input and output constraints concurrently address both
controllable and uncontrollable input slacks, as well as desirable and
undesirable output slacks. Simultaneous consideration of input and
output slacks ensures that the right-hand side of each constraint equals
the left-hand side of the relevant constraint. This implies that

<xi(?; _Zj:1x5> 2 OijJ:lxg’C’?j =
J J
(Xﬁfc *ijle}lc) > 0»2;:1}’%71]- :.yrGlo +

J Cp _C _C— i _ o
§j:1xijr]j =X —s; i =1,...,m,s;” =

C _NC— ] _ c—
€ —sNC= 1 =1,...,my, s

SG+

J

= <yf;o - Z)’fy”?,) > 0.

j=1

[JHence, (n, s¢, sf"c’,sﬁ*,sfz’> is a feasible solution to the proposed
SBM model.

Proposition 5. DMU, is efficient under SBM-NCIUO (20) if and only if its
efficiency score is equal to one (SN“'V° = 1). This condition is satisfied if all
the slacks of controllable inputs, desirable outputs, and undesirable outputs
are zero, while the slack of uncontrollable inputs is not required to be zero
because its mathematical term is not considered in the model’s (20) target
function. Otherwise, DMU,, is inefficient.
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At this point, the efficiency scores using DDF-NCIUO (19) and SBM-
NCIUO (20) can be calculated. The computed ratio of efficiency scores
resulting from model (20) to DDF-NCIUO efficiency scores represents a new
directional mix-efficiency measure with uncontrollable inputs and undesir-
able outputs (MIX-NCIUO). MIX-NCIUO of DMUo (yNU°) is calculated as
in (21):

NCIUO
60

I/INCIUO —
o

NCIUO
TNCIUO’ %o ?/: 0
o

(21)

5. Numerical results and discussion of net-zero
5.1. Data and variables

To illustrate the applicability and usefulness of the proposed effi-
ciency measures, data on the eco-efficiency of 25 OECD countries were
used. The data set was retrieved from Rashidi et al.’s (2015) study and is
presented in Table Bl in Appendix B. Each country was assigned the
status of DMU and its efficiency measures were calculated. To measure
the OECD countries’ directional mix-efficiency, six significant factors
related to controllable and uncontrollable inputs, as well as desirable
and undesirable outputs, were chosen (Fig. 1). The controllable inputs
are the labour force, coal consumption, and petroleum consumption,
while the uncontrollable input is the average precipitation. The desir-
able and undesirable outputs are gross domestic product (GDP) and CO,
emissions. Table 3 presents the characteristics of the data set for the 25
OECD countries.

To effectively discriminate between efficient DMUs, the number of
evaluated DMUs in a DEA model should be, according to a common rule
of thumb, at least three times larger than the total number of inputs and
outputs. Otherwise, the problem of discrimination may arise. Further-
more, DEA approaches are based on the assumption that the relationship
between inputs and outputs is linear (Lu, 2012; Taleb et al., 2019). The
relationship between GDP, which is commonly used in macroeconomics,
and the labour force was positive, i.e., 0.629. As a result, the labour force
plays a crucial role in economic prosperity. Furthermore, the relation-
ship between GDP and CO, emissions was strongly positive, i.e., 0.920.
Fare et al. (2004) obtained a comparable result. Average precipitation is
one of the most important environmental factors in pollution reduction.
Furthermore, because their relationship was positive, i.e., 0.631, both
petroleum and coal consumption are relevant environmental factors for
measuring eco-efficiency.

5.2. Eco-efficiency analysis of OECD countries

Table 4 reports the efficiency scores obtained from models (19), (20),
and (21). The efficiency scores of models (19) and (20) under the CRS
technology are presented in columns 2 and 3, while their efficiency
scores under the VRS technology are presented in columns 5 and 6. The

Labor force
(controllable input)

h 4

» GDP
(desirable output)

Coal consumption
(controllable input)

A 4

OECD countries
(DMUs)

Petroleum
consumption
(controllable input)

CO, emissions
“|(undesirable output)

Precipitation
(non-controllable
input)

h 4

Fig. 1. Production model of OECD countries.
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efficiency scores were then used to compute the directional mix-
efficiency measure under both technologies, which is shown in col-
umns 4 and 7. Lingo software version 14 was used to obtain all of the
optimal efficiency score values.

According to Propositions 4 and 5 under the CRS technology, only six
countries achieved eco-efficiency (efficiencies of 100 %) in the DDF-
NCIUO (19) and SBM-NCIUO (20) models, as reported in columns 2
and 3. As a result, they achieved directional mix-efficiency under a full-
efficient status. This indicates that these are the countries in the sample
with the most effective environmental performance. It can also be seen
that the efficiency scores of the majority of eco-inefficient countries
produced by model (19) under CRS and VRS were rather high. In
contrast, among the eco-inefficient countries yielded by model (20)
under CRS, 11 inefficient countries have efficiency scores of less than 40
% (i.e., Australia, Canada, the Czech Republic, Greece, Hungary, The
Netherlands, Poland, Portugal, Slovakia, South Korea, and Turkey). In
the same context as model (19), 10 eco-inefficient countries achieved
low efficiencies (below 40 %) under VRS. As a result, inefficient coun-
tries that scored high on efficiency under models (19) and (20) also
scored high on directional mix-efficiency.

According to columns 5 and 6 of Table 4 under the VRS technology,
14 countries achieved the eco-efficient status in model (19), while 10
countries achieved the eco-efficient status in model (20) because it was
considered that Australia, Canada, Hungary, and Slovakia were eco-
inefficient. The efficiency scores of the DDF model (19) were observed
to be greater than or equal to those of the SBM model (20), indicating the
main relationship between the DDF and SBM models (see Fare & Gros-
skopf, 2010, p. 321). Column 7 shows that there are six directional mix-
inefficient countries with efficiency scores obtained from Eq. (21) under
VRS that are less than 40 % (i.e., Australia, the Czech Republic, Hungary,
Poland, Slovakia, and Turkey). These countries were low-efficient under
model (20), while their efficiency scores obtained from model (19)
under VRS were relatively high, causing low mix-efficiency.

Under the RTS technology, the CRS efficiency scores of models (19)
and (20) were less than or equal to the VRS efficiency scores of both
models. In contrast, not all directional mix-inefficiency scores under CRS
were lower than those under VRS, as shown in columns 4 and 7. The
main reason for that is that the difference between the efficiency scores
obtained from the SBM model (20) and the DDF model (19) (i.e., the
numerator and denominator of Eq. (21)) under VRS is greater than that
obtained from CRS. For example, the difference between the SBM and
DDF efficiency scores of Australia under CRS is 0.0928, while it is equal
to 0.6265 under VRS for the same DMU. Therefore, we deduce that the
efficiency scores of input or output mix-efficiency under VRS need not be
greater than those under CRS (Taleb, 2023).

Spearman’s rank correlation’ was used to ensure that the efficiency
scores obtained from models (19), (20), and Eq. (21) under the CRS and
VRS technologies were consistent. The correlations between the effi-
ciency scores of models (19) and (20) under CRS and VRS were strongly
positive, i.e., 0.9017 with a p-value of zero and 0.7364 with a p-value of
0.00003, respectively. More specifically, the correlation between the
efficiency scores of model (19) under the two technologies was 0.6475
with a p-value of 0.0004. The efficiency scores of model (20) under CRS
and VRS were also strongly correlated, i.e., 0.8967 with a p-value of
zero. Similarly, the correlation coefficient resulting from Eq. (21) be-
tween the CRS and VRS directional mix-efficiency scores was strongly
positive, i.e., 0.8094 with a p-value of zero. Up to this point, the CRS and

7 A statistical measure that analyses the linear relationship between two
variables; thus, it is suitable for use in DEA. The value of correlation ranges
between +1 and -1. The value of +1 indicates that the relationship between the
two variables is positive, implying that an increase in one variable will result in
an increase in the other variable. In contrast, the value of -1 indicates that the
relationship between the two variables is negative, implying that an increase in
one variable will result in a decrease in the other variable.
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Table 3

Characteristics of the data set of the 25 OECD countries.
Factors Mean Std. dev. Unit Category Notation
Labour force' 186.618 208.630 One hundred thousand workers Controllable input xlcj
Coal”® consumption 57.933 71.956 Million tons/year Controllable input xgj
Petroleum® consumption 102.256 113.018 Ten thousand barrels/day Controllable input xg].
Average precipitation” 876.64 359.802 Millimetre/year Uncontrollable input x’l‘j.c
GDP® 1003.727 1135.677 Billion US$ Desirable output _yf]
CO, emissions® 269.554 290.201 Million tons/year Undesirable output y‘f]

1 1t refers to everyone who meets the requirements to be counted among the employed.

2 It represents one of the main energy sources used in the industrial, transportation, education, and residential sectors.

3 1t refers to both crude oil occurring unprocessed and petroleum products consisting of refined oil.

* Condensation of atmospheric water that falls under clouds contributes to producing precipitation, rain, drizzle, sleet, and snow are the main forms of precipitation.
Therefore, precipitation and temperature are obvious instances of uncontrollable factors in the environment (Rashidi et al., 2015).

5 A monetary measure of economic activities related to final goods and services production.

5 They involve carbon dioxide emissions produced during the burning of fossil fuels, as well as consumption of liquid, solid, and gas fuels.

Table 4
Results of various efficiency measures.

DMU Efficiency scores under CRS technology Efficiency scores under VRS technology
ZNaiuo sNciwo yNGIUO Model (21) NCIwo SNCIUO el 20y yAaio
Model (19) Model (20) Model (19) Model (21)

Australia 0.4595 0.3667 0.7980 1 0.3735 0.3735
Austria 0.7645 0.4347 0.5686 0.7827 0.4523 0.5778
Belgium 0.8698 0.4469 0.5137 0.9176 0.4534 0.4941
Canada 0.8755 0.3851 0.4398 1 0.4425 0.4425
The Czech Republic 0.5090 0.1724 0.3387 0.6511 0.2181 0.3349
Denmark 0.9853 0.6952 0.7055 1 1 1
Finland 0.7928 0.4004 0.5050 1 1 1
France 1 1 1 1 1 1
Germany 1 1 1 1 1 1
Greece 0.5638 0.2329 0.4130 0.6242 0.2776 0.4447
Hungary 0.5024 0.1810 0.3602 1 0.3211 0.3211
Iceland 0.9525 0.5700 0.5984 1 1 1

Italy 0.9452 0.7196 0.7613 0.9501 0.7196 0.7573
Japan 0.7276 0.4120 0.5662 1 1 1
Luxembourg 1 1 1 1 1 1

The Netherlands 0.5788 0.2751 0.4752 0.5953 0.2778 0.4666
Norway 1 1 1 1 1 1
Poland 0.5018 0.1794 0.3575 0.6192 0.1913 0.3089
Portugal 0.4693 0.2218 0.4726 0.5294 0.2685 0.5071
Slovakia 0.5949 0.1576 0.2649 1 0.2385 0.2385
South Korea 0.4428 0.1953 0.4410 0.4439 0.2070 0.4663
Spain 0.7124 0.4509 0.6329 0.9870 0.4526 0.4585
Sweden 1 1 1 1 1 1
Turkey 0.5795 0.2397 0.4136 0.7115 0.2450 0.3443
UK 1 1 1 1 1 1
Average 0.7530 0.5094 0.6250 0.8724 0.6055 0.6614

VRS efficiency scores generated by the three proposed models for the 25
OECD countries have been calculated and interpreted. In addition, the
correlation coefficients between the resulting efficiency scores were
investigated. In order to illustrate the effect of proposing new factors on
the efficiency scores of standard models, the overall performance of the
proposed new efficiency models must be evaluated.

5.3. Evaluation of the overall performance of the proposed models

Because the proposed directional mix-efficiency measure in (21) is
dependent on the proposed non-oriented DDF in model (19) and the
proposed SBM in model (20), Spearman’s rank correlation is examined
between the efficiency scores of model (19) and those of the standard
DDF model in (2), as well as the efficiency scores of model (20) and those
of the standard SBM model in (10), under the CRS and VRS technologies.
This comparison aims to ensure that uncontrollable inputs and unde-
sirable outputs have been appropriately integrated into the standard
models by achieving a strong positive correlation. In this case, the
overall performance of the two proposed efficiency models over the
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evaluation period has been achieved. The efficiency scores of the stan-
dard models and the proposed models under CRS and VRS are reported
in Table 5.

Table 5 reveals the efficiency scores of the standard models in (2) and
(10) under CRS and VRS in columns 2 to 5, while the efficiency scores of
the proposed models in (19) and (20) under CRS and VRS, retrieved from
Table 4, are presented in columns 6 to 9. To be noted that the efficiency
levels resulting from a DEA model are sensitive to different integrated
factors (Taleb, Khalid, Emrouznejad et al., 2023). In particular, because
DEA is a non-parametric approach, the linear relationship between the
efficiency scores obtained from two compared DEA models could be
measured using the non-parametric measure of Spearman’s correlation
coefficient. Therefore, it is imperative to establish whether the resultant
rankings from models (19) and (20), as well as models (2) and (10), are
similarly affected. In doing so, Spearman’s rank correlation coefficients
between the efficiencies of the standard models and the proposed
models were examined, as reported in Table 6.

Table 6 reports the rank correlation coefficients between the stan-
dard model in (2) and the proposed model in (19), as well as the
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Table 5
The efficiency scores of the standard and proposed models.
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Country Efficiency scores of the standard models Efficiency scores of the proposed models
DDF Model ~ DDF Model ~ SBM Model SBM Model DDF-NCIUO Model ~ DDF-NCIUO Model ~ SBM-NCIUO Model ~ SBM-NCIUO Model
(2 (2 (10) (10) 19 19) (20) (20)
CRS VRS CRS VRS CRS VRS CRS VRS
Australia 1 1 1 1 0.4595 1 0.3667 0.3735
Austria 0.8981 0.9211 0.7061 0.8326 0.7645 0.7827 0.4347 0.4523
Belgium 0.9979 1 0.8993 1 0.8698 0.9176 0.4469 0.4534
Canada 1 1 1 1 0.8755 1 0.3851 0.4425
The Czech 1 1 1 1 0.5090 0.6511 0.1724 0.2181
Republic
Denmark 0.9961 1 0.8163 1 0.9853 1 0.6952 1
Finland 1 1 1 1 0.7928 1 0.4004 1
France 1 1 1 1 1 1 1 1
Germany 1 1 1 1 1 1 1 1
Greece 0.6981 0.7223 0.4554 0.5707 0.5638 0.6242 0.2329 0.2776
Hungary 0.9859 1 0.5306 1 0.5024 1 0.1810 0.3211
Iceland 0.7152 1 0.4295 1 0.9525 1 0.5700 1
Italy 1 1 1 1 0.9452 0.9501 0.7196 0.7196
Japan 0.9232 1 0.8289 1 0.7276 1 0.4120 1
Luxembourg 1 1 1 1 1 1 1 1
The Netherlands ~ 0.6830 0.7757 0.4311 0.4886 0.5788 0.5953 0.2751 0.2778
Norway 1 1 1 1 1 1 1 1
Poland 1 1 1 1 0.5018 0.6192 0.1794 0.1913
Portugal 0.7362 0.8543 0.4859 0.6356 0.4693 0.5294 0.2218 0.2685
Slovakia 1 1 1 1 0.5949 1 0.1576 0.2385
South Korea 0.8005 0.8156 0.4814 0.4889 0.4428 0.4439 0.1953 0.2070
Spain 0.8349 0.9805 0.7454 0.8762 0.7124 0.9870 0.4509 0.4526
Sweden 0.9380 1 1 1 1 1 1 1
Turkey 0.9280 0.9815 0.7177 0.8195 0.5795 0.7115 0.2397 0.2450
UK 1 1 1 1 1 1 1 1
bl efficiency scores of the proposed models have been calculated effi-
IT/[at € 6 Lati ¢ standard and d efficienci ciently. Additionally, varying levels of efficiency indicate that the
atrix correlations of standard and proposed efficiencies. - e .
prop rankings are significant and remarkable (Johnes & Li, 2008, p.689).
DDFmodel ~ DDFmodel ~ SBMmodel  SBM model To visually illustrate the overall performance evaluation of the pro-
(19)-CRS (19)-VRS (20)-CRS (20)-VRS posed models, graphical representations are displayed in Fig. 2. The
DDF model 0.3647 - - - figure showcases the efficiency scores resulting from both the standard
(2)-CRS and the proposed DDF models in (a) and those generated by the standard
DDF model - 0.7527 - - . ) A
(2)-VRS and proposed SBM models in (b). In both figures, it is evident that the
SBM model _ _ 0.3181 _ efficiency scores generated by the proposed DDF and SBM models,
(10)-CRS depicted by black bars, are either less than or equal to those generated
SBM model - - - 0.5098 by the corresponding standard models, depicted by grey bars, for all
(10)-VRS

standard model in (10) and the proposed model in (20), under CRS and
VRS. The obtained efficiencies are positive and relatively highly corre-
lated, especially those obtained under the VRS technology. Therefore,
the overall performance of the proposed models has been achieved. This
indicates that uncontrollable inputs and undesirable outputs have been
properly integrated into the standard models and confirms that the

evaluated OECD countries. Lower efficiency scores coincide with more
substantial decreases in inputs and increases in outputs, contributing to
the accurate efficiency performance of the DMUs by eliminating bias in
efficiency measures. Consequently, uncontrollable inputs and undesir-
able outputs significantly impact the proposed DDF and SBM models.

DDF Model (2) VRS
W DDF-NCIUO Model (19) VRS
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(a) Efficiency scores of the DDF models.

(b) Efficiency scores of the SBM models.

Fig. 2. Evaluating the performance of the proposed DDF and SBM models.
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Table 7
Classifications of RTS for the 25 OECD countries.

Computers & Industrial Engineering 189 (2024) 109967

Country Efficiency measures of model (19) Efficiency measures of model (20)
A A Y RTS o A Y kTS

Australia 0.4595 1 0.6297 Increasing 0.3667 0.3735 0.4577 Increasing
Austria 0.7645 0.7827 0.7914 Increasing 0.4347 0.4523 0.7862 Increasing
Belgium 0.8698 0.9176 0.6192 Increasing 0.4469 0.4534 0.6226 Increasing
Canada 0.8755 1 0.5786 Increasing 0.3851 0.4425 0.5337 Increasing
The Czech Republic 0.5090 0.6511 0.4815 Increasing 0.1724 0.2181 0.3238 Increasing
Denmark 0.9853 1 0.5036 Increasing 0.6952 1 0.5046 Increasing
Finland 0.7928 1 0.3859 Increasing 0.4004 1 0.3865 Increasing
France 1 1 1 Constant 1 1 1 Constant
Germany 1 1 1 Constant 1 1 1 Constant
Greece 0.5638 0.6242 0.4726 Increasing 0.2329 0.2776 0.4696 Increasing
Hungary 0.5024 1 0.4175 Increasing 0.1810 0.3211 0.2542 Increasing
Iceland 0.9525 1 0.0490 Increasing 0.5700 1 0.0518 Increasing
Italy 0.9452 0.9501 0.8615 Increasing 0.7196 0.7196 0.8513 Increasing
Japan 0.7276 1 1.9355 Decreasing 0.4120 1 1.6792 Decreasing
Luxembourg 1 1 1 Constant 1 1 1 Constant
The Netherlands 0.5788 0.5953 1.1635 Decreasing 0.2751 0.2778 0.6233 Increasing
Norway 1 1 1 Constant 1 1 1 Constant
Poland 0.5018 0.6192 0.4463 Increasing 0.1794 0.1913 0.4319 Increasing
Portugal 0.4693 0.5294 0.6778 Increasing 0.2218 0.2685 0.4594 Increasing
Slovakia 0.5949 1 0.2680 Increasing 0.1576 0.2385 0.1562 Increasing
South Korea 0.4428 0.4439 0.9430 Increasing 0.1953 0.2070 0.9521 Increasing
Spain 0.7124 0.9870 0.6273 Increasing 0.4509 0.4526 0.6172 Increasing
Sweden 1 1 1 Constant 1 1 1 Constant
Turkey 0.5795 0.7115 0.4554 Increasing 0.2397 0.2450 0.4375 Increasing
UK 1 1 1 Constant 1 1 1 Constant

5.4. Estimating the returns-to-scale for OECD countries

The proposed models (19) and (20) were used to compute the effi-
ciency scores of 25 OECD countries under the CRS and VRS technologies.
Each of these models is employed to identify the RTS region of the
evaluated countries.

As aresult, the RTS region for each country is identified, whether it is
CRS, IRS, or DRS. Table 7 shows the classification of their regions. The
three conditions proposed by Zhu and Shen (1995) are used to estimate
the nature of RTS. These conditions depend on the value of the intensity
variable,r;, which corresponds to the CRS efficiency scores. Thus, the
nature of RTS can be defined as follows:

i. If the efficiency scores of DMU, obtained from the DDF-NCIUO

model (19) under CRS and VRS are equal (i.e., thgi'© =
7H<U0), and the intensity factor value corresponding to the CRS

efficiency score is one (i.e.,zjjzlqj = 1), then the returns-to-scale
of DMU, function under a CRS region.
ii. If the efficiency scores of DMU, resulting from model (19) are not
equal under CRS and VRS (i.e., hga © # 1yge ©), and the intensity
factor value corresponding to the CRS efficiency score is less than
one (ijlnj < 1), then DMU, functions under an IRS region.
If (35P0 £ 2NCWO) of DMU, obtained from model (19) are not
equal under CRS and VRS, and the intensity factor value corre-
sponding to the CRS efficiency score is greater than one

(Z]Llnj > 1), then DMU, functions under a DRS region.

iii.

The three conditions of RTS are also used to identify the RTS region
based on the SBM-NCIUO model (20), as displayed in columns 6 to 9 in
Table 7. An inefficient DMU can be projected onto the efficient frontier
to estimate its RTS classification (Seiford & Zhu, 1999). Here, it is worth
noting that RTS provides a clear meaning only if DMU, can be projected
onto the efficient frontier constructed by the VRS technology.

Columns 2, 3, 6, and 7 contain the efficiency scores of models (19)
and (20) under CRS and VRS, retrieved from Table 4. Using the three
RTS conditions, the identified RTS regions by each of the proposed
models in (19) and (20) are shown in columns 5 and 9. The findings
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reveal that six countries—France, Luxembourg, Germany, Norway,
Sweden, and the UK—function in the CRS region in models (19) and (20)
because they achieved efficient status under CRS and VRS. This implies
that their production frontier is operating under the optimal condition.
The remaining 19 countries are CRS-inefficient and are classified in the
IRS or DRS region.

On the IRS side, the majority of the CRS-inefficient countries, which
are 17 countries in model (19) and 18 countries in model (20), function
in the IRS region. This indicates that they were not operating at optimal
levels during the time period under consideration. They had excesses in
their controllable inputs and/or undesirable outputs, and any additional
amount of desirable output would result in higher returns. Therefore, to
increase their environmental performance and achieve the most pro-
ductive scale size, these countries must focus on their controllable inputs
and undesirable outputs (Ahn et al., 1989).

On the DRS side, among the 19 CRS-inefficient countries, two
countries—Japan and the Netherlands—function in the DRS region in
model (19), while only Japan functions in the DRS region in model (20)
since the DRS of the Netherlands changed to the IRS in model (20). The
reason behind that change is that Zhu and Shen’s (1995) RTS conditions
depend on identifying the sum of intensity variables regarding the CRS
technology of DDF and SBM, as well as the CRS and VRS efficiency
scores resulting from the DDF and SBM models. Thus, the Netherlands
was classified as DRS in DDF and IRS in SBM. The DRS reflects that any
additional amounts of controllable inputs and/or undesirable output
will decrease the returns for these countries (ie., Japan and the
Netherlands). This suggests that these inefficient countries should in-
crease their desirable outputs in order to achieve better environmental
performance. Italy’s inefficiency scores in model (20) were the same
under both technologies. However, it did not function in the CRS region
because the sum of its intensity variable values was not equal to one and
its efficiency score was less than one (i.e., inefficient status).

6. Academic and managerial implications

Both the academic and managerial implications of this research are
considered in this section. From an academic standpoint, the need for a
more effective environment has become increasingly urgent in this age
of economic competition. In this regard, this study contributes to the
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establishment of the main concept revealing the environmental effi-
ciency of OECD countries considering net-zero. This research proposes a
new directional mix-efficiency measure considering the impacts of both
uncontrollable inputs and undesirable outputs on environmental effi-
ciency. Thus, this research proposes a methodology that incorporates
both environmental factors into the standard DDF and SBM efficiency
measures. The proposed efficiency measures contribute to the exami-
nation of the impacts of uncontrollable inputs and undesirable outputs
on environmental efficiency. This research can thus lead to further
application and refinement of the proposed environmental efficiency
measures. Many DEA studies have been conducted to assess the envi-
ronmental efficiency of OECD countries (e.g., Emrouznejad, 2003;
Emrouznejad & Thanassoulis, 2010; Fare et al., 2004; Rashidi et al.,
2015; Zhou & Ang, 2008; Ziolo et al., 2020). However, these studies did
not account for the simultaneous effect of uncontrollable inputs and
undesirable outputs on the mix-efficiency measure and returns-to-scale,
as well as net-zero. Therefore, this research is meaningful and can pro-
vide new avenues for future research in another area of ecological
economics. The ability of the proposed methodology to measure and
analyse the environmental efficiency of OECD countries makes it an
effective methodology for assessing the impact of CO, emissions on the
realisation of net-zero.

From another perspective, this research has several managerial im-
plications. First, the findings from the proposed efficiency measures
confirm that among the ten eco-efficient countries, six of them (i.e.,
France, Germany, Luxembourg, Norway, Sweden, and the UK) have the
capacity to achieve net-zero CO; emissions during the examined period,
as these six countries have achieved the eco-efficient status under all of
the proposed efficiency measures and have been operating in the CRS
region. Second, the classification of inputs as controllable and uncon-
trollable, as well as outputs as desirable and undesirable, enables the
management of OECD countries to determine sources of inefficiency,
allowing for the improvement of eco-inefficient countries. Third, based
on the proposed efficiency measures, the OECD management can
determine the returns-to-scale for efficient and inefficient countries in
order to identify the impact of a proportional increase in inputs that
leads to a proportional increase or decrease in outputs. Fourth, the
measure of the directional output mix-efficiency can be used to deter-
mine the degree to which a desirable or undesirable output should
change in order to achieve eco-efficient status. Fifth, achieving net-zero
CO; emissions can support the management of eco-efficient OECD
countries in order to achieve prosperity in various sectors.

7. Conclusions, limitations, and directions for future research

In real-life production processes, some inputs are uncontrollable, and
some outputs are undesirable. Conventional DEA models cannot handle
these situations because they assume that all inputs are controllable, and
all outputs are desirable. As a result, the models’ reference targets may
be inaccurate, leading decision-makers to be misled. To obtain a more
accurate efficiency measure, this paper proposes a new directional mix-
efficiency measure with uncontrollable inputs and undesirable outputs,
called MIX-NCIUO. MIX-NCIUO is based on two proposed non-oriented
models, which are DDF and SBM. Furthermore, the efficiency measures
of the proposed models have been obtained under the two RTS tech-
nologies (i.e., CRS and VRS).

MIX-NCIUO was measured based on the newly proposed non-
oriented models to assess the ecological efficiency of 25 OECD coun-
tries. Each country is treated as an independent DMU, with controllable
and uncontrollable inputs producing desirable and undesirable outputs.
The efficiency measures have been obtained under the CRS and VRS
technologies. Under CRS, six countries achieved directional mix-
efficiency. Meanwhile, ten countries achieved directional mix-
efficiency under VRS. This implies that, when compared to other
OECD countries, these countries have achieved effective environmental
performance. Additionally, the efficiency scores obtained by the
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proposed non-oriented DDF model were greater than or equal to those
obtained by the proposed non-oriented SBM model under CRS and VRS.
This indicates that the main relationship between the DDF and SBM
models has been achieved. The Spearman’s rank correlation between the
efficiency scores resulting from the proposed and standard DDF models,
as well as between the proposed and standard SBM models under CRS
and VRS, was examined to ensure that uncontrollable inputs and un-
desirable outputs have been properly integrated into the standard
models.

The RTS regions of the proposed DDF and SBM models have also
been identified. The identification process relied on the intensity vari-
able values, which corresponded to the efficiency scores under the CRS
technology of the proposed models. The proposed models under CRS and
VRS technologies were used to achieve the eco-efficient status of RTS.
The countries that operated in the CRS region are France, Germany,
Luxembourg, Norway, Sweden, and the UK, all of which achieved
ecological efficiency status. Thus, these countries operated at the
optimal level of environmental performance, as well; therefore, they
could achieve net-zero CO, emissions during the evaluation period. The
remaining 19 countries are CRS-inefficient. Thus, they operated in the
IRS or DRS region. They did not operate at the level of optimal scale
because they had excesses in some of their controllable inputs and/or
undesirable outputs, causing some of their desirable outputs to decrease.

This research not only contributes to the research methodology of
DEA efficiency measurements, but it also examines the managerial im-
plications necessary to achieve a sustainable economy and eco-
efficiency. Our findings indicate that eco-efficiency must be imple-
mented by introducing eco-efficiency technologies. Specifically, eco-
efficiency can enhance industries and diversify ecological sources,
particularly in developing OECD countries. Thus, the classification of
inputs and outputs according to environmental and undesirable factors
can effectively contribute to achieving net-zero CO, emissions by
removing pollution sources and achieving eco-efficiency. Furthermore,
the identification of RTS as a DEA approach helps OECD management
determine the impact of increasing inputs on output expansion, thereby
allowing inefficient countries to improve their inputs and outputs. RTS
can be used to identify countries that are most likely to achieve net-zero
CO, emissions. OECD countries should consider a balance in the rela-
tionship between eco-efficiency and sustainable economies when
developing strategies based on these policies.

In summary, the proposed efficiency measures can be regarded as an
improved combination of features of both uncontrollable inputs and
undesirable outputs on non-radial DDF and SBM models. Under the
proposed efficiency measures, (i) a new directional mix-efficiency
measure considering uncontrollable inputs and undesirable outputs
relying on the improved non-oriented DDF and SBM models has been
proposed. The measure reflects the degree to which the directional mix-
efficiency should change in order to achieve a fully efficient status by
decreasing the controllable inputs of labour, coal consumption, and
petroleum consumption, increasing desirable output of GDP and
reducing undesirable output of environmental pollution from COg
emissions; (ii) the infeasibility issue that may occur under VRS and in
some cases of CRS in terms of uncontrollable inputs of DDF and SBM
models has been tackled; and (iii) the eco-efficiency of OECD countries
in the presence of uncontrollable inputs and undesirable outputs has
been assessed. To the best of our knowledge, such an assessment has not
been considered by any study in the literature on directional mix-
efficiency. In fact, no efficiency study has been conducted that con-
siders net-zero CO2 emissions using non-oriented DEA models in the
presence of uncontrollable inputs and undesirable outputs. As a confir-
mation of the applicability and usefulness of methodical innovation, this
paper reveals strong correlation coefficients between the efficiency
scores of the conventional models and the proposed models. Thus, it can
be deduced that uncontrollable inputs and undesirable outputs have
been properly integrated into the standard DDF and SBM models.

This paper has some limitations. First, the proposed efficiency
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models do not account for the presence of fuzzy data, which may mislead anticipate that these future extensions will be thoroughly documented in

the results. Second, the proposed efficiency measures treat the DMUs as published papers.

a black box. The black box considers the DMU as a single process, dis-
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Appendix A

To calculate the efficiency score of each DMU using the proposed SBM model (20), its fractional programme should be converted into a linear
programme by introducing a positive scalar variable (i.e., h > 0), as shown in model (A1) (see Taleb et al., 2023).

N0 = min h — S Zi (A1)
o m XC *

i=1 io

subject to:
1 s1 po+ 52 bB,
h + n + r _ 17
s1+ 52 (;yﬁa ;yfza
J
Moy =l as =1, m,
=1
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J
don=1,
=

Now, we define:

i

S =ha{~, ST = hbl*, S5 = hb, A; = k),

Thus, the linear programme of model (A.1) in S¢-, S+, B~
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and A; is formulated in (A2) as follows:
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We let an optimal solution of (A.2) be denoted by S¢~*, S§**, S5-", A}, h". Hence, the optimal solution of (A.2) is generated by ¢" = «",s¢~" = S¢="/
£ Gi* @Gt 1t Bt GBt 1t g% A% g
b, sG =SSR, BT =SB R, 4 = AR
Appendix B
Table B1
The data set of the 25 OECD countries.
Country Labour force Coal consumption Petroleum consumption Precipitation GDP CO2
(105 (10° tons) (10* barrels/day) (millimetre /year) 10° US$ 10° tons
Australia 111.12 156.53 97.6 534 850.32 381.36
Austria 42.14 6.17 29.3 1110 375.04 69.01
Belgium 47.66 7.33 64 847 459.62 102.53
Canada 179.46 63.62 228.3 537 1424.06 560.8
The Czech Republic 51.98 64.25 21.1 677 180.51 123.95
Denmark 28.93 8.75 19 703 311.42 49.87
Finland 26.95 8.4 22.7 536 246.13 63.92
France 286.2 22.43 197.9 867 2582.39 375.68
Germany 415.9 281.44 241.6 700 3323.81 787.24
Greece 49.18 73.95 44.9 652 305.43 98.25
Hungary 42.38 13.02 16 589 136.1 55.86
Iceland 1.82 0.18 2 1940 20.43 2.34
Italy 247.28 27.95 172.8 832 2127.18 461.13
Japan 666.9 207.58 503.7 1668 4356.33 1251.17
Luxemburg 3.43 0.13 6 934 51.32 10.75
The Netherlands 877.96 14.86 111.1 778 782.57 171.77
Norway 25.07 1.32 23.1 1414 393.48 45.12
Poland 169.09 149.58 52 600 425.32 315.2
Portugal 56.18 5.23 30.8 854 231.74 60.87
Slovak 264.92 8.82 8.3 824 84.11 36.6
South Korea 242.16 98.23 224 1247 1049.24 495.84
Spain 221.9 46.15 161.1 636 1441.43 358.24
Sweden 48.38 3.83 35 624 462.51 48.06
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Table B1 (continued)
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Country Labour force Coal consumption Petroleum consumption Precipitation GDP CO9
(10 (10° tons) (10* barrels/day) (millimetre /year) 10° US$ 10° tons

Turkey 252.76 108.92 68.9 593 647.16 284.66

UK 305.72 69.67 175.2 1220 2825.53 528.63

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cie.2024.109967.
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