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ABSTRACT

The latest advancements in neuroimaging techniques have contributed
to studying the disordered human brain, but still, there is a lack of
disease-specific brain reference to localise brain seeds and standardise
the comparison across studies. The current study first evaluates the
inter-subject consistency across Attention-Deficit/ Hyperactivity
Disorder (ADHD) in a publicly accessible resting-state functional
magnetic resonance imaging (RS-fMRI) ADHD-200 dataset by
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proposing a new voxels similarity index (VSI) that integrates both
inter-atlases flexibility (F") from previous studies with proposed inter-
subjects stability (S") measure to improve outcomes. Secondly, the
study employs a dual-layer clustering-based parcellation strategy
inspired by the resultant improved Master Atlas networks to examine
the ADHD cerebral cortex. The suggested approach to enhancing
the ADHD cortex parcellation uses spectral clustering for global
structure identification, followed by hierarchical clustering for local
refinements and granularity specification. The final connectivity-
driven brain reference achieved an average homogeneity of 0.63,
and the enhanced Master Atlas with (S’) achieved 0.35 homogeneity,
surpassing the original Master Atlas with 0.27. This discovery implies
that the final brain reference offers a more accurate and reliable
framework to examine the connections and functions of the brain in
individuals with ADHD.

Keywords: Brain disorder, brain network, functional variability,
functional connectivity analysis, Resting-State Networks.

INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most
widespread chronic developmental disorders observed worldwide. It
is considered a prominent public health concern and is often registered
as an underdiagnosed condition, particularly in adults (Ginsberg et al.,
2014; Sarno & Ghozali, 2024).

The traditional diagnostic approach for ADHD typically entails a
detailed analysis and assessment of the behaviours and symptoms as
described in the DSM-V criteria (Abuse & Administration, 2016).
this approach faced limitations due to the situation-dependent nature
of ADHD symptoms and the broad variance in ADHD clinical
presentation among individuals. Therefore, the DSM-V criteria could
be used as a guide for ADHD diagnosis (Grossman & Berger, 2024).
Still, it is insufficient to emphasise the pressing need for more nuanced
diagnostic and management tools for this condition. Recently, there
has been a significant breakthrough since researchers have initiated an
exploration of biomarkers for ADHD, with a focus on the brain as one
of the key biomarkers to study ADHD (Koutsoklenis & Honkasilta,
2022).
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Accordingly, research on ADHD has been ongoing for decades,
intending to gain a thorough understanding of brain behaviour and
functionality. This emerging research direction holds the promise of
creating more precise and effective diagnostic tools and treatment
strategies, which could enhance the lives of countless individuals
affected by ADHD. Many studies have explored ADHD neuronal
interconnections, aiming to identify differences between ADHD and
typically developed (TD) brains. The latest advancements in non-
invasive neuroimaging techniques have contributed to studying the
human brain. In this context, neuroimaging techniques like functional
Magnetic Resonance Imaging (fMRI) and their application in studying
functional connectivity among brain regions (Fornito et al., 2016;
Pereira-Sanchez et al., 2021) are becoming increasingly important.

The fMRI is a specific type of MRI that quantifies brain activity
by identifying changes associated with blood flow based on the
correlation between cerebral blood flow and neuronal activity since
activation of a particular brain region translates to an increase in blood
flow to that region leading to a signal called the Blood Oxygen Level-
Dependent (BOLD) signal (Lv et al., 2018). There are two categories
of fMRI experiments: task-based (i.e., real-time) and resting-state.
Resting-state fMRI (rs-fMRI) studies have played a vital role in
advancing our understanding of ADHD (Liu et al., 2023; Pereira-
Sanchez et al., 2021). Hence, rs-fMRI studies have revealed altered
functional connectivity (FC) in ADHD across various brain networks
by identifying brain patterns associated with local blood oxygenation
to measure brain activity even during rest (Liang et al., 2012; Zhang
et al., 2020).

Rs-fMRI studies documented altered resting-state FC (rs-FC) in ADHD
throughout multiple brain networks (Smitha et al., 2017; Sutcubasi et
al., 2020; Thomson et al., 2022), that often studied through Resting-
State Networks (RSNs)- are brain clusters that spatially distinct but
functionally connected (dos Santos Siqueira et al., 2014). RSNs have
been used to analyse brain connectivity in ADHD, revealing how
ADHD impacts various brain networks, including the Default Mode
Network (DMN), Dorsal Attention Network (DAN), and Auditory
Network (AUN). Harikumar et al. (2021) is one such example that
has contributed to this understanding. One significant hurdle in
constructing brain networks is delineating and defining those RSNs.
This step is crucial given the intricate nature of brain network spatial
architecture and terminology variation, which is influenced by the

337



Journal of ICT, 23, No. 2 (April) 2024, pp:335-359

study perspective of whether it focuses on functional or anatomical
connectivity patterns and inter-individual heterogeneity (Doucet et
al., 2019; Uddin et al., 2019).

Traditionally, RSNs could be identified and localised using brain
atlases (Genon & Li, 2023). Brain atlases are highly valuable
instruments that are widely utilised in the process of parcellating the
brain, starting with an atlas to perform controlled clustering with the
available data and anatomical definitions, which is a more adaptable
method in rs-fMRI data analysis (Yeo et al., 2011). The choice of brain
atlas can significantly impact the results of RSN analysis, attributed
to atlases concordance issues (Andrew et al., 2021; Bohland et al.,
2009). This is because different atlases may not align perfectly and
could have misalignments. Some atlases may define the left and right
hemispheres, while others may have separate maps for subdivisions
of the same RSN. In addition, there are different terminologies with
similar networks and different levels of detail, which can also cause
issues (Genon & Li, 2023; Nowinski, 2021; Revell et al., 2022).

Publicly accessible brain atlases result from various processing methods
that rely on various algorithms and assumptions. However, there is a
lack of a unified standard for developing and assessing these atlases
across the scientific community. It was impossible for a single brain
atlas to capture all of the variations in the brain under investigation by
researchers studying neurological and neurodevelopmental disorders.
This evidence of variability stems from various factors, such as
individual differences, brain disorders, neurocognitive diseases, age,
developmental cognitive levels, and technological limitations (Doucet
et al., 2021). Therefore, it is recommended to use multiple atlases to
avoid incorrect descriptions and gain comprehensive insights (Ming
Chen et al., 2019; Salman et al., 2020).

The next section investigates the related works from three perspectives;
then, the materials and methods section introduces the dataset, and the
proposed methods and describes the validation methods. After that,
the results and discussion pronounce the experiments on the selected
data. The conclusion is given in the last section.

RELATED WORKS

Various analytical methodologies have been adopted in ADHD rs-
fMRI research to understand the condition. Early ADHD research
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on rs-fMRI focused primarily on seed-based correlation analysis
or region of interest (ROI)-based analysis, the most popular
straightforward approach. In contrast, other studies adopted data-
driven approaches such as Independent Component Analysis (ICA),
clustering-based and graph theory. This part is divided into multiple
subsections, addressing distinct and important parts of this study; a
short description is provided as follows:

The Role of RSNs in Identifying ADHD Neural Patterns

Understanding the functional connectome can help shed light on
various brain disorders’ exact aetiology (i.e., causes and origins).
However, the inconsistent terminology and labelling across various
brain atlases and vast scientific literature complicate research on
RSNs. Currently, efforts to investigate the structure and function of
the human brain are fragmented due to a lack of standardisation in
human brain atlases. These efforts aim to enhance our knowledge of
the intricate workings of the brain and find better clinical applications
in neurology and psychiatry (Ming Chen et al., 2019).

This inconsistency leads to confusion, discrepancies in understanding
RSN, and disagreement over research methodologies. Uddin et al.
(2019) and Bryce et al. (2021) emphasise standardising how RSNs
are labelled and identified to achieve more consistent and comparable
research results. To fill this gap, a recent study by Doucet et al. (2019)
tried to solve this problem by standardising five RSNs defined on
six reliable brain atlases by creating a consensual atlas, which will
enhance the reproducibility of those RSN across studies and promote
a unified understanding of RSNs in healthy brains, advancing our
knowledge of brain function. Furthermore, studies investigating
disordered brain mechanisms have underscored the need for disease-
specific functional atlases (Al-Ubaidi et al., 2023; Revell et al., 2022).

Numerous studies on ADHD have employed resting-state functional
magnetic resonance imaging (rs-fMRI) to investigate FC in RSNs.
Harikumar et al. (2021) made significant progress in understanding
how ADHD affects the DMN. Besides that, research indicates that
ADHD affects interconnected networks, including the DAN, DMN,
and AUN (Sutcubasi et al., 2020; Thirion et al., 2014). Studying
the brain networks underlying ADHD at the network level is hard
because choosing between interpretability and accuracy comes with
its difficulty as the problem is too complex and highly dimensional.
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In particular, meta-analysis assessments are featured in many studies
investigating FC in ADHD; those studies have yielded inconsistent
findings (Cortese et al., 2021; Gao et al., 2019; Sonuga-Barke &
Castellanos, 2007; Sutcubasi et al., 2020). In contrast, Zhang et al.
(2020) utilised (ICA) to investigate RSNs in ADHD adolescents, and
it was found that reduced FC within the (DMN) and (DAN) were
associated with ADHD symptoms. However, when analysing subjects
separately. One drawback is that ICA may miss signal-to-noise ratio
(SNR) benefits, which could impact decomposition accuracy.

An effective approach to tackling this problem is to develop a pipeline
that automatically relabels and integrates information from multiple
brain atlases, even when they use different labelling protocols, as
proposed by (Al-Ubaidi et al., 2023, 2024). Notably, the Auditory
Network (AUN), Cognitive Control Network (CCN), Dorsal Attention
Network (DAN), Default Mode Network (DMN), Sensorimotor
Network (SMN), and Ventral Attention Network (VAN) constituted
the networks of interest (Nols) in our proposed model.

Brain Voxel Analysis as Functional Segregation Measure

The high dimensionality and sparsity of fMRI data pose significant
challenges inrs-fMRI analysis, leading to rs-fMRI studies disregarding
inter-subject variability and assuming uniformity in spatial and
temporal brain activations. However, the human brain’s structure and
functionality can vary due to various factors. This analysis intends
to clarify this issue by adopting a data-driven method to assess
individual brain activity differences, specifically in rs-fMRI seed
stability analysis. This is crucial for the precise diagnosis of ADHD.
Extracting the functional information from specific brain regions or
studying the functional connectivity between various brain regions is
necessary.

The voxel-wise analysis involves examining numerous measurements
within or between voxels features; the widely used metrics in an
rs-fMRI study of ADHD: amplitude of low-frequency fluctuation
(ALFF), fractional-ALFF (fALFF), regional Homogeneity (ReHo),
degree centrality, and voxel-mirrored homotopic connectivity (Alonso
et al., 2015; Jiang et al., 2019; Li et al., 2014; Sato et al., 2012; Tan
et al., 2017; Wang et al., 2013; Wang et al., 2023; Yang et al., 2011).
However, voxel-wise metrics analysis of ADHD using ADHD-200
multiple sites has shown inconsistent findings, indicating a need to
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reassess the results regarding spontaneous brain activity (Zhou et al.,
2019).

Related to the first goal of this research, two separate studies were
conducted to understand inter-subject brain variability in ADHD, each
with a different primary focus on different data samples. One study by
(Hsieh et al., 2023) utilised a data-driven model to find reliable seeds
for diagnosing ADHD. The model selects the four largest clusters as
seeds for the whole-brain functional connectivity calculation using
a ReHo map. The established model was applied to an ADHD-200
NYU database, including 73 individuals with ADHD and 76 TDs,
achieving 83.24 percent accuracy and being unbiased.

In addition to the mentioned data-driven method, another study by
Ingabire et al. (2022) has demonstrated that the stability changes in
physiological signals can reflect individuals’ pathological conditions,
including ADHD. This study decomposed resting-state fMRI BOLD
signals into Dynamic Modes (DMs) or subsystems to analyse the
stability of decomposed subsystems of rs-fMRI BOLD signals. The
features related to the stability of those DMs were extracted, and nine
common classifiers were used to differentiate healthy controls from
ADHD patients. The results showed that almost all features were
statistically significant, and the proposed approach outperformed all
existing methods with the highest possible precision, recall, and area
under the receiver operating characteristic curve of 100 percent.

It is worth mentioning that the data-driven method and Dynamic
Mode Decomposition (DMD) approach are highly dependent on the
quality and pre-processing of the rs-fMRI data. Any inconsistencies
in data acquisition, alignment, co-registration, or pre-processing
steps could introduce biases or errors that affect the reliability of the
findings. This study measures the variation in brain activity among
ADHD individuals using the time courses extracted from the aligned
rs-fMRI on the same unified RSN brain mask created by Al-Ubaidi
et al. (2023). The analysis incorporates the Voxels Similarity Index
(VSI), which considers inter-atlas flexibility (F') and inter-subject
stability (S").

Data-driven Parcellations

The process of data-driven parcellation is often described as a clustering
problem (Arslan et al., 2018). The rs-fMRI-based connectivity-driven
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parcellation methodologies involve grouping brain voxels or regions
based on their connectivity data to create a reference map useful for
standardising data analysis and comparison. It can be generated
using healthy or disordered brains as a reference map to identify
affected brain regions (i.e., lesion-defined maps). This approach
helps to focus the analysis pipeline and reduce data dimensionality
and computational load. The frequently used unsupervised clustering
algorithms on rs-fMRI are k-means, spectral, hierarchical, and fuzzy
clustering (Arslan et al., 2018; Eickhoff et al., 2018; Kaur & Kumar,
2021; Thirion et al., 2014), each with its specific strengths and biases.

Riaz et al. (2018) stated that there is a lack of research that adopted
clustering-based mapping algorithms on ADHD-200 in modelling
functional connectivity (FC). Recently, interest has increased in using
clustering algorithms in conjunction with rs-fMRI to evaluate the
brain’s FC and to group the brain into several regions, or parcels, with
homogeneous features (Craddock et al., 2012). Despite the algorithm
differences, most clustering algorithms on rs-fMRI aim to identify
the brain’s functional and topological characteristics. Brain network
analysis adopted graph theory to decompose brain nodes and estimate
edges among nodes; the FC power positively correlated with ADHD
symptoms, as stated by (Mostert et al., 2016). With the motivation
of there is a need for an unbiased and evidence-based methodology,
this work suggests a dual-layer parcellation framework, the clustering
algorithm is adaptive for the ADHD Connectivity-Driven parcellation.

MATERIALS AND METHODS

The proposed framework consists of several stages, which are
conducted in the following manner:

Dataset and Pre-processing

This study included rs-fMRI of 285 ADHD subjects provided by the
Neuro Bureau ADHD-200 (http.//neurobureau.projects.nitrc.org/
ADHDZ200/Introduction.html) to evaluate the proposed methods. The
downloaded data is pre-processed using the fmriPrep pipeline by
(Esteban et al., 2019), fmriPrep- is a robust fMRI data pre-processing
tool designed to handle both task-based and rest-state fMRI data pre-
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processing. The data is accessed and downloaded from the Amazon
S3 Bucket using Cyberduck software; more details of this pipeline can
be found at (http://www.fmriprep.readthedocs.io/en/latest/workflows.
html).

To ensure the quality of the data, the first four time points were
excluded to allow for signal stability and participant adaptability.
The data is processed using a band-pass filter within the 0.01-0.08 Hz
frequency range to eliminate high-frequency interference (Lee et al.,
2013). Then, the time signals were extracted for the stability analysis
based on the unified RSNs mask from Al-Ubaidi et al. (2023).

The Inter-Subject Voxel Stability Measure

The conceptual framework of the proposed stability measure is
depicted in Figure 1. This method focuses on measuring the stability
of BOLD signals across ADHD subjects by observing variations in
the extracted voxels. This approach aims to determine the variability
of the human brain by moving the analysis from Network-of-Interest
(Nols) to voxel-based analysis, and the researcher thoroughly
examined the data.

Figure 1

Conceptual Framework Illustrating the Inter-Subject Voxel Stability
to measure BOLD consistency across ADHD subjects

Align the unified Nols
template to parcellate the
brain and extract the
time series

Align rs-fMRI to unified RSNs
Calculating the mean of
the BOLD signal to serve
as a reference point for
voxel v;

voxel of interestv; (@

Subject-level analysis, to
track voxel v; across
subjects and stability
v score calculation S°
1 1,082,035

S'(wy) S @) S" (V1082035)

Visual representation by

‘ S mapping

For voxel-to-voxel across subjects, a total of around 1,082,035
voxels was extracted and investigated by computing Equation 1; this
approach is referred to as S°. Since T= 167, N= 225 ADHD subjects,
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and S is the direct measure of the variability of the BOLD signal
values across N subjects for a particular voxel v,. This calculation
produced an averaged matrix of S* values for all the participants, as
detailed in Algorithm 1. The output of this algorithm is visualised as a

3D map overlaid on a brain mesh as a stability map; check the results
and discussions section.

Algorithm 1: Voxel-wise Stability in rs-fMRI data for ADHD subjects
Input:

Subjects= [S,, S, S, S.]: a list of pre-processed rs-fMRI data for each
subject: N=the number of subjects used in the experiment;

num_voxels: the total number of voxels in the brain unified map;
Output:

S*: the voxel-wise Stability degree map;
Initialisation:
For each subject (s) in the dataset

Align the unified Nols template to parcellate the brain;

Step (1): Extract raw BOLD Signals for each voxel across subjects
For each subject (S)) in ‘Subjects’
For each voxel (v,) in the ‘num_voxels’
Extract the BOLD signal time courses for the current (v,)

Store this time-series in voxel_info [S, v]

Step (2): Calculation of Standard Deviation for each voxel across

subjects
For each (v)) in the ‘num_voxels’
Extract voxel info [:, v;] /I ' which contains the time-

series of this voxel for all subjects

Calculate S as the standard deviation of these values across
subjects

1)
5‘=l 1 z _I(BOLDU— BOLD ,)? (

: N=no of Subjects, nd t represents the time point in the BOLD signal

Store the S* value at the position corresponding to voxel v,
Return the Stability map;

Step (3): Apply a threshold (optional)
Visualisation: The spatial distribution map of the stable voxels

display the stability results on a 3D map to show the stable voxels
across ADHD-200 subjects.

344



Journal of ICT, 23, No. 2 (April) 2024, pp:335-359

Following this step, a voxel similarity index (VSI) is introduced to
gauge voxel-wise consistency and variability by factoring in both
inter-atlas flexibility (F") calculated from (Al-Ubaidi et al., 2023)
and inter-subjects stability (S"), as seen in Equation 2. By overlaying
information from inter-atlas flexibility (F') and inter-subject stability
(S") maps, the Master Atlas is improved.

VSIgy = S (F ) 2

At the end of this phase, the Master atlas is enhanced to
comprehensively represent the integrated information (voxels) from
the two perspectives.

The Dual-layer Connectivity-Driven Parcellation

This phase introduces a dual-layer parcellation framework to segregate
the ADHD cortex, utilising two distinct clustering approaches applied
to the ADHD-200 dataset. The first layer employed the normalised
cuts (N-Cut) spectral clustering algorithm to group vertices into large
homogeneous and non-overlapped clusters at group-level parcellations
for ADHD by performing the connectivity analysis at the voxel level
on the localised networks from the enhanced Master Atlas. On the
second layer, agglomerative nesting hierarchical clustering is adopted
to obtain high-similarity clusters by cutting the hierarchical tree at the
required level.

The first process involved representing voxels (V) obtained from the
alignment of the rs-fMRI to enhanced Master Atlas template, reducing
the data dimensionality and limiting the algorithm’s search space.
Those voxels were identified using a 4 mm x 4 mm x 4 mm resolution.
For each ADHD, the edges were estimated within each voxel using
Pearson’s correlation coefficient (), a commonly used approach for
this task, as defined in Equation 3.

The r value would be between [-1,1], our focus on positive values.
This calculation yielded a 15,832 x 15,832 correlation matrix of
Fisher’s r-to-z-transformed coefficients. A weighted correlation
matrix was built for averaged subjects by applying a cut-off value
of 0.5 to filter out weak and negative connections that may not be
significant. The resulting connectivity matrix was then subjected to a
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spectral clustering based on the normalised cuts (N-Cut) algorithm to
group vertices into large homogeneous and non-overlapping clusters
to obtain high similarity across different group-level parcellations for
ADHD. Then, the RSN clusters were determined using an automated
process that aligned them according to spatial correlation and the
FC analysis. Therefore, on the second layer, parcels were merged,
utilising an agglomerative hierarchical clustering algorithm while
preserving their functional uniformity.

Algorithm 2: Dual-Layer Clustering Algorithm for ADHD Cortex
Parcellation
Layer 1: N-Cut spectral clustering algorithm based on hybrid
similarity measure
Input:
V=[vl,v2, ..., vn]: A set of brain voxels of pre-processed rs-fMRI data:
n= n is the number of brain voxels in the experiment; V is imported from
Master Atlas;
k= the number of clusters;,
Output:
k clusters: c1, c2 ... ck;
Initialisation:

Initialise the similarity matrix S as an n X n zero matrix;
Step (1): Construct the functional similarity matrix (BoSM)

Construct the brain voxels’ BoldSignal similarity matrix BoSM by
computing pairwise Pearson’s correlation coefficients using Equation 3

i o (@i @ j—7))
(L-1) agi0j

for0<1<L 3)

Twvp) =

Filter BoSM by removing values 0.5

Step (2): Construct the brain voxels’ Spatial similarity matrix (SpSM)
Perform the Euclidian distance of spatial locations between each
pair of voxels (Spatial Similarity based on voxels coordinated),
as in Equation 4;

D(V) = (=% + Gim P+ =) @
SpSM= D
Filter SpSM by removing out values > 15// to exclude nodes of far
distance
Normalise values of SpSM  //to be between 0 and 1 (for compatibility
with BoSM)
(continued)
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Algorithm 2: Dual-Layer Clustering Algorithm for ADHD Cortex
Parcellation

Step (3): Construct the final similarity matrix FS

FS(Vl, Vz) = 6 * BOSM(Vl, Vz) + (1 — 6) * SpSM(Vl, Vz) (5)

// & ranged between [0.1 — 0.9]; what is the best value? Best value of  is
0.65 (specified in the experiment)
Step (4): Construct a weighted graph (G)
assigning weights to the final similarity matrix FS, given that n
is the number of brain voxels;
W=FS
G=(V. W)

Step (5): Construct the normalised Laplacian matrix
L=D"Y2w p~1/2

:D is the diagonal matrix, where each element contains the sum of i row
weight matrix W;

Step (6): Find k largest eigenvectors of L, and construct the matrix X € Rk
by assembling the eigenvectors in columns;

Step (7): Construct the matrix T from X by normalising rows of X;

Step (8): Process rows of T as data points, then cluster them into k clusters
by the K-means algorithm;

Layer 2: Agglomerative Hierarchical Clustering

Input:

k clusters from Layer 1.

Output:

Refined clusters based on hierarchical clustering representing the final
parcellations of the ADHD cortex;

Step (1): Apply an agglomerative hierarchical clustering method to the
results of Layer | by treating each cluster from Layer 1 as an individual
node;

Step (2): Cut the hierarchical tree at a specified level to achieve desired
granularity in clustering;

Step (3): Merge clusters as needed while preserving functional uniformity
based on data similarity;

Step (4): Continue merging until the desired level of hierarchy is achieved;

Model Validation

Without ground truth, effectiveness evaluation techniques are the
optimal choice for evaluating the properties of the derived Brain
Master Atlas and the generated map using dual-layer connectivity-

347



Journal of ICT, 23, No. 2 (April) 2024, pp:335-359

driven parcellation. Researchers advised using clustering validation
metrics to quantify the resultant parcellation validity (Arslan et al.,
2018; Moghimi et al., 2022). A key challenge in brain parcellation is
how evaluating and comparing various parcellation algorithms are
applied to different data from different perspectives. Therefore,
homogeneity (/)- a popular parcellation evaluation technique- is used
as a clustering validity measure to determine the clustering accuracy
for the resultant parcellation maps. The effective parcellation should
have higher homogeneity values representing the ideal characteristic
of functional brain parcellation.

For parcellation P, the homogeneity is calculated using Equation 6
as follows:

1
i,j € Pp,i#]
: ny, = number of voxels in parcel P, (6)

and s(vi, vj) is measured using r between two voxels

RESULTS AND DISCUSSIONS

This paper presents its contributions in the following manner: It
adopts a dual-layer parcellation strategy, drawing inspiration from
the Master Atlas networks from previous studies. Firstly, it improves
the accuracy of the Master Atlas constructed using the method in Al-
Ubaidi et al. (2023) by introducing a new data-driven metric, the Voxel
Stability Measure (S*), and overlying it with the Voxel Flexibility
Measure (F*) further to improve the consistency and reliability of the
atlas. Secondly, adding a clustering process ensures the consistency
of Functional Connectivity (FC) patterns across ADHD-200 subjects
(i.e., the fidelity of the voxel to the underlying data).

The ADHD rs-fMRI group was co-registered on the enhanced Master
Atlas from the previous phase to enhance the algorithm’s efficiency
without affecting the final parcellation. Furthermore, it reduces the
dimensionality and limited search space. Algorithm 1. identified the
consistent patterns of brain activity across individuals, correlated
them with cognitive processes, or identified lesions associated with
ADHD. This study emphasises balancing voxel accuracy and stability
in voxel selection. While inter-subject stability (S*) voxel selection
frameworks can provide more interpretable subsets of features, they
may sacrifice accuracy to some extent. This trade-off could impact
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the method’s effectiveness in accurately diagnosing ADHD, as a
model that is too stable but not accurate enough may miss critical
diagnostic information. This work addresses the need for a reliable
metric to quantify stability across subjects. Without a standardised
and reliable metric for stability measure, evaluating and comparing
the effectiveness of different feature selection approaches in the
context of ADHD diagnosis using rs-fMRI data could be challenging.
This approach reduces the difficulty of seed selection and improves
the search for an effective seed.

One of the main benefits of using (S’) as a direct measurement
of variability in brain activity is its simplicity and ease of use.
Calculating the standard deviation of BOLD signals at the voxel level
is relatively straightforward and intuitive. It does not require complex
modelling, seed selection, or high computational costs, which makes
it more accessible for researchers and clinicians with varying levels
of expertise. The voxel similarity index comprehensively measures
each voxel’s reliability and importance; see Figure 2 for the generated
F' and S® maps. The VSI produced an enhanced Master Atlas by
identifying brain voxels with low flexibility and high stability values
across multiple atlases and subjects.

Figure 2

(a) the Flexibility Map from previous work; (b) the Stability Map
based on the inter-subject

Constructing the Master Atlas by employing stability as a new feature,
in conjunction with flexibility, improved the results as demonstrated
in Figure 3 that the Master Alas with S’ strategy outperforms other
Atlases-of-Interests as well as the Master Atlas without S™ in terms of
Homogeneity.
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The evaluation results for the enhanced version of the Master Atlas
are presented first; see Figure 3. By assessing the effectiveness of
the parcellation scheme (denoted as Master Atlas with S*) compared
to five pre-defined functional brain atlases (CC200, CC400, Power,
Schafere, and Yeo) and the original Master Atlas without S°.

Figure 3

Homogeneity values across the RSNs and atlases in addition to
the Master Atlas based on the ADHD-200 rs-fMRI functional data
representing the Functional Connectivity

Homogeneity Values Across Different Networks and Atlases

= Atlases-of Interests
035 m = sch100
P13
cc200
0.30 m— CC400

Master without *
m= Master with S°

AUD e DAN DMN SMN VAN
Network-of-Interests

The resultant Master Atlas could contain clinically significant
clusters tailored to individual ADHD subjects by reducing the high
dimensionality of rs-fMRI data, a major challenge in multi-voxel
pattern analysis of rs-fMRI that affects the reliability and accuracy
of ADHD diagnosis and limits the studies’ replication. This can make
feature selections and identify informative voxels for the classification
of complex tasks.

The dual-layer clustering algorithm is grounded in a data-driven
approach that avoids bias in selecting specific voxels or ROIs; the
brain map is visualised in Figure 4. The positive correlation between
FC power and ADHD symptoms informs this methodology. Table 1
listed the homogeneity (/) values as it is clear that the developed brain
reference using the dual-layer parcellation outperforms all previous
models. However, for the final connectivity-driven brain reference, an
average of 0.63 offers the highest homogeneity among results, while
the unbiased enhanced Master Atlas with stability was 0.35, which
outperformed the original Master Atlas, which was 0.27. It is important
to note that the / value represents the fidelity of the parcellation to the
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employed data. The # map of the dual-layer parcellation is presented
in Figure 5.

Figure 4

The Resultant Brain Map Based on the Proposed Dual-Layer Con-
nectivity-Driven Parcellation Approach

Table 1

The parcellation effectiveness represented by (h) values across the
Nols and the resultant brain references in comparison to the original
Master atlas

Enhanced The dual-layer

Nols Original Master Atlas (without S*) Master Connectivity-

Atlas Driven
(with S°)  parcellation

AUN 0.286 0.369 0.67

CCN 0.257 0.347 0.619
DAN 0.269 0.398 0.70

DMN 0.285 0.378 0.596
SMN 0.237 0.311 0.623
VAN 0.293 0.349 0.601
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Figure 5

The homogeneity map at the voxel level was constructed using the
Connectivity-Driven Strategy, and h values are higher on average,
reflecting the effect of granularity

L R

CONCLUSION

These research endeavours are dedicated to identifying specific
brain activation patterns and comprehending the broader structure
of functional interactions within the brain’s network. The proposed
method utilises a data-driven model to identify reliable seeds, with
a focus on diagnosing ADHD by analysing rs-fMRI data from the
ADHD-200 dataset, offering a novel data-driven seed selection method
based on a Master Atlas RSNs map for ADHD future studies. Using S
directly measures the variability in brain activity, which provides a key
aspect of interest when studying ADHD. This approach reduces the
difficulty associated with manual seed of interest selection and has the
potential to enhance the accuracy and relevance of brain connectivity
studies. The enhanced Master Atlas with S is a subject-based brain
reference integrating multiple source voxels employed here to limit
the search space of the clustering algorithm. The parcellation created
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in this study can be utilised to model the functional organisation of the
ADHD brain, allowing for the extraction of distinct features for further
network analysis in the context of ADHD or other brain disorders.
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