

JOURNAL OF TECHNOLOGY AND OPERATIONS MANAGEMENT

<https://e-journal.uum.edu.my/index.php/jtom>

How to cite this article:

Che Hassan, M. H. & Osman, L. H. (2024). Systematic literature review of the trend on green supply chain management. *Journal of Technology and Operations Management*, 19(2), 55-72. <https://doi.org/10.32890/jtom2024.2.1>

Systematic Literature Review of the Trend on Green Supply Chain Management

*Muhammad Hamdi Che Hassan & Lokhman Hakim Osman

Faculty of Economics and Management

Universiti Kebangsaan Malaysia, 43600 UKM, Bangi, Selangor, Malaysia

*Corresponding author: p119828@siswa.ukm.edu.my

Received: 2/8/2024

Revised: 30/10/2024

Accepted: 1/11/2024

Published: 25/12/2024

ABSTRACT

Nowadays, the world is facing a crisis of sustainability challenges and industries in developed countries are making strategies to respond to those challenges by implementing green supply chain management. To avoid this effect having a negative impact on the environment, of the various efforts taken by the firm among the steps are taken is to practice green practices in every operating activity of the supply chain way to reduce the impact on the environment. This study aims to present a systematic literature review of green supply chain management practices and examination of examine previous studies on green supply chain management. This study was conducted on the article data collected from the Web of Science (WOS) and Scopus databases between the years 2013 and 2023 using the Preferred Reporting Items for Systematics Review and Meta Analyses (PRISMA) approach. The final method consisted of screening 83 articles, and an analysis was carried out to look for patterns of article citation, prior research settings that are nation based and field study use studies in green supply chain. Furthermore, it indicates that the amount of empirical research work on green supply chain management has increased rapidly over the last few years. The development of green supply chain management is notably significant due to its diverse advantages, including improved economic performance, adherence to stakeholder expectations, and the opportunity for innovation via digital transformation. As organisations traverse the intricacies of contemporary supply chains, the incorporation of sustainability into their operations is more essential for enduring success.

Keywords: Green Supply Chain Management, Sustainable Supply Chain Management, Green Value Chain, PRISMA Model

INTRODUCTION

Supply chain activities are undeniably recognised as contributing factors to environmental pollution, global warming, climate change, and human adverse health effects due to heightened greenhouse gas emissions. Furthermore, improper waste management practices have been established alongside companies producing unprecedented products that negatively impact consumers, storing hazardous materials and explosives, and engaging in excessive resource consumption (Abdul, 2019).

Thus, avoiding this consequence harms the environment of the firm's efforts. The chain practices green practices in every operating activity to reduce environmental impact, ensure community security, improve efficiency, become competitive, meet stakeholder needs, and access new markets (Agyabeng-Mensah et al. 2020). The company did this to ensure that all supply chain activities, including safety and welfare, are taken care of and seen as important, as well as stakeholder needs through less greenhouse gas emissions, waste resource and energy use (Hejazi et al. 2023). Green supply chain practices are not only a responsibility to reduce environmental impact, but also a strategy to gain competitive advantage in the supply chain. Firms consider green supply chain management (Dhiaf et al. 2022). By regulating energy and consumable resource usage, eliminating manufacturing waste, and adopting safe and legal disposal methods, green supply chain management helps companies meet their environmental goals. Implementing a green supply chain is a top priority in every industry and a growing challenge for firms worldwide. Thus, suppliers, government, consumers, and legal bodies require a supply chain management solution that reduces environmental effects (Jabbour et al., 2014).

As we know green supply has become the firm objective in achieving the firm's goals, this is because awareness of the impact on the environment has increased. In this study, it will be seen how far the study of the green supply chain has been done and this will give a full picture of the direction of the green supply chain.

This study provides a comprehensive analysis of existing literature about the implementation of environmentally friendly techniques in supply chain management. A systematic literature review is a rigorous approach to examining previous studies by evaluating, condensing, and endeavouring to combine the gathered material. The primary objective of the systematic review is to compile concise summaries of previous research within a certain field of study (Mardani, 2020). Hanley and Winter (2013) also argued that a systematic review is designed to be more stringent in order to mitigate bias and provide a means of re-evaluating studies within a specific context. Although there have been numerous research on green supply chain management, there is still a paucity of systematic reviews in this topic. This article aims to address the knowledge gap by offering insights into the trends observed in previous investigations.

In this study, the author has identified research questions that are answered based on a systematic study related to the green supply chain, in this study, the authors discuss the three research questions:

RQ1. Examining the publication trends in green supply chain management concerning time and countries and authors?

RQ2. What a research area that is emphasized by the authors?

RQ3. What are the future research agendas to be explored in the green supply chain management area?

In addition, the primary aim of this analysis is to examine patterns that can serve as a basis for future research endeavours. This inquiry aimed to identify the scholarly publications published in the past decade that received the highest number of citations. The current study intends to conduct a comprehensive investigation of this subject. Conducting a thorough analysis of the green supply chain sector in the next decade would be beneficial for accurately mapping ongoing conversations in the industry.

METHODOLOGY

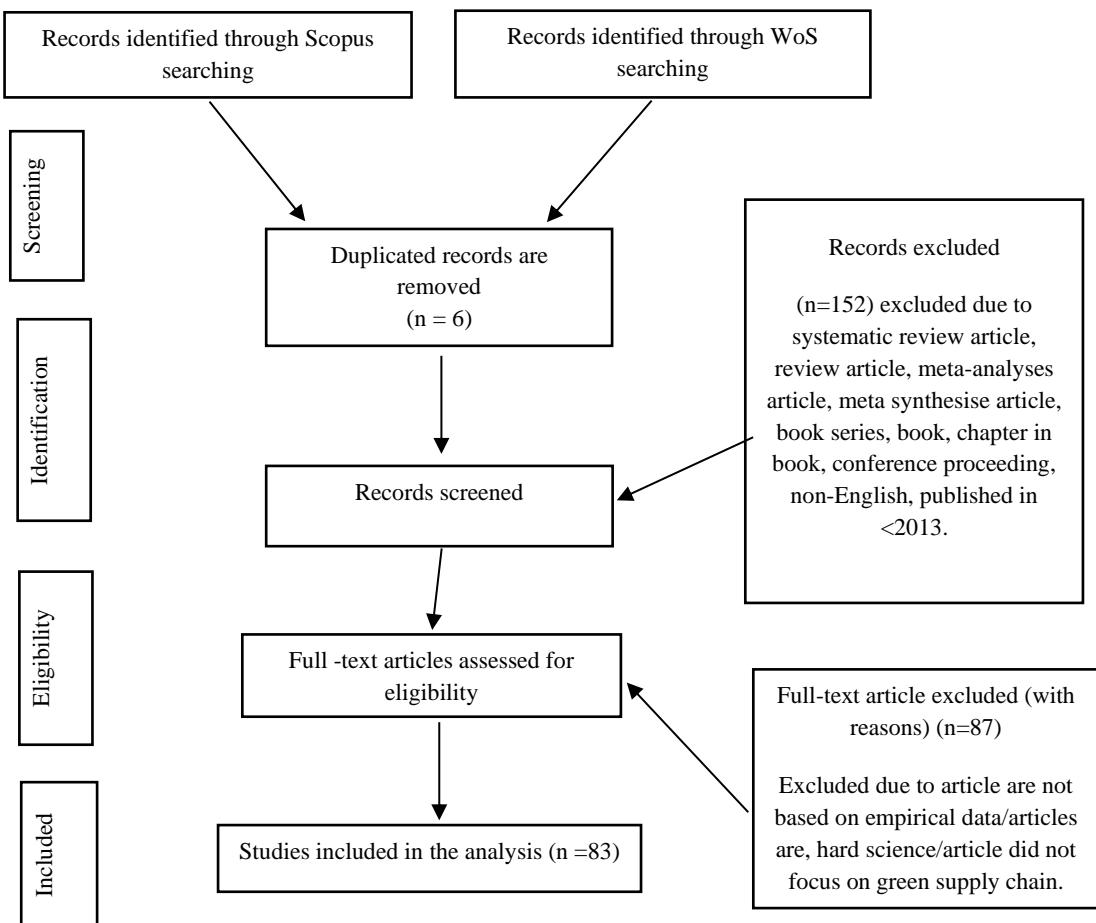
In this segment, a comprehensive elucidation is presented regarding the approach adopted for obtaining commodities linked to the green supply chain management. The researcher applied the PRISMA methodology throughout investigation. The current study details the utilized methodology, which involves leveraging Scopus and Web of Science as primary resources for executing a systematic review. Furthermore, it outlines the criteria utilized for establishing eligibility and exclusion, along with explicating the various stages comprising the review process, namely identification, screening, and eligibility. Moreover, it clarifies the techniques employed for both data abstraction and analysis (Figure 1).

PRISMA

PRISMA, or Preferred Reporting Items for Systematic Reviews and Meta-Analyses, serves as a standardized framework for conducting systematic literature reviews. Such publication standards are crucial to provide authors with essential guidance, ensuring the inclusion of relevant information that facilitates the evaluation and scrutiny of a review's quality and rigor. Published by (Moher et al. 2009), PRISMA primarily focuses on guiding the reporting of randomized trials, serving as a foundational resource for systematic reviews across various research types. While PRISMA is conventionally associated with medical studies, (Sierra-Correa & Cantera Kintz 2015) assert its applicability in the field of environmental management. They argue that PRISMA clarity in defining research questions makes it well-suited for systematic reviews, even beyond its typical use in medical studies. Notably, PRISMA utility extends to identifying inclusion and exclusion criteria for diverse studies. Furthermore, PRISMA capacity to comprehensively survey scientific literature within a specified timeframe makes it valuable for accurate searches related to concepts such as green supply chain management, integral to business sustainability. The framework's application enables the systematic review of coded information, particularly relevant for future business management studies. In essence, PRISMA proves versatile, transcending its origins in medical research to become an effective tool for guiding systematic reviews in various fields, including business management. Its structured approach aids researchers in formulating precise research questions, establishing criteria for study inclusion and exclusion, and conducting thorough literature searches, thus contributing to the robustness and reliability of systematic reviews across diverse domains.

Sources of Database

The methodology employed in this study involved a thorough review process conducted through two principal databases: Scopus and Web of Science. Guz (2009) highlights the prevalent utilization of WOS and Scopus as comprehensive databases for conducting literature searches. Scopus, which was introduced in 2004, is a vast and diverse database that contains more than 21,500 publications from 5,000 publishers worldwide. It offers many tools for analysing and visualizing research outcomes. As of January 2020, the content comprised more than 25,100 articles. Conversely, WOS encompasses around 11,400 journals and establishes connections between pertinent information by means of citation references. Web of Science (WOS), which has been providing reports since 1990, mostly includes publications written in English. According to the data from Web of Science, it contains a total of 21,294 articles that span across several fields including sciences, social sciences, and arts and humanities. Both databases provide useful resources for researchers.


Identification

The current study employed a three-stage systematic review technique to find pertinent papers. At first, we identified keywords and then searched for related terms using thesauri, dictionaries, encyclopaedias, and current research. By drawing on information from previous research and identifying equivalent phrases in the thesaurus, we generated keywords such as green supply chain management, sustainable

supply chain management, and green supply chain management. After identifying all relevant keywords, the investigation was able to obtain a total of 328 articles from the chosen databases.

Figure 1

The Flow Diagram of the Study

ANALYSIS AND DISCUSSION

Screening

The primary screening phase was conducted to remove duplicate articles, leading to the deletion of six articles. During the second step, a total of 322 papers were screened according to the predefined inclusion and exclusion criteria established by the researchers. The primary criterion revolved around the genre of literature, namely emphasizing scholarly journals (research papers) solely. Therefore, the current research excluded publications such as systematic reviews, general reviews, meta-analyses, meta-syntheses, book series, books, chapters in books, and conference proceedings. In addition, the review focused exclusively on publications published in the English language and restricted the timeframe to a span of ten years (2013-2023). It is crucial to emphasize that a grand total of 152 publications were rejected based on these specific criteria.

Eligibility

In the third stage, termed eligibility, a total of 170 articles progressed for further scrutiny. During this crucial phase, the titles, abstracts, and main contents of all articles underwent a thorough examination to

ascertain their alignment with the inclusion criteria, ensuring their suitability for incorporation into the present study and alignment with the research objectives. Notably, 87 articles were excluded from consideration due to their lack of reliance on empirical data and identification as hard sciences articles that did not specifically address green supply chain management. It is paramount to emphasize that the search exclusively targeted green supply chain management, with any unrelated articles being excluded post the completion of the screening process. As a result, a total of 83 remaining articles stand ready for analysis.

Analysis of Articles in the WOS Database

The primary aim of the present study is to conduct a thorough evaluation of scholarly articles retrieved from the Web of Science (WOS) database. The search parameters utilized within the WOS database were carefully tailored to ensure precision, ultimately resulting in the identification of a total of 131 publications. The criteria were specifically designed to capture a comprehensive understanding of the research landscape related to the keywords: TS="green supply chain management" AND "sustainable supply chain management" AND "green value chain". These keywords, collectively denoted as TS, served as the guiding principles for the inclusion of articles in this analysis. The search strategy employed for publication retrieval was designed to comprehensively encompass the broad domain of "green" and related topics, specifically focusing on aspects such as green supply chain management, sustainable supply chain management, and the green value chain. The identified publications represent a diverse array of research contributions within this thematic framework. Furthermore, the temporal scope of the publication citations spans the years 2013 to 2023, ensuring a comprehensive and up-to-date examination of the literature. This time frame was selected to encapsulate a decade of scholarly output, allowing for an in-depth analysis of the evolution and trends in research related to the green supply chain.

Figure 2

Number of Articles in WOS Database

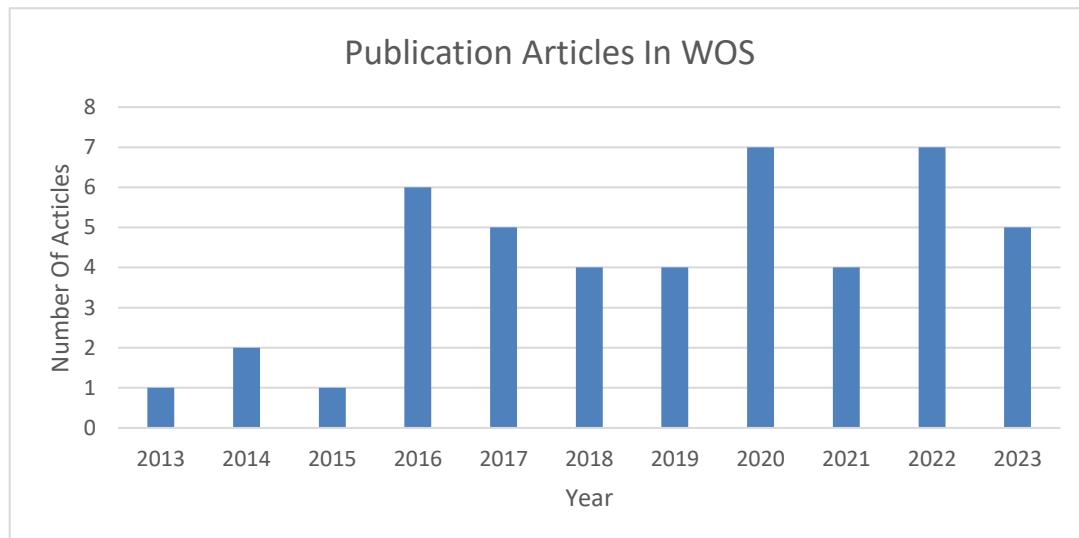
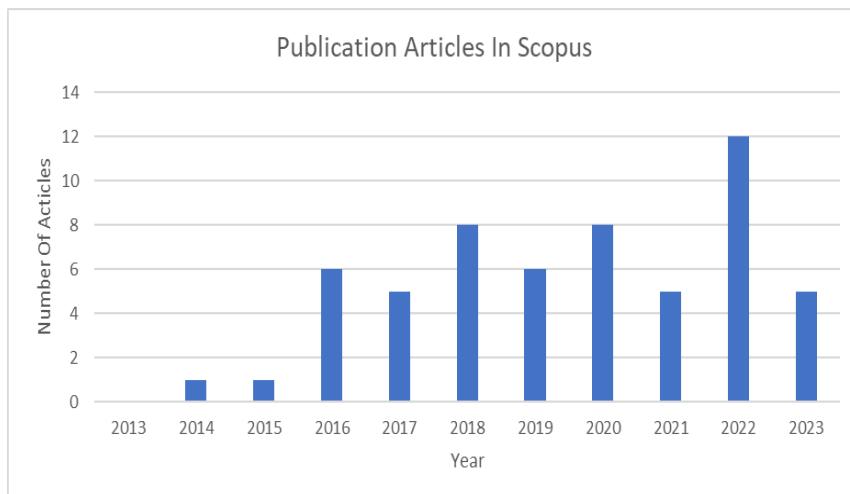


Figure 2 shows the quantity of papers that were published in the Web of Science (WOS) database between the years 2013 and 2023. The quantity of published articles on green in supply chain management was relatively satisfactory during the initial decade, with an average distribution of one to two. In addition, the 2013 article reported just one article, but in 2014 there was an increase of two articles, followed by a fall-back to only one article. The volume of the journal rose in 2016 but slightly declined in 2017 and remained at 2 articles from 2018 to 2019. It then increased again in 2020. In 2023,


the data report five articles. The comprehensive examination of this WOS database encompasses disciplines such as operations research management, scientific management, business management, and other relevant fields.

Analysis of Articles in the Scopus Database

The focal point of this study involves a meticulous analysis of scholarly articles procured from the esteemed Scopus database. Figure 3 presents the number of articles in Scopus for the search year from 2013 to 2023. A systematic approach was employed to identify and evaluate relevant literature within the specified realm. The selected articles were scrutinised based on their alignment with predetermined criteria, encompassing information encapsulated in abstracts, article titles, or keywords. To facilitate this, an exhaustive search was executed using the following query: TITLE-ABSTRACT-KEY(("green supply chain management") AND ("sustainable supply chain management") AND ("green value chain")). This query strategy identified 197 publications, each deemed to contain pertinent information encapsulated within their abstracts, titles, or keywords. The identified 197 articles, meticulously curated through this rigorous process, represent a diverse and scholarly collection addressing various facets of the green supply chain domain. The inclusion criteria were structured to ensure a broad yet focused exploration of the subject matter, allowing for the incorporation of valuable insights from the abstracts, titles, and keywords of the selected articles.

Figure 3

Number of Articles in Scopus Database

The dataset spans from 2013 to 2023, showcasing the evolution of scholarly output over the years. In 2013, there were no recorded articles, possibly indicating a slow start or a focus on other forms of dissemination. The subsequent years, 2014 and 2015, witnessed a modest but consistent rise, with one article published each year. A substantial surge in publication activity occurred in 2016, marking a significant turning point with six articles. The trend persisted in 2017, maintaining a robust level with five articles. The year 2018 witnessed a notable spike, reaching eight articles. The subsequent years, 2019 and 2021, maintained a relatively high level with six and five articles. The pinnacle of scholarly productivity within the dataset was reached in 2022, with twelve articles. The latest available data for 2023 shows a slight decline, with five articles published. The Scopus database encompasses various disciplines, such as business management, accounting, social sciences, economics, etc.

Research Setting of the Country of Origin

This section will focus on extensive research on green supply chain management (Table 1). Hence, the researchers examined the country as the backdrop for the investigation. The analysis indicates that most prior studies on green supply chains have focused on China and India.

Table 1

Country of origin

Country	Number Study	
	Scopus	WOS
China	18	15
India	4	29
England	15	10
USA	-	14
Italy	6	7
France	1	9
Malaysia	3	8
Spain/Germany	4	14
South Korea/ Netherland/Brazil	5	17
Pakistan/Sweden/Colombia	8	6
Norway/Finland/Taiwan/Iran	4	5
Scotland/Switzerland/Canada	3	9
Denmark/Poland/Ghana	4	5
Morocco/Turkey/UAE/Vietnam/Bangladesh/New Zealand/Wales/Portugal/Ireland/Hungary/Chile/Mexico/South Africa	9	16
Kuwait/Ecuador/Czech Republic/Belgium/Egypt/Indonesia/Singapore/Sri Lanka/Thailand/Japan/Tunisia/Hong Kong	2	10

Green Supply Chain Management has garnered considerable attention in different industries, including China, due to the growing worldwide concern for environmental sustainability (Tang et al., 2020). China, being a prominent global manufacturing and exporting nation, exerts substantial environmental consequences through its industrial operations (Lei Chen, 2021). As public knowledge of the need of environmental protection rises, there is an increasing requirement for enterprises to implement sustainable and eco-friendly practices (Zhang et al., 2016). Furthermore, India's growing manufacturing sector and its status as one of the leading manufacturing economies worldwide have resulted in a greater focus on green supply chain management (Balaji, 2014). The growing recognition and apprehension over the adverse effects of conventional supply chain methods on the environment have also stimulated the investigation of green supply chain management in India. Moreover, the increasing consumer desire for sustainable and environmentally friendly products has generated a market-driven necessity for firms to adopt green supply chain processes in order to stay competitive and fulfil customer expectations.

Furthermore, the second most studied country is England, as we know England is a country that values environmental sustainability in addition to increasing the ability to compete between organizations. England has a strong commitment to environmental sustainability and has implemented stringent regulations and policies to promote green practices in various industries. There is a growing public awareness and concern for the environment among the population in England (Jili, 2020). Businesses in England recognize the competitive advantages that can be gained by implementing green supply chain management practices. These factors contribute to the high level of study and research on green supply chain management in England. Additionally, England's strong manufacturing sector and global presence in industries such as automotive, aerospace, and pharmaceuticals require a focus on sustainable supply chain practices. Moreover, research on green supply chain management has been

conducted in various countries, serving as the study backdrop. These nations include Ecuador, Ghana, the USA, Spain, Germany, South Korea, the Netherlands, Brazil, and others.

Analysis on Citation Number of Articles

In scholarly discourse, citations play a crucial role as researchers incorporate them seamlessly into their main text whenever they directly quote, paraphrase, summarize, or reference the work of another author (Shibly, 2016). In the ongoing research, the academic experts have pinpointed 10 articles from a diverse array of sources that were referenced in earlier studies. To compile this list, the researchers carried out an exhaustive search across two prominent databases, Scopus and WOS as shown in the following Table 2 and Table 3.

Table 2

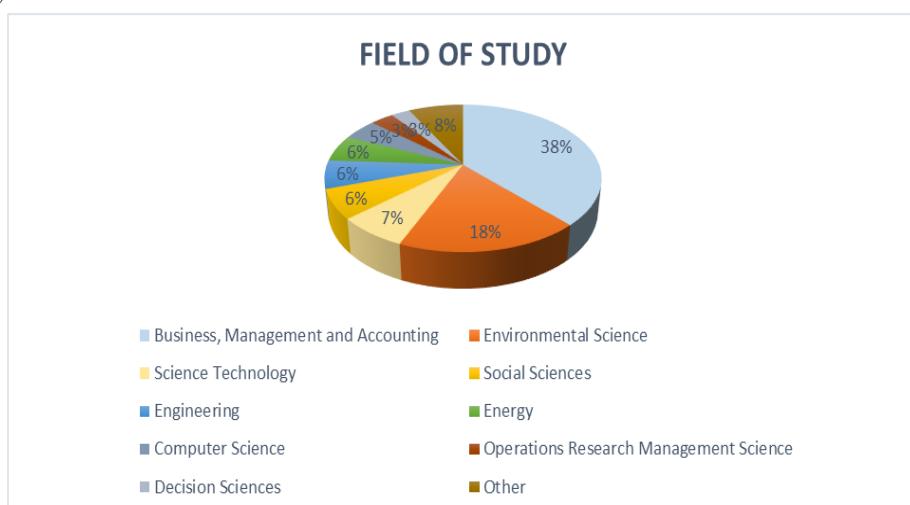
Lists the 10 most cited articles in the WOS database

Title	Authors/Year	Number of citations
Sustainable human resource management: a systematic review of a developing field	(Anlesinya et al., 2020)	192
Capturing the value creation in public procurement: A practice-based view	(Malacina et al., 2022)	167
The logistics service providers in eco-efficiency innovation: an empirical study	(Rossi et al., 2013)	158
Technology adoption, global value chains and sustainability: The case of additive manufacturing	(Sanguineti et al., 2023)	132
A review of green practices and initiatives from stakeholder's perspectives towards sustainable hotel operations and performance impact	(Khalil et al., 2022)	131
Do motives matter? Examining the relationships between motives, SSCM practices and TBL performance	(Kitsis et al., 2020)	130
Collaboration practices in the fashion industry: Environmentally sustainable innovations in the value chain	(Todeschini et al., 2020)	129
Corporate social responsibility and sustainability practices in B2B markets: A review and research agenda	(Huang et al., 2022)	123
Mapping the field of sustainable procurement: a bibliometric analysis	(Kabra et al., 2023)	116
Servitized SMEs' performance and the influences of sustainable procurement, packaging, and distribution: The mediating role of eco-innovation	(Bhatti et al., 2023)	116

In this article, the investigators opted to scrutinize the citation patterns observed in numerous researchers' works spanning the years 2013 to 2023. The primary objective of this analysis was to discern the articles making the most substantial contributions to green supply chain management. The outcomes of this analysis are detailed in Table 2. Notably, the researchers concentrated on the ten most frequently cited articles sourced from the Scopus database. Moreover, the graph illustrates a noteworthy trend from 2015 to 2017, the number of quoted articles maintained a moderately persistent lower level compared to the specific article under discussion, which was published in 2018. In terms of citation numbers, the publications authored by (Kalmykova et al., 2018) garnered the highest citations according to the Scopus database. Their study delves into the analysis of the theory and implementation of the circular economy, offering guidance for further exploration of various facets of this economic model. The focus on the green supply chain, integrating environmental considerations into supply chain management, aligns with strategies conducive to implementing circular economy principles such as waste reduction, resource optimization, and eco-efficiency.

Table 3

List of the 10 most cited articles in the Scopus database.


Title	Authors/Year	Number of citations
Circular economy - From review of theories and practices to development of implementation tools	(Kalmykova et al., 2018)	741
Green supply chain management: theoretical framework and further research directions	(Dubey et al., 2017)	198
Managerial practices for designing circular economy business models: The case of an Italian SME in the office supply industry	(Ünal et al., 2019)	141
Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery	(Sharma et al., 2021)	130
Carbon footprint and responsiveness trade-offs in supply chain network design	(Martí et al., 2015)	113
Lean and green in the transport and logistics sector – a case study of simultaneous deployment	(Garza et al., 2016)	92
Evaluating the human resource related soft dimensions in green supply chain management implementation	(Kumar et al., 2019)	83
Green training for sustainable procurement? Insights from the Brazilian public sector	(Aragão et al., 2017)	73
Adaptive memory artificial bee colony algorithm for green vehicle routing with cross-docking	(Yin et al., 2016)	64
Green component procurement collaboration for improving supply chain management in the high technology industries: A case study from the systems perspective	(Yan et al., 2016)	49

Analysis of the Field of Study Covered in WOS and Scopus Databases

In evaluating the selected final articles, the investigators identified a particular emphasis on research related to green supply chain. They identified many specific areas of study within this field. Green Supply Chain Management is a management strategy that emphasizes the incorporation of environmentally sustainable practices into the process of managing the supply chain. It acknowledges the influence and correlation between supply chain management and the environment. The objective of green supply chain management is to avoid adverse environmental effects while simultaneously attaining economic goals. Implementing green supply chain management enables organizations to maintain their competitiveness in the market (Linh, 2021).

Figure 4

Field of Study

Consumers are becoming increasingly environmentally conscious and are more likely to choose products and services from companies that demonstrate sustainability efforts. By integrating green practices into the supply chain management process, businesses can attract eco-conscious customers and gain a competitive edge (Zaheb et al., 2022). Figure 4 indicates that a significant portion, or about 38 percent, of the screened final articles delve into the realm of Business, Management, and Accounting.

In the contemporary landscape, organizations universally craft their distinctive strategies not only to attain sustainability in their business operations but also to address environmental concerns. Within the realm of supply chain management, the integration of environmental science assumes a pivotal role in championing sustainable practices and mitigating adverse impacts on the environment. By applying green supply chain management principles, organizations can effectively reduce their carbon footprint and enhance their environmental performance. This is achieved through various strategies, such as using eco-friendly materials and processes, minimizing waste generation and energy consumption, implementing recycling and waste management programs, and integrating environmental considerations at every stage of the supply chain. Based on the analysis, it is observed that 18 percent of the chosen final articles centre around the field of environmental science.

Science Technology in Green Supply Chain refers to the application of scientific and technological advancements to improve the environmental sustainability and efficiency of supply chain processes. It enables the implementation of innovative solutions and strategies that address environmental challenges, such as reducing carbon emissions, minimizing waste generation, and promoting the use of renewable energy sources. These advancements can include the use of advanced data analytics, sensor technologies, artificial intelligence, and automation to optimize resource utilization, reduce waste generation, and minimize environmental impacts throughout the supply chain. In the analysis, it was found that 7 percent of the selected final articles specifically concentrated on the Science and Technology area.

Social sciences contribute to green supply chain management by examining and addressing the social implications of sustainable practices, this includes conducting research on issues such as labor conditions, supplier compliance with ethical standards, diversity in supplier sourcing, and the promotion of social equity within the supply chain. Furthermore, social sciences help identify and assess the social impacts of green supply chain initiatives. The analysis shows that 6 percent of the selected final articles focused on the social sciences area.

In the realm of engineering, a green supply chain entails the incorporation of environmentally sustainable practices across the entire supply chain spectrum, encompassing elements from design and sourcing to manufacturing and distribution. This comprehensive approach involves the adoption of eco-friendly materials, implementation of energy-efficient processes, deployment of waste reduction strategies, and utilization of sustainable transportation methods to curtail environmental impacts. Through the application of engineering principles and methodologies in shaping and overseeing a green supply chain, organizations can realize substantial enhancements in both environmental stewardship and economic performance. The discipline of green supply chain engineering thus involves leveraging engineering principles and techniques to formulate and oversee a supply chain that embraces and integrates environmentally sustainable practices. The analysis shows that 6 percent of the selected final articles focused on the social sciences area.

The concept of green energy supply chain refers to the integration of environmentally sustainable practices throughout the entire supply chain process. This includes various stages such as product design, sourcing of raw materials, manufacturing processes, distribution and transportation, as well as the disposal and recycling of products. The goal of green energy supply chain management is to minimize the environmental impact of energy production and consumption by adopting renewable energy sources, reducing greenhouse gas emissions, improving energy efficiency, and promoting the use of clean technologies. The analysis shows that 6 percent of the selected final articles focused on the energy area.

Computer Science in the context of green supply chains involves using computer science principles, techniques, and technologies to develop and implement sustainable practices throughout the entire supply chain cycle. This includes activities such as green procurement, green manufacturing, green distribution, and reverse logistics. For example, computer science can be used to develop algorithms and models that

optimize transportation routes to minimize fuel consumption and reduce greenhouse gas emissions. Furthermore, computer science can contribute to the development of smart and energy-efficient manufacturing processes by integrating automation systems, IoT devices, and predictive analytics. By leveraging computer science techniques, organizations can also implement real-time tracking systems to monitor the environmental impact of their supply chain operations. The analysis shows that 5 percent of the selected final articles focused on the Computer Science area

Operations Research Management Science is vital for optimizing green supply chains. Using mathematical modelling and advanced analytics, it enables strategic decisions that balance efficiency, profitability, and environmental impact. It helps identify eco-friendly transportation routes, optimize inventory levels to reduce waste and emissions, and assess the environmental implications of production processes and technologies. Additionally, it addresses sustainability in sourcing, procurement, waste management, and product design. In essence, Operations Research Management Science plays a key role in making informed decisions for the eco-friendly and efficient management of green supply chains. The analysis shows that 3 percent of the selected final articles focused on the Operations Research Management Science area.

Decision sciences, in the context of green supply chain management, refer to the application of analytical and quantitative methods to make informed decisions that incorporate both environmental considerations and cost efficiency. By utilizing decision sciences, organizations can evaluate various options and alternatives in their supply chain processes to identify the most sustainable and efficient approaches. These decision-making techniques help organizations in evaluating the environmental impact of their supply chain activities and make informed decisions to minimize their carbon footprint, reduce waste, and optimize resource utilization. This approach requires the integration of environmental factors into the decision-making process, such as considering the use of sustainable materials, renewable energy sources, and efficient transportation methods. The analysis shows that 3 percent of the selected final articles focused on the decision sciences area. In summary, 8 percent of the articles were identified in alternative categories within the realm of green supply chain management during the analysis.

DISCUSSION

All research questions have been addressed using the collected data. Green supply chain management is recognized as a crucial element for achieving sustainability within an organization. Numerous scholars have demonstrated that implementing a green supply chain leads to enhanced daily operations in terms of productivity, reduced waste, and lower energy consumption (Liu, 2019). Additionally, it assists in reducing negative effects on the environment. However, there are still shortcomings in looking at green practices along with supplier collaboration because the relationship between companies and their suppliers plays an important role in the sustainability of the entire supply chain (Venkatesa Narayanan & Thirunavukkarasu 2021). It is recommended that future studies concentrate on investigating the impact of collaboration between the focal company and its suppliers on the adoption of environmentally friendly practices. This includes understanding the intricacies of communication, the exchange of information, and the collaborative procedures involved in making decisions together. In addition, a considerable number of studies solely rely on quantitative approaches, with limited exploration of green supply chain management through qualitative methods like case studies (De Oliveira et al. 2018). Hence, it is suggested that upcoming research should extensively explore the intricacies of green supply chain management issues within the franchise business sector. Utilizing qualitative case study methodology equips researchers with a valuable instrument to investigate intricate phenomena within their specific contexts. When appropriately applied, this method proves to be invaluable for research endeavours involving theory construction, program evaluation, and intervention formulation (Baxter & Jack 2008).

CONCLUSION

Environmental sustainability is an imperative concern at both local and global levels. This study emphasises that green supply chain management strategies can mitigate production costs and environmental degradation. This study aims to synthesise prior research on the adoption of green supply chain management methods across several industries in the country. A thorough literature review provides an exhaustive summary of current research in the topic. The review delineates principal obstacles to the implementation of green supply chain management, encompassing deficiencies in knowledge and support, green technology and infrastructure, financial resources, technological capabilities, awareness of green supply chain management, access to environmentally sustainable materials, governmental support, policies, and customer awareness. The main limitation of this study is relied on two database only WOS and Scopus, a few studies might not have captured. A wider range of data could be explored by searching databases such as Sage, Springer, Science Direct, and Taylor Francis. Future researchers may undertake a thorough evaluation of green supply chain management literature concentrating on other developing nations with analogous socio economic contexts. Furthermore, they may investigate other frameworks for systematic reviews beyond the PRISMA paradigm. Researchers may also investigate green supply chain management techniques across several corporate sectors, yielding comparative insights on sector specific issues and achievements.

CONFLICT OF INTEREST

The Author declares that there no of any potential conflicts of interest.

REFERENCES

Abdul Rehman Khan, S. (2019). Introductory Chapter: Introduction of Green Supply Chain Management. *IntechOpen*. <https://doi.org/10.5772/intechopen.81088>

Agyabeng-Mensah, Y., Afum, E., & Ahenkorah, E. (2020). Exploring financial performance and green logistics management practices: Examining the mediating influences of market, environmental and social performances. *Journal of Cleaner Production*, 258, 120613. <https://doi.org/10.1016/j.jclepro.2020.120613>

Albhirat, M., Zulkiffli, S., Salleh, H., & Mohamad Zaki, N. A. (2023). The moderating role of social capital in the relationship between green supply chain management and sustainable business performance: Evidence from Jordanian SMEs. *International Journal of Sustainable Development and Planning*, 18, 1733-1747. <https://doi.org/10.18280/ijsdp.180609>

Anlesinya, A., & Susomrith, P. (2020). Sustainable human resource management: A systematic review of a developing field. *Journal of Global Responsibility*, 11(3), 295-324. <https://doi.org/10.1108/JGR-04-2019-0038>

Anthony Jnr, B. (2019). Sustainable value chain practice adoption to improve strategic environmentalism in ICT-based industries. *Journal of Global Operations and Strategic Sourcing*, 12(3), 380-409. <https://doi.org/10.1108/JGOSS-06-2018-0022>

Balaji, M., & Manikanda Prasath, K. (2014). Barriers in green supply chain management: An Indian foundry perspective. *International Journal of Research in Engineering and Technology*, 03, 423-429. <https://doi.org/10.15623/ijret.2014.0319076>

Baxter, P., & Jack, S. (2008). Qualitative case study methodology: study design and implementation for novice researchers. *The Qualitative Report*, 13(4), 544-559. <https://doi.org/10.46743/2160-3715/2008.1573>

Bhatti, S. H., Rashid, M., Arslan, A., Tarba, S., & Liu, Y. (2023). Servitized SMEs' performance and the influences of sustainable procurement, packaging, and distribution: The mediating role of eco-innovation. *Technovation*, 127, 102831. <https://doi.org/10.1016/j.technovation.2023.102831>

Chen, L., Li, K., Chen, S., Wang, X., & Tang, L. (2021). Industrial activity, energy structure, and environmental pollution in China. *Energy Economics*, 104, 105633. <https://doi.org/10.1016/j.eneco.2021.105633>

De Giovanni, P., & Esposito Vinzi, V. (2014). The benefits of the emissions trading mechanism for Italian firms: a multi-group analysis. *International Journal of Physical Distribution and Logistics Management*, 44(4), 305-324. <https://doi.org/10.1108/IJPDLM-06-2012-0188>

De Oliveira, U. R., Espindola, L. S., da Silva, I. R., da Silva, I. N., & Rocha, H. M. (2018). A systematic literature review on green supply chain management: Research implications and future perspectives. *Journal of Cleaner Production*, 187, 537-561. <https://doi.org/10.1016/j.jclepro.2018.03.083>

Dev, N. K., & Shankar, R. (2016). Using interpretive structure modelling to analyze the interactions between environmental sustainability boundary enablers. *International Journal*, 23(3), 601-617. <https://doi.org/10.1108/BIJ-05-2013-0063>

Dhiaf, M. M., El Khoury, R., Nasrallah, N., Attayah, O., & Frederico, G. (2022). The impact of green supply chain management practices on environmental performance during COVID-19 period: the case of discretionary companies in the G-20 countries. *Benchmarking: An International Journal*, 30, 2139-2165. <https://doi.org/10.1108/BIJ-11-2021-0636>

Dubey, R., Gunasekaran, A., & Papadopoulos, T. (2017). Green supply chain management: theoretical framework and further research directions. *International Journal*, 24(1), 184-218. <https://doi.org/10.1108/BIJ-01-2016-0011>

Feng, T., Du, H., Zhang, Z., Mi, Z., Guan, D., & Zuo, J. (2020). Carbon transfer within China: Insights from production fragmentation. *Energy Economics*, 86, 104647. <https://doi.org/10.1016/j.eneco.2019.104647>

Font, X., English, R., Gkritzali, A., & Tian, W. (2021). Value co-creation in sustainable tourism: A service-dominant logic approach. *Tourism Management*, 82, 104200. <https://doi.org/10.1016/j.tourman.2020.104200>

Franco, M. A. (2017). Circular economy at the micro level: A dynamic view of incumbent struggles and challenges in the textile industry. *Journal of Cleaner Production*, 168, 833-845. <https://doi.org/10.1016/j.jclepro.2017.09.056>

Garza-Reyes, J. A., Villarreal, B., Kumar, V., & Molina Ruiz, P. (2016). Lean and green in the transport and logistics sector – a case study of simultaneous deployment. *Production Planning & Control*, 27(15), 1221-1232. <https://doi.org/10.1080/09537287.2016.1197436>

Ghadge, A., Yang, Q., Caldwell, N., König, C., & Tiwari, M. K. (2016). Facility Location for a Closed-Loop Distribution Network: a Hybrid Approach. *International Journal of Retail and Distribution Management*, 44(9), 884-902. <https://doi.org/10.1108/IJRDM-07-2015-0094>

Ghadimi, P., Dargi, A., & Heavey, C. (2017). Making sustainable sourcing decisions: practical evidence from the automotive industry. *International Journal of Logistics Research and Applications*, 20(4), 297-321. <https://doi.org/10.1080/13675567.2016.1227310>

Golini, R., & Gualandris, J. (2018). An empirical examination of the relationship between globalization, integration and sustainable innovation within manufacturing networks. *International Journal of Operations & Production Management*, 38(3), 874-894. <https://doi.org/10.1108/IJOPM-12-2016-0725>

Gong, Y., Liu, J., & Zhu, J. (2019). When to increase firms' sustainable operations for efficiency? A data envelopment analysis in the retailing industry. *European Journal of Operational Research*, 277(3), 1010-1026. <https://doi.org/10.1016/j.ejor.2019.03.019>

Gotschol, A., De Giovanni, P., & Esposito Vinzi, V. (2014). Is environmental management an economically sustainable business? *Journal of Environmental Management*, 144, 73-82. <https://doi.org/10.1016/j.jenvman.2014.05.001>

Gupta, A., & Singh, R. K. (2020). Managing operations by a logistics company for sustainable service quality: Indian perspective. *Management of Environmental Quality: International Journal*, 31(5), 1309-1327. <https://doi.org/10.1108/MEQ-11-2019-0246>

Hejazi, M. T., Al Batati, B., & Bahurmuz, A. (2023). the influence of green supply chain management practices on corporate sustainability performance. *Sustainability*, 15(6), 5459. <https://www.mdpi.com/2071-1050/15/6/5459>

Hosseini-Motlagh, S.-M., Johari, M., & Zirakpourdehkordi, R. (2021). Grain production management to reduce global warming potential under financial constraints and time value of money using evolutionary game theory. *International Journal of Production Research*, 59(17), 5108-5129. <https://doi.org/10.1080/00207543.2020.1773562>

Huang, Y., Surface, D. L., & Zhang, C. (2022). Corporate social responsibility and sustainability practices in B2B markets: A review and research agenda. *Industrial Marketing Management*, 106, 219-239. <https://doi.org/10.1016/j.indmarman.2022.08.016>

Izadikhah, M., & Saen, R. F. (2016). A new preference voting method for sustainable location planning using geographic information system and data envelopment analysis. *Journal of Cleaner Production*, 137, 1347-1367. <https://doi.org/10.1016/j.jclepro.2016.08.021>

Jabbar, A. B., Jabbar, C., Govindan, K., Kannan, D. and Arantes, A. F., (2014a). Mixed methodology to analyze the relationship between maturity of environmental management and the adoption of green supply chain management in Brazil. *Resources, Conservation and Recycling*, 92, 255-267. <https://doi.org/10.1016/j.resconrec.2014.02.004>

Jaiswal, A., Samuel, C., & Ganesh, G. A. (2019). Pollution optimisation study of logistics in SMEs. Management of Environmental Quality. *International Journal*, 30(4), 731-750. <https://doi.org/10.1108/MEQ-04-2018-0077>

Jayarathna, C. P., Agdas, D., & Dawes, L. (2023). Exploring sustainable logistics practices toward a circular economy: A value creation perspective. *Business Strategy and the Environment*, 32(1), 704-720. <https://doi.org/https://doi.org/10.1002/bse.3170>

Jili, N. N., & Nzimakwe, T. I. (2022). The implementation and sustainability of pro-poor local economic development initiatives in King Cetshwayo District municipality. *Journal of Public Affairs*, 22(2), e2424. <https://doi.org/https://doi.org/10.1002/pa.2424>

Jørsfeldt, L. M., Hvolby, H.-H., & Nguyen, V. T. (2016). Implementing environmental sustainability in logistics operations: a case study. *Strategic Outsourcing*, 9(2), 98-125. <https://doi.org/10.1108/SO-09-2015-0023>

Kabra, G., Srivastava, S. K., & Ghosh, V. (2023). Mapping the field of sustainable procurement: A bibliometric analysis. *International Journal*, 30(10), 4370-4396. <https://doi.org/10.1108/BIJ-06-2022-0418>

Kalmykova, Y., Sadagopan, M., & Rosado, L. (2018). Circular economy – From review of theories and practices to development of implementation tools. *Resources, Conservation and Recycling*, 135, 190-201. <https://doi.org/10.1016/j.resconrec.2017.10.034>

Khalil, N., Che Abdullah, S. N., Haron, S. N., & Hamid, M. Y. (2022). A review of green practices and initiatives from stakeholder's perspectives towards sustainable hotel operations and performance

impact. *Journal of Facilities Management*, ahead-of-print(ahead-of-print). <https://doi.org/10.1108/JFM-03-2022-0025>

Khuntia, J., Saldanha, T. J. V., Mithas, S., & Sambamurthy, V. (2018). Information Technology and Sustainability: Evidence from an Emerging Economy. *Production and Operations Management*, 27(4), 756-773. <https://doi.org/10.1111/poms.12822>

Kitsis, A. M., & Chen, I. J. (2020). Do motives matter? Examining the relationships between motives, SSCM practices and TBL performance. *Supply Chain Management. International Journal*, 25(3), 325-341. <https://doi.org/10.1108/SCM-05-2019-0218>

Klymenko, O., & Lillebrygfjeld Halse, L. (2022). Sustainability practices during COVID-19: an institutional perspective. *The International Journal of Logistics Management*, 33(4), 1315-1335. <https://doi.org/10.1108/IJLM-05-2021-0306>

Koh, S. C. L., Morris, J., Ebrahimi, S. M., & Obayi, R. (2016). Integrated resource efficiency: measurement and management. *International Journal of Operations and Production Management*, 36(11), 1576-1600. <https://doi.org/10.1108/IJOPM-05-2015-0266>

Kumar, A., Mangla, S. K., Luthra, S., & Ishizaka, A. (2019). Evaluating the human resource related soft dimensions in green supply chain management implementation. *Production Planning and Control*, 30(9), 699-715. <https://doi.org/10.1080/09537287.2018.1555342>

Lin, T. T., Yen, H.-T., & Hsu, S.-Y. (2022). A Synergy Value Analysis of Sustainable Management Projects: Illustrated by the Example of the Aesthetic Medicine Industry. *Journal of Risk and Financial Management*, 15(8), 348. <https://www.mdpi.com/1911-8074/15/8/348>

Liu, L. (2019). Top management characteristics, green supply chain management and corporate performance and moderating effects of competition intensity. *Journal of Human Resource and Sustainability Studies*, 07(01), 55-71. <https://doi.org/10.4236/jhrss.2019.71005>

Malacina, I., Karttunen, E., Jääskeläinen, A., Lintukangas, K., Heikkilä, J., & Kähkönen, A.-K. (2022). Capturing the value creation in public procurement: A practice-based view. *Journal of Purchasing and Supply Management*, 28(2), 100745. <https://doi.org/10.1016/j.pursup.2021.100745>

Mardani, A., Kannan, D., Hooker, R. E., Ozkul, S., Alrasheedi, M., & Tirkolaee, E. B. (2020). Evaluation of green and sustainable supply chain management using structural equation modelling: A systematic review of the state of the art literature and recommendations for future research. *Journal of Cleaner Production*, 249, 119383. <https://doi.org/10.1016/j.jclepro.2019.119383>

Martí, J. M. C., Tancrez, J.-S., & Seifert, R. W. (2015). Carbon footprint and responsiveness trade-offs in supply chain network design. *International Journal of Production Economics*, 166, 129-142. <https://doi.org/10.1016/j.ijpe.2015.04.016>

Najm, H., & Asadi-Gangraj, E. (2024). Designing a robust sustainable reverse logistics to waste of electrical and electronic equipment: a case study. *International Journal of Environmental Science and Technology*, 21(2), 1559-1574. <https://doi.org/10.1007/s13762-023-05357-y>

Nguyen, H., Onofrei, G., Wiengarten, F., Yang, Y., McClelland, R., & Akbari, M. (2023). The dual environmental customer and green reputation pressures on environmental management systems: the performance implications of manufacturing exports. *Supply Chain Management* 28(4), 695-709. <https://doi.org/10.1108/SCM-10-2021-0488>

Petit, G., Sablayrolles, C., & Yannou-Le Bris, G. (2018). Combining eco-social and environmental indicators to assess the sustainability performance of a food value chain: A case study. *Journal of Cleaner Production*, 191, 135-143. <https://doi.org/10.1016/j.jclepro.2018.04.156>

Piercy, N., & Rich, N. (2015). The relationship between lean operations and sustainable operations. *International Journal of Operations & Production Management*, 35(2), 282-315. <https://doi.org/10.1108/IJOPM-03-2014-0143>

Raj, A., & Srivastava, S. K. (2018). Sustainability performance assessment of an aircraft manufacturing firm. *An International Journal*, 25(5), 1500-1527. <https://doi.org/10.1108/BIJ-01-2017-0001>

Rossi, S., Colicchia, C., Cozzolino, A., & Christopher, M. (2013). The logistics service providers in eco-efficiency innovation: an empirical study. *Supply Chain Management. International Journal*, 18(6), 583-603. <https://doi.org/10.1108/SCM-02-2012-0053>

Sanguineti, F., Magnani, G., & Zucchella, A. (2023). Technology adoption, global value chains and sustainability: The case of additive manufacturing. *Journal of Cleaner Production*, 408, 137095. <https://doi.org/10.1016/j.jclepro.2023.137095>

Sharma, H. B., Vanapalli, K. R., Samal, B., Cheela, V. R. S., Dubey, B. K., & Bhattacharya, J. (2021). Circular economy approach in solid waste management system to achieve UN-SDGs: Solutions for post-COVID recovery. *Science of the Total Environment*, 800, 149-605. <https://doi.org/10.1016/j.scitotenv.2021.149605>

shawky younis, z. ., & mAMDouh, o. . (2021). sustainable development Policy: A participatory approach to increase students awareness of solid waste management. *European Journal of Sustainable Development*, 10(3), 1. <https://doi.org/10.14207/ejsd.2021.v10n3p1>

Sierra-Correia, P. C., & Cantera Kintz, J. R. (2015). Ecosystem-based adaptation for improving coastal planning for sea-level rise: A systematic review for mangrove coasts. *Marine Policy*, 51, 385-393. <https://doi.org/10.1016/j.marpol.2014.09.013>

Song, W., Han, Y. H., & Sroufe, R. (2022). Substitution and complementarity dynamics in configurations of sustainable management practices. *International Journal of Operations and Production Management*, 42(11), 1711-1731. <https://doi.org/10.1108/IJOPM-10-2021-0647>

Todeschini, B. V., Cortimiglia, M. N., & de Medeiros, J. F. (2020). Collaboration practices in the fashion industry: Environmentally sustainable innovations in the value chain. *Environmental Science and Policy*, 106, 1-11. <https://doi.org/10.1016/j.envsci.2020.01.003>

Ünal, E., Urbinati, A., & Chiaroni, D. (2019). Managerial practices for designing circular economy business models. *Journal of Manufacturing Technology Management*, 30(3), 561-589. <https://doi.org/10.1108/JMTM-02-2018-0061>

Varsei, M., Christ, K., & Burritt, R. (2017). Distributing wine globally: financial and environmental trade-offs. *International Journal of Physical Distribution & Logistics Management*, 47(5), 410-428. <https://doi.org/10.1108/IJPDLM-01-2016-0012>

Venkatesa Narayanan, P. T. and Thirunavukkarasu, R. (2021). Twitch the corporate green tale - an empirical study on the learning styles to enhance green supply chain practices. *SDMIMD Journal of Management*, 12(2), 47. <https://doi.org/10.18311/sdmimd/2021/27518>

Vimal, K. E. K., Rajak, S., & Kandasamy, J. (2019). Analysis of network design for a circular production system using multi-objective mixed integer linear programming model. *Journal of Manufacturing Technology Management*, 30(3), 628-646. <https://doi.org/10.1108/JMTM-02-2018-0058>

Vu, H. T. T., & Ko, J. (2023). Inventory Transshipment Considering Greenhouse Gas Emissions for Sustainable Cross-Filling in Cold Supply Chains. *Sustainability*, 15(9), 7211. <https://doi.org/10.3390/su15097211>

Yan, M.-R., Chien, K.-M., & Yang, T.-N. (2016). Green component procurement collaboration for improving supply chain management in the high technology industries: A case study from the systems perspective. *Sustainability*, 8(2), 105. <https://doi.org/10.3390/su8020105>

Yazdani, M., Wang, Z. X., & Chan, F. T. S. (2020). A decision support model based on the combined structure of DEMATEL, QFD and fuzzy values. *Soft Computing*, 24(16), 12449-12468. <https://doi.org/10.1007/s00500-020-04685-2>

Yin, P.-Y., & Chuang, Y.-L. (2016). Adaptive memory artificial bee colony algorithm for green vehicle routing with cross-docking. *Applied Mathematical Modelling*, 40(21), 9302-9315. <https://doi.org/10.1016/j.apm.2016.06.013>

Zhang, X., Zhang, X., & Liu, M. (2016). Hesitant trapezoidal fuzzy qualiflex method and its application in the evaluation of green supply chain initiatives. *Sustainability*, 8(9), 952. <https://doi.org/10.3390/su8090952>