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ABSTRACT

The latest advancements in neuroimaging techniques have contributed 
to studying the disordered human brain, but still, there is a lack of 
disease-specific brain reference to localise brain seeds and standardise 
the comparison across studies. The current study first evaluates the 
inter-subject consistency across Attention-Deficit/ Hyperactivity 
Disorder (ADHD) in a publicly accessible resting-state functional 
magnetic resonance imaging (RS-fMRI) ADHD-200 dataset by 
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proposing a new voxels similarity index (VSI) that integrates both 
inter-atlases flexibility (F`) from previous studies with proposed inter-
subjects stability (S`) measure to improve outcomes. Secondly, the 
study employs a dual-layer clustering-based parcellation strategy 
inspired by the resultant improved Master Atlas networks to examine 
the ADHD cerebral cortex. The suggested approach to enhancing 
the ADHD cortex parcellation uses spectral clustering for global 
structure identification, followed by hierarchical clustering for local 
refinements and granularity specification. The final connectivity-
driven brain reference achieved an average homogeneity of 0.63, 
and the enhanced Master Atlas with (S’) achieved 0.35 homogeneity, 
surpassing the original Master Atlas with 0.27. This discovery implies 
that the final brain reference offers a more accurate and reliable 
framework to examine the connections and functions of the brain in 
individuals with ADHD.

Keywords: Brain disorder, brain network, functional variability, 
functional connectivity analysis, Resting-State Networks.

INTRODUCTION

Attention-Deficit/Hyperactivity Disorder (ADHD) is one of the most 
widespread chronic developmental disorders observed worldwide. It 
is considered a prominent public health concern and is often registered 
as an underdiagnosed condition, particularly in adults (Ginsberg et al., 
2014; Sarno & Ghozali, 2024). 

The traditional diagnostic approach for ADHD typically entails a 
detailed analysis and assessment of the behaviours and symptoms as 
described in the DSM-V criteria (Abuse & Administration, 2016). 
this approach faced limitations due to the situation-dependent nature 
of ADHD symptoms and the broad variance in ADHD clinical 
presentation among individuals. Therefore, the DSM-V criteria could 
be used as a guide for ADHD diagnosis (Grossman & Berger, 2024). 
Still, it is insufficient to emphasise the pressing need for more nuanced 
diagnostic and management tools for this condition. Recently, there 
has been a significant breakthrough since researchers have initiated an 
exploration of biomarkers for ADHD, with a focus on the brain as one 
of the key biomarkers to study ADHD (Koutsoklenis & Honkasilta, 
2022). 
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Accordingly, research on ADHD has been ongoing for decades, 
intending to gain a thorough understanding of brain behaviour and 
functionality. This emerging research direction holds the promise of 
creating more precise and effective diagnostic tools and treatment 
strategies, which could enhance the lives of countless individuals 
affected by ADHD. Many studies have explored ADHD neuronal 
interconnections, aiming to identify differences between ADHD and 
typically developed (TD) brains. The latest advancements in non-
invasive neuroimaging techniques have contributed to studying the 
human brain. In this context, neuroimaging techniques like functional 
Magnetic Resonance Imaging (fMRI) and their application in studying 
functional connectivity among brain regions (Fornito et al., 2016; 
Pereira-Sanchez et al., 2021) are becoming increasingly important. 

The fMRI is a specific type of MRI that quantifies brain activity 
by identifying changes associated with blood flow based on the 
correlation between cerebral blood flow and neuronal activity since 
activation of a particular brain region translates to an increase in blood 
flow to that region leading to a signal called the Blood Oxygen Level-
Dependent (BOLD) signal (Lv et al., 2018). There are two categories 
of fMRI experiments: task-based (i.e., real-time) and resting-state. 
Resting-state fMRI (rs-fMRI) studies have played a vital role in 
advancing our understanding of ADHD (Liu et al., 2023; Pereira-
Sanchez et al., 2021). Hence, rs-fMRI studies have revealed altered 
functional connectivity (FC) in ADHD across various brain networks 
by identifying brain patterns associated with local blood oxygenation 
to measure brain activity even during rest (Liang et al., 2012; Zhang 
et al., 2020). 

Rs-fMRI studies documented altered resting-state FC (rs-FC) in ADHD 
throughout multiple brain networks (Smitha et al., 2017; Sutcubasi et 
al., 2020; Thomson et al., 2022), that often studied through Resting-
State Networks (RSNs)- are brain clusters that spatially distinct but 
functionally connected (dos Santos Siqueira et al., 2014). RSNs have 
been used to analyse brain connectivity in ADHD, revealing how 
ADHD impacts various brain networks, including the Default Mode 
Network (DMN), Dorsal Attention Network (DAN), and Auditory 
Network (AUN). Harikumar et al. (2021) is one such example that 
has contributed to this understanding. One significant hurdle in 
constructing brain networks is delineating and defining those RSNs. 
This step is crucial given the intricate nature of brain network spatial 
architecture and terminology variation, which is influenced by the 
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study perspective of whether it focuses on functional or anatomical 
connectivity patterns and inter-individual heterogeneity (Doucet et 
al., 2019; Uddin et al., 2019). 

Traditionally, RSNs could be identified and localised using brain 
atlases (Genon & Li, 2023). Brain atlases are highly valuable 
instruments that are widely utilised in the process of parcellating the 
brain, starting with an atlas to perform controlled clustering with the 
available data and anatomical definitions, which is a more adaptable 
method in rs-fMRI data analysis (Yeo et al., 2011). The choice of brain 
atlas can significantly impact the results of RSN analysis, attributed 
to atlases concordance issues (Andrew et al., 2021; Bohland et al., 
2009). This is because different atlases may not align perfectly and 
could have misalignments. Some atlases may define the left and right 
hemispheres, while others may have separate maps for subdivisions 
of the same RSN. In addition, there are different terminologies with 
similar networks and different levels of detail, which can also cause 
issues (Genon & Li, 2023; Nowinski, 2021; Revell et al., 2022).

Publicly accessible brain atlases result from various processing methods 
that rely on various algorithms and assumptions. However, there is a 
lack of a unified standard for developing and assessing these atlases 
across the scientific community. It was impossible for a single brain 
atlas to capture all of the variations in the brain under investigation by 
researchers studying neurological and neurodevelopmental disorders. 
This evidence of variability stems from various factors, such as 
individual differences, brain disorders, neurocognitive diseases, age, 
developmental cognitive levels, and technological limitations (Doucet 
et al., 2021). Therefore, it is recommended to use multiple atlases to 
avoid incorrect descriptions and gain comprehensive insights (Ming 
Chen et al., 2019; Salman et al., 2020).

The next section investigates the related works from three perspectives; 
then, the materials and methods section introduces the dataset, and the 
proposed methods and describes the validation methods. After that, 
the results and discussion pronounce the experiments on the selected 
data. The conclusion is given in the last section.

RELATED WORKS

Various analytical methodologies have been adopted in ADHD rs-
fMRI research to understand the condition. Early ADHD research 
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on rs-fMRI focused primarily on seed-based correlation analysis 
or region of interest (ROI)-based analysis, the most popular 
straightforward approach. In contrast, other studies adopted data-
driven approaches such as Independent Component Analysis (ICA), 
clustering-based and graph theory. This part is divided into multiple 
subsections, addressing distinct and important parts of this study; a 
short description is provided as follows:

The Role of RSNs in Identifying ADHD Neural Patterns

Understanding the functional connectome can help shed light on 
various brain disorders’ exact aetiology (i.e., causes and origins). 
However, the inconsistent terminology and labelling across various 
brain atlases and vast scientific literature complicate research on 
RSNs. Currently, efforts to investigate the structure and function of 
the human brain are fragmented due to a lack of standardisation in 
human brain atlases. These efforts aim to enhance our knowledge of 
the intricate workings of the brain and find better clinical applications 
in neurology and psychiatry (Ming Chen et al., 2019).

This inconsistency leads to confusion, discrepancies in understanding 
RSNs, and disagreement over research methodologies. Uddin et al. 
(2019) and Bryce et al. (2021) emphasise standardising how RSNs 
are labelled and identified to achieve more consistent and comparable 
research results.  To fill this gap, a recent study by Doucet et al. (2019) 
tried to solve this problem by standardising five RSNs defined on 
six reliable brain atlases by creating a consensual atlas, which will 
enhance the reproducibility of those RSNs across studies and promote 
a unified understanding of RSNs in healthy brains, advancing our 
knowledge of brain function. Furthermore, studies investigating 
disordered brain mechanisms have underscored the need for disease-
specific functional atlases (Al-Ubaidi et al., 2023; Revell et al., 2022).

Numerous studies on ADHD have employed resting-state functional 
magnetic resonance imaging (rs-fMRI) to investigate FC in RSNs. 
Harikumar et al. (2021) made significant progress in understanding 
how ADHD affects the DMN. Besides that, research indicates that 
ADHD affects interconnected networks, including the DAN, DMN, 
and AUN (Sutcubasi et al., 2020; Thirion et al., 2014). Studying 
the brain networks underlying ADHD at the network level is hard 
because choosing between interpretability and accuracy comes with 
its difficulty as the problem is too complex and highly dimensional.
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In particular, meta-analysis assessments are featured in many studies 
investigating FC in ADHD; those studies have yielded inconsistent 
findings (Cortese et al., 2021; Gao et al., 2019; Sonuga-Barke & 
Castellanos, 2007; Sutcubasi et al., 2020). In contrast, Zhang et al. 
(2020) utilised (ICA) to investigate RSNs in ADHD adolescents, and 
it was found that reduced FC within the (DMN) and (DAN) were 
associated with ADHD symptoms. However, when analysing subjects 
separately. One drawback is that ICA may miss signal-to-noise ratio 
(SNR) benefits, which could impact decomposition accuracy. 

An effective approach to tackling this problem is to develop a pipeline 
that automatically relabels and integrates information from multiple 
brain atlases, even when they use different labelling protocols, as 
proposed by (Al-Ubaidi et al., 2023, 2024). Notably, the Auditory 
Network (AUN), Cognitive Control Network (CCN), Dorsal Attention 
Network (DAN), Default Mode Network (DMN), Sensorimotor 
Network (SMN), and Ventral Attention Network (VAN) constituted 
the networks of interest (NoIs) in our proposed model.

Brain Voxel Analysis as Functional Segregation Measure 

The high dimensionality and sparsity of fMRI data pose significant 
challenges in rs-fMRI analysis, leading to rs-fMRI studies disregarding 
inter-subject variability and assuming uniformity in spatial and 
temporal brain activations. However, the human brain’s structure and 
functionality can vary due to various factors. This analysis intends 
to clarify this issue by adopting a data-driven method to assess 
individual brain activity differences, specifically in rs-fMRI seed 
stability analysis. This is crucial for the precise diagnosis of ADHD. 
Extracting the functional information from specific brain regions or 
studying the functional connectivity between various brain regions is 
necessary. 

The voxel-wise analysis involves examining numerous measurements 
within or between voxels features; the widely used metrics in an 
rs-fMRI study of ADHD: amplitude of low-frequency fluctuation 
(ALFF), fractional-ALFF (fALFF), regional Homogeneity (ReHo), 
degree centrality, and voxel-mirrored homotopic connectivity (Alonso 
et al., 2015; Jiang et al., 2019; Li et al., 2014; Sato et al., 2012; Tan 
et al., 2017; Wang et al., 2013; Wang et al., 2023; Yang et al., 2011). 
However, voxel-wise metrics analysis of ADHD using ADHD-200 
multiple sites has shown inconsistent findings, indicating a need to 
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reassess the results regarding spontaneous brain activity (Zhou et al., 
2019).

Related to the first goal of this research, two separate studies were 
conducted to understand inter-subject brain variability in ADHD, each 
with a different primary focus on different data samples. One study by 
(Hsieh et al., 2023) utilised a data-driven model to find reliable seeds 
for diagnosing ADHD. The model selects the four largest clusters as 
seeds for the whole-brain functional connectivity calculation using 
a ReHo map. The established model was applied to an ADHD-200 
NYU database, including 73 individuals with ADHD and 76 TDs, 
achieving 83.24 percent accuracy and being unbiased.

In addition to the mentioned data-driven method, another study by 
Ingabire et al. (2022) has demonstrated that the stability changes in 
physiological signals can reflect individuals’ pathological conditions, 
including ADHD. This study decomposed resting-state fMRI BOLD 
signals into Dynamic Modes (DMs) or subsystems to analyse the 
stability of decomposed subsystems of rs-fMRI BOLD signals. The 
features related to the stability of those DMs were extracted, and nine 
common classifiers were used to differentiate healthy controls from 
ADHD patients. The results showed that almost all features were 
statistically significant, and the proposed approach outperformed all 
existing methods with the highest possible precision, recall, and area 
under the receiver operating characteristic curve of 100 percent.

It is worth mentioning that the data-driven method and Dynamic 
Mode Decomposition (DMD) approach are highly dependent on the 
quality and pre-processing of the rs-fMRI data. Any inconsistencies 
in data acquisition, alignment, co-registration, or pre-processing 
steps could introduce biases or errors that affect the reliability of the 
findings. This study measures the variation in brain activity among 
ADHD individuals using the time courses extracted from the aligned 
rs-fMRI on the same unified RSN brain mask created by Al-Ubaidi 
et al. (2023). The analysis incorporates the Voxels Similarity Index 
(VSI), which considers inter-atlas flexibility (F`) and inter-subject 
stability (S`).

Data-driven Parcellations

The process of data-driven parcellation is often described as a clustering 
problem (Arslan et al., 2018). The rs-fMRI-based connectivity-driven 
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parcellation methodologies involve grouping brain voxels or regions 
based on their connectivity data to create a reference map useful for 
standardising data analysis and comparison.  It can be generated 
using healthy or disordered brains as a reference map to identify 
affected brain regions (i.e., lesion-defined maps). This approach 
helps to focus the analysis pipeline and reduce data dimensionality 
and computational load. The frequently used unsupervised clustering 
algorithms on rs-fMRI are k-means, spectral, hierarchical, and fuzzy 
clustering (Arslan et al., 2018; Eickhoff et al., 2018; Kaur & Kumar, 
2021; Thirion et al., 2014), each with its specific strengths and biases.

Riaz et al. (2018) stated that there is a lack of research that adopted 
clustering-based mapping algorithms on ADHD-200 in modelling 
functional connectivity (FC). Recently, interest has increased in using 
clustering algorithms in conjunction with rs-fMRI to evaluate the 
brain’s FC and to group the brain into several regions, or parcels, with 
homogeneous features (Craddock et al., 2012). Despite the algorithm 
differences, most clustering algorithms on rs-fMRI aim to identify 
the brain’s functional and topological characteristics. Brain network 
analysis adopted graph theory to decompose brain nodes and estimate 
edges among nodes; the FC power positively correlated with ADHD 
symptoms, as stated by (Mostert et al., 2016). With the motivation 
of there is a need for an unbiased and evidence-based methodology, 
this work suggests a dual-layer parcellation framework, the clustering 
algorithm is adaptive for the ADHD Connectivity-Driven parcellation.

MATERIALS AND METHODS

The proposed framework consists of several stages, which are 
conducted in the following manner:

Dataset and Pre-processing

This study included rs-fMRI of 285 ADHD subjects provided by the 
Neuro Bureau ADHD-200 (http://neurobureau.projects.nitrc.org/
ADHD200/Introduction.html) to evaluate the proposed methods. The 
downloaded data is pre-processed using the fmriPrep pipeline by 
(Esteban et al., 2019), fmriPrep- is a robust fMRI data pre-processing 
tool designed to handle both task-based and rest-state fMRI data pre-
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processing. The data is accessed and downloaded from the Amazon 
S3 Bucket using Cyberduck software; more details of this pipeline can 
be found at (http://www.fmriprep.readthedocs.io/en/latest/workflows.
html).

To ensure the quality of the data, the first four time points were 
excluded to allow for signal stability and participant adaptability. 
The data is processed using a band-pass filter within the 0.01-0.08 Hz 
frequency range to eliminate high-frequency interference (Lee et al., 
2013). Then, the time signals were extracted for the stability analysis 
based on the unified RSNs mask from Al-Ubaidi et al. (2023).

The Inter-Subject Voxel Stability Measure

The conceptual framework of the proposed stability measure is 
depicted in Figure 1. This method focuses on measuring the stability 
of BOLD signals across ADHD subjects by observing variations in 
the extracted voxels. This approach aims to determine the variability 
of the human brain by moving the analysis from Network-of-Interest 
(NoIs) to voxel-based analysis, and the researcher thoroughly 
examined the data. 

Figure 1 

Conceptual Framework Illustrating the Inter-Subject Voxel Stability 
to measure BOLD consistency across ADHD subjects

For voxel-to-voxel across subjects, a total of around 1,082,035 
voxels was extracted and investigated by computing Equation 1; this 
approach is referred to as S`. Since T= 167, N= 225 ADHD subjects, 
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and S` is the direct measure of the variability of the BOLD signal 
values across N subjects for a particular voxel vi. This calculation 
produced an averaged matrix of S` values for all the participants, as 
detailed in Algorithm 1. The output of this algorithm is visualised as a 
3D map overlaid on a brain mesh as a stability map; check the results 
and discussions section. 

Algorithm 1: Voxel-wise Stability in rs-fMRI data for ADHD subjects 
Input: 
Subjects= [S1, S2, S3, …., SN]: a list of pre-processed rs-fMRI data for each 
subject: N= the number of subjects used in the experiment;
num_voxels: the total number of voxels in the brain unified map;
Output: 
S`: the voxel-wise Stability degree map;
Initialisation: 

          For each subject (s) in the dataset
   Align the unified NoIs template to parcellate the brain; 

Step (1): Extract raw BOLD Signals for each voxel across subjects
For each subject (Sj) in ‘Subjects’
  For each voxel (vi) in the ‘num_voxels’
         Extract the BOLD signal time courses for the current (vi)
         Store this time-series in voxel_info [Sj, vi]

Step (2): Calculation of Standard Deviation for each voxel across 
subjects 

For each (vi) in the ‘num_voxels’
      Extract voxel_info [:, vi]      // which contains the time-      

series of this voxel for all subjects
                     Calculate S` as the standard deviation of these values across 

subjects

(1)

: N=no of Subjects, and t represents the time point in the BOLD signal
            
                Store the S` value at the position corresponding to voxel vi
Return the Stability map;

Step (3): Apply a threshold (optional)

Visualisation: The spatial distribution map of the stable voxels
display the stability results on a 3D map to show the stable voxels 
across ADHD-200 subjects.

         Extract the BOLD signal time courses for the current 
(vi) 
         Store this time-series in voxel_info [Sj, vi] 
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Following this step, a voxel similarity index (VSI) is introduced to 
gauge voxel-wise consistency and variability by factoring in both inter-
atlas flexibility (F`) calculated from (Al-Ubaidi et al., 2023) and inter-
subjects stability (S`), as seen in Equation 2. By overlaying 
information from inter-atlas flexibility (F`) and inter-subject stability 
(S`) maps, the Master Atlas is improved.  
 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣) =   𝑆𝑆` (𝐹𝐹`(𝑣𝑣))        (2) 
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Following this step, a voxel similarity index (VSI) is introduced to 
gauge voxel-wise consistency and variability by factoring in both 
inter-atlas flexibility (F`) calculated from (Al-Ubaidi et al., 2023) 
and inter-subjects stability (S`), as seen in Equation 2. By overlaying 
information from inter-atlas flexibility (F`) and inter-subject stability 
(S`) maps, the Master Atlas is improved. 

(2)

At the end of this phase, the Master atlas is enhanced to 
comprehensively represent the integrated information (voxels) from 
the two perspectives.

The Dual-layer Connectivity-Driven Parcellation 

This phase introduces a dual-layer parcellation framework to segregate 
the ADHD cortex, utilising two distinct clustering approaches applied 
to the ADHD-200 dataset. The first layer employed the normalised 
cuts (N-Cut) spectral clustering algorithm to group vertices into large 
homogeneous and non-overlapped clusters at group-level parcellations 
for ADHD by performing the connectivity analysis at the voxel level 
on the localised networks from the enhanced Master Atlas.  On the 
second layer, agglomerative nesting hierarchical clustering is adopted 
to obtain high-similarity clusters by cutting the hierarchical tree at the 
required level.

The first process involved representing voxels (V) obtained from the 
alignment of the rs-fMRI to enhanced Master Atlas template, reducing 
the data dimensionality and limiting the algorithm’s search space. 
Those voxels were identified using a 4 mm x 4 mm x 4 mm resolution. 
For each ADHD, the edges were estimated within each voxel using 
Pearson’s correlation coefficient (r), a commonly used approach for 
this task, as defined in Equation 3. 

The r value would be between [-1,1], our focus on positive values. 
This calculation yielded a 15,832 × 15,832 correlation matrix of 
Fisher’s r-to-z-transformed coefficients. A weighted correlation 
matrix was built for averaged subjects by applying a cut-off value 
of 0.5 to filter out weak and negative connections that may not be 
significant. The resulting connectivity matrix was then subjected to a 

         Extract the BOLD signal time courses for the current 
(vi) 
         Store this time-series in voxel_info [Sj, vi] 

 
Step (2): Calculation of Standard Deviation for each voxel 

across subjects  
For each (vi) in the ‘num_voxels’ 
      Extract voxel_info [:, vi]      // which contains the time-      

series of this voxel for all subjects 
                     Calculate S` as the standard deviation of these values 

across subjects 
 

𝑆𝑆` = √ 1
𝑁𝑁 − 1 ∑ (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝑡𝑡𝑡𝑡 − 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵̅̅ ̅̅ ̅̅ ̅̅ ̅𝑡𝑡)2

𝑁𝑁

𝑗𝑗=1
        

(1) 

: N=no of Subjects, and t represents the time point in the BOLD 
signal 
             
                Store the S` value at the position corresponding to voxel vi 
Return the Stability map; 
 
Step (3): Apply a threshold (optional) 

 
Visualisation: The spatial distribution map of the stable voxels 

display the stability results on a 3D map to show the stable 
voxels across ADHD-200 subjects. 

 
Following this step, a voxel similarity index (VSI) is introduced to 
gauge voxel-wise consistency and variability by factoring in both inter-
atlas flexibility (F`) calculated from (Al-Ubaidi et al., 2023) and inter-
subjects stability (S`), as seen in Equation 2. By overlaying 
information from inter-atlas flexibility (F`) and inter-subject stability 
(S`) maps, the Master Atlas is improved.  
 

𝑉𝑉𝑉𝑉𝑉𝑉(𝑣𝑣) =   𝑆𝑆` (𝐹𝐹`(𝑣𝑣))        (2) 
 



346        

Journal of ICT, 23, No. 2 (April) 2024, pp:335-359

spectral clustering based on the normalised cuts (N-Cut) algorithm to 
group vertices into large homogeneous and non-overlapping clusters 
to obtain high similarity across different group-level parcellations for 
ADHD. Then, the RSN clusters were determined using an automated 
process that aligned them according to spatial correlation and the 
FC analysis. Therefore, on the second layer, parcels were merged, 
utilising an agglomerative hierarchical clustering algorithm while 
preserving their functional uniformity.

Algorithm 2: Dual-Layer Clustering Algorithm for ADHD Cortex 
Parcellation 
Layer 1: N-Cut spectral clustering algorithm based on hybrid 
similarity measure
Input: 
V= [v1, v2, …., vn]: A set of brain voxels of pre-processed rs-fMRI data: 
n= n is the number of brain voxels in the experiment; V is imported from 
Master Atlas; 
k= the number of clusters;
Output: 
k clusters: c1, c2 . . . ck;
Initialisation: 
             Initialise the similarity matrix S as an n × n zero matrix;
Step (1): Construct the functional similarity matrix (BoSM)
           Construct the brain voxels’ BoldSignal similarity matrix BoSM by 
computing pairwise Pearson’s correlation coefficients using Equation 3

  (3)

          Filter BoSM  by removing values 0.5

Step (2): Construct the brain voxels’ Spatial similarity matrix (SpSM)
             Perform the Euclidian distance of spatial locations between each 

pair of voxels (Spatial Similarity based on voxels coordinated), 
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Algorithm 2: Dual-Layer Clustering Algorithm for ADHD Cortex 
Parcellation 
Step (3): Construct the final similarity matrix FS

(5)

// δ ranged between [0.1 – 0.9]; what is the best value? Best value of δ is 
0.65 (specified in the experiment)
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driven parcellation. Researchers advised using clustering validation 
metrics to quantify the resultant parcellation validity (Arslan et al., 
2018; Moghimi et al., 2022). A key challenge in brain parcellation is 
how evaluating and comparing various parcellation algorithms are 
applied to different data from different perspectives. Therefore, 
homogeneity (h)- a popular parcellation evaluation technique- is used 
as a clustering validity measure to determine the clustering accuracy 
for the resultant parcellation maps. The effective parcellation should 
have higher homogeneity values representing the ideal characteristic 
of functional brain parcellation.

For parcellation P, the homogeneity  is calculated using Equation 6 
as follows: 

(6)
 
 
 

RESULTS AND DISCUSSIONS

This paper presents its contributions in the following manner: It 
adopts a dual-layer parcellation strategy, drawing inspiration from 
the Master Atlas networks from previous studies. Firstly, it improves 
the accuracy of the Master Atlas constructed using the method in Al-
Ubaidi et al. (2023) by introducing a new data-driven metric, the Voxel 
Stability Measure (S`), and overlying it with the Voxel Flexibility 
Measure (F`) further to improve the consistency and reliability of the 
atlas. Secondly, adding a clustering process ensures the consistency 
of Functional Connectivity (FC) patterns across ADHD-200 subjects 
(i.e., the fidelity of the voxel to the underlying data).

The ADHD rs-fMRI group was co-registered on the enhanced Master 
Atlas from the previous phase to enhance the algorithm’s efficiency 
without affecting the final parcellation. Furthermore, it reduces the 
dimensionality and limited search space. Algorithm 1. identified the 
consistent patterns of brain activity across individuals, correlated 
them with cognitive processes, or identified lesions associated with 
ADHD. This study emphasises balancing voxel accuracy and stability 
in voxel selection. While inter-subject stability (S`) voxel selection 
frameworks can provide more interpretable subsets of features, they 
may sacrifice accuracy to some extent. This trade-off could impact 
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optimal choice for evaluating the properties of the derived Brain 
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For parcellation P, the homogeneity ℎ(𝑝𝑝) is calculated using Equation 
6 as follows:  

ℎ(𝑝𝑝) =  1
𝑛𝑛𝑝𝑝(𝑛𝑛𝑝𝑝 − 1) ∑ 𝑠𝑠(𝑣𝑣𝑖𝑖, 𝑣𝑣𝑗𝑗) : − 1 ≤ ℎ(𝑝𝑝) ≤ 1

𝑖𝑖,𝑗𝑗 ∈ 𝑃𝑃𝑝𝑝,𝑖𝑖≠𝑗𝑗
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the method’s effectiveness in accurately diagnosing ADHD, as a 
model that is too stable but not accurate enough may miss critical 
diagnostic information. This work addresses the need for a reliable 
metric to quantify stability across subjects. Without a standardised 
and reliable metric for stability measure, evaluating and comparing 
the effectiveness of different feature selection approaches in the 
context of ADHD diagnosis using rs-fMRI data could be challenging. 
This approach reduces the difficulty of seed selection and improves 
the search for an effective seed.

One of the main benefits of using (S’) as a direct measurement 
of variability in brain activity is its simplicity and ease of use. 
Calculating the standard deviation of BOLD signals at the voxel level 
is relatively straightforward and intuitive. It does not require complex 
modelling, seed selection, or high computational costs, which makes 
it more accessible for researchers and clinicians with varying levels 
of expertise. The voxel similarity index comprehensively measures 
each voxel’s reliability and importance; see Figure 2 for the generated 
F` and S` maps. The VSI produced an enhanced Master Atlas by 
identifying brain voxels with low flexibility and high stability values 
across multiple atlases and subjects.

Figure 2
 
(a) the Flexibility Map from previous work; (b) the Stability Map 
based on the inter-subject

Constructing the Master Atlas by employing stability as a new feature, 
in conjunction with flexibility, improved the results as demonstrated 
in Figure 3 that the Master Alas with S` strategy outperforms other 
Atlases-of-Interests as well as the Master Atlas without S` in terms of 
Homogeneity.
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parcellation scheme (denoted as Master Atlas with S`) compared to 
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Schafere, and Yeo) and the original Master Atlas without S`. 
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Schafere, and Yeo) and the original Master Atlas without S`.
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The resultant Master Atlas could contain clinically significant 
clusters tailored to individual ADHD subjects by reducing the high 
dimensionality of rs-fMRI data, a major challenge in multi-voxel 
pattern analysis of rs-fMRI that affects the reliability and accuracy 
of ADHD diagnosis and limits the studies’ replication. This can make 
feature selections and identify informative voxels for the classification 
of complex tasks. 

The dual-layer clustering algorithm is grounded in a data-driven 
approach that avoids bias in selecting specific voxels or ROIs; the 
brain map is visualised in Figure 4. The positive correlation between 
FC power and ADHD symptoms informs this methodology. Table 1 
listed the homogeneity (h) values as it is clear that the developed brain 
reference using the dual-layer parcellation outperforms all previous 
models. However, for the final connectivity-driven brain reference, an 
average of 0.63 offers the highest homogeneity among results, while 
the unbiased enhanced Master Atlas with stability was 0.35, which 
outperformed the original Master Atlas, which was 0.27. It is important 
to note that the h value represents the fidelity of the parcellation to the 
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employed data. The h map of the dual-layer parcellation is presented 
in Figure 5.

Figure 4 

The Resultant Brain Map Based on the Proposed Dual-Layer Con-
nectivity-Driven Parcellation Approach

Table 1
 
The parcellation effectiveness represented by (h) values across the 
NoIs and the resultant brain references in comparison to the original 
Master atlas
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Connectivity-
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CCN 0.257 0.347 0.619

DAN 0.269 0.398 0.70

DMN 0.285 0.378 0.596

SMN 0.237 0.311 0.623

VAN 0.293 0.349 0.601
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Figure 5

The homogeneity map at the voxel level was constructed using the 
Connectivity-Driven Strategy, and h values are higher on average, 
reflecting the effect of granularity

CONCLUSION

These research endeavours are dedicated to identifying specific 
brain activation patterns and comprehending the broader structure 
of functional interactions within the brain’s network. The proposed 
method utilises a data-driven model to identify reliable seeds, with 
a focus on diagnosing ADHD by analysing rs-fMRI data from the 
ADHD-200 dataset, offering a novel data-driven seed selection method 
based on a Master Atlas RSNs map for ADHD future studies. Using S` 
directly measures the variability in brain activity, which provides a key 
aspect of interest when studying ADHD. This approach reduces the 
difficulty associated with manual seed of interest selection and has the 
potential to enhance the accuracy and relevance of brain connectivity 
studies. The enhanced Master Atlas with S` is a subject-based brain 
reference integrating multiple source voxels employed here to limit 
the search space of the clustering algorithm. The parcellation created 
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in this study can be utilised to model the functional organisation of the 
ADHD brain, allowing for the extraction of distinct features for further 
network analysis in the context of ADHD or other brain disorders.
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