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ABSTRACT

This study presents a Reinforcement Learning-based algorithm
designed to optimise irrigation for Durio Zibethinus (i.e., durian) trees,
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aiming to maximise tree growth and reduce water usage. Traditional
irrigation methods, as well as current machine learning models, often
focus only on soil moisture and weather data, neglecting critical
factors like actual tree growth. This study proposed a reinforcement
learning irrigation (RL-Irr) algorithm incorporating tree growth
stages, soil moisture, and weather conditions to determine precise
irrigation needs. The algorithm was developed by calibrating the
AQUACROP model using data from actual durian plantations where
rain-fed irrigation (rain-fed) was practised. Daily irrigation volumes
were calculated based on real-time soil moisture, weather forecasts,
and weekly tree growth measurements. The reinforcement learning
method was used to optimise irrigation schedules, with rewards based
on soil moisture, tree growth, rainfall, and weather conditions. The
algorithm was tested using AQUACROP simulations and compared
against soil moisture balance irrigation (SMB-Irr) and rain-fed. The
results showed that the RL-Irr reduced water use by up to 75 percent
while maintaining tree growth. These findings suggest the algorithm
could significantly improve water efficiency in durian farming, though
real-world applications should consider potential model limitations.

Keywords: Durian Farming, Durio Zibethinus, Machine Learning,
Reinforcement Learning, Smart Irrigation.

INTRODUCTION

Durio Zibethinus, commonly known as durian and often referred
to as the “king of fruits,” is a well-known tropical fruit from
Southeast Asia, celebrated for its intense aroma and uniquely rich
flavour. This fruit is harvested bi-annually and is of significant
economic value, enjoying widespread local and global demand.
In Malaysia, a significant number of smallholder farmers cultivate
durian, contributing to its commercial significance. In fact, durian
has the largest cultivation area in Malaysia compared to all other
fruits (Syafigah et al., 2019). The maturation period of durian trees
varies based on the variety, generally taking between two to six years
(Chung, 2020). As illustrated in Figure 1, the cultivation of the durian
tree involves five key stages: planting, vegetative growth, flowering,
fruiting/harvesting and hibernation.
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Figure 1

Durian Planting Stage from Seedling to Vegetation Stage
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When cultivating durian trees, seedlings are first grown in polybags
inside a shaded greenhouse. They are frequently provided with
nutrient feedings and receive daily irrigation to ensure they stay
properly hydrated. This controlled environment is essential for
promoting healthy growth. Before being transferred to the open field,
the trees undergo a hardening process, which includes exposing them
to sunlight for at least a week to help them adapt to outdoor conditions.
Once transplanted into open areas, the trees enter the vegetative stage,
which is the longest and most critical phase, lasting up to four years,
depending on the variety. If the trees fail to meet growth standards,
farmers replace them and restart the vegetative process. Durian
cultivation requires significant time, cost, resources and careful
monitoring (Zakaria, 2020). Farmers watch for indicators such as
leaf colour and quality, trunk diameter and overall height. Consistent
irrigation and regular fertilisation are crucial during this stage. Water
is more important than fertiliser for durian trees (Ketsa et al., 2020).
Over-irrigation can saturate the soil, harming root growth, with excess
water running off to lower areas. Under-irrigation can leave trees
without enough water to survive. This emphasises the importance of
precise water management in durian cultivation. Ensuring that each
tree receives the right amount of water is crucial for optimal growth
and hydration.

RELATED WORK

Adequate irrigation is essential for sustainable agriculture to meet
the increasing food demands of the global population. Managing
soil moisture is crucial for efficient water usage and boosting
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crop productivity. Soil moisture balance refers to the equilibrium
between water added to the soil through rainfall or irrigation and
water lost through evaporation and plant absorption (Ritchie, 1998).
This equilibrium is vital for maintaining healthy soil and ensuring
sufficient water for crops. Advancements in technology and a better
understanding of the interactions of soil, water and plants have led to
modern irrigation systems that utilise soil moisture data. These systems
aim to align irrigation with the actual water needs of crops, conserving
water and improving crop yields (Abioye et al., 2022). The use of soil
moisture sensors and computerised controls demonstrates how modern
technology has reformed traditional irrigation methods (Kumar et al.,
2016). While soil moisture balance is vital for irrigation, challenges
in its use include high costs, the need for specialised knowledge and
various environmental factors affecting soil moisture (Pereira et al.,
2020). This study explores the development, current technologies,
benefits, challenges and valuable applications of irrigation systems
based on soil moisture balance, drawing information from numerous
academic and practical sources.

Integrating soil moisture balance into irrigation systems can bring
about significant benefits and challenges for sustainable agriculture.
One major advantage is the efficient use of water. Accurate
measurement of soil moisture levels enables farmers to water crops
effectively, ensuring responsible water usage, especially in areas with
varying climates and soil types. Research in Nebraska shows that soil
moisture and Vapour Pressure Deficit (VPD) affect plant water use,
highlighting the importance of soil moisture in water management
(Zhang et al., 2021). Proper irrigation reduces plant stress, promoting
better growth and potentially higher crop yields. However, there
are challenges involved. These include the time, labour and cost of
installing and maintaining soil moisture sensors. Probes, particularly
the advanced versions that collect data from multiple soil layers, are
generally easier to install than point sensors but can be more expensive
(Soothar et al., 2021). The precision of soil moisture sensors presents
an additional challenge. Sensor accuracy can vary based on soil
characteristics, such as clay content or salinity (Shakya et al., 2021).
Electromagnetic sensors, for example, may be less accurate in soils
with high clay or salinity. Therefore, choosing the correct sensor for
the specific field conditions is crucial.

Moreover, the data from these sensors require careful analysis.
Understanding all aspects of soil moisture levels is essential for

670



Journal of ICT, 23, No. 4 (October) 2024, pp: 667-707

accurate irrigation decisions. Some sensors provide easy-to-read
graphical data, while others offer information in less intuitive formats,
complicating the decision-making process for farmers (Jabro et al.,
2020). Soil moisture balance-based irrigation (SBM-Irr) systems
offer significant benefits, like optimised water use and potential yield
increases. However, challenges include sensor accuracy, data analysis
and costs. Addressing these issues is essential to fully realise the
potential of these systems for sustainable farming. When cultivating
durian trees, seedlings are first grown in polybags inside a shaded
greenhouse. They are frequently provided with nutrient feedings and
receive daily irrigation to ensure they stay properly hydrated. This
controlled environment is essential for promoting healthy growth.
Before being transferred to the open field, the trees undergo a hardening
process, which includes exposing them to sunlight for at least a week
to help them adapt to outdoor conditions. Once transplanted into open
areas, the trees enter the vegetative stage, which is the longest and
most critical phase, lasting up to four years depending on the variety.
If the trees fail to meet growth standards, farmers replace them and
restart the vegetative process. Durian cultivation requires significant
time, cost, resources and careful monitoring (Zakaria, 2020). Farmers
watch for indicators such as leaf colour and quality, trunk diameter
and overall height. Consistent irrigation and regular fertilisation are
crucial during this stage. For durian trees, water is more important
than fertiliser (Ketsa et al., 2020). Over-irrigation can saturate the soil,
harming root growth, with excess water running off to lower areas.
Under-irrigation can leave trees without enough water to survive. This
emphasises the importance of precise water management in durian
cultivation. Ensuring that each tree receives the right amount of water
is crucial for optimal growth and hydration.

The integration of Artificial Intelligence (Al) and machine learning
(ML) into irrigation systems has transformed agriculture by
optimising water usage, enhancing crop productivity, and reducing
environmental impacts. These technologies have become vital in the
face of global water shortages and increasing food demand due to
population growth. Al-driven irrigation employs precision agriculture
techniques, where irrigation schedules are tailored based on real-time
data inputs, such as soil moisture levels, weather forecasts, and satellite
imagery. By analysing these data streams, Al systems recommend
precise irrigation schedules and automating water distribution to
increase efficiency and reduce the need for manual labour.
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ML algorithms, including Artificial Neural Networks (ANN), Support
Vector Machines (SVM), and Convolutional Neural Networks
(CNN)), are integral to this process, analysing complex data patterns to
predict ideal watering schedules, as well as potential disease and pest
outbreaks. These algorithms also enable adaptive irrigation strategies
to respond dynamically to climate shifts. Recent advancements in
IoT and cloud computing have further strengthened data collection
and processing capabilities, creating highly responsive irrigation
systems. Despite these advancements, challenges such as high initial
setup costs, data reliability issues, and the learning curve for new
technologies still pose barriers to widespread adoption. However,
Al-driven irrigation remains essential for fostering sustainability and
efficiency in agriculture (Talaviya et al., 2020). Al has significantly
impacted agricultural irrigation systems. The MIT GEAR Lab has
proposed an Automatic Scheduling-Manual Operation (AS-MO)
irrigation tool to bring precision irrigation benefits to farmers in
resource-limited regions. This tool integrates automatic scheduling
to optimise water usage with manual operation of irrigation valves,
allowing farmers to maintain control while benefiting from precision
irrigation’s efficiency. Designed specifically for East Africa and
MENA regions, the AS-MO tool uses cloud-based algorithms to
generate optimal irrigation schedules without the need for costly and
complex soil moisture sensors. Instead, it uses soil water balance
calculations based on affordable sensors for weather, solar power, and
crop details. This design addresses the high cost and complexity of
fully automated systems, which are often prohibitive for small and
medium-sized farms. The AS-MO tool sends schedule updates via
SMS to farmers’ mobile phones, guiding them on when to manually
open or close irrigation valves. This approach bridges the gap between
existing expensive systems and traditional manual methods, making
efficient irrigation more accessible to cost-constrained farms while
minimising water and energy use (Van de Zande et al., 2023).

Al also plays a vital role in agricultural management. ML algorithms
such as Random Forest (RF), SVM, ANN and CNN are used to analyse
soil and crop health, helping to detect and predict crop diseases.
These algorithms optimise irrigation by calculating the best watering
schedules and timings (Awais et al., 2023). Combining the Internet
of Things (IoT) and ML in smart agriculture is a major advancement.
These systems are designed to reduce human involvement and improve
water management efficiency. Unmanned Aerial Vehicles (UAVs)
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equipped with Al technology are increasingly used in agriculture.
These UAVs help identify and monitor crops, providing vital data
for improving irrigation techniques through detailed analysis of crop
health and soil conditions. ML algorithms such as object-based image
analysis (OBIA) were applied to process the images and identify areas
of crops that required attention, such as herbicide spray for diseased
crops (Yousaf et al., 2023).

Irrigation using real-time environment data is required to integrate
various sensors, controllers, and communication networks to monitor
and manage water delivery to crops based on real-time data such as
soil moisture, weather conditions, and crop water requirements. Al
techniques like ML and deep learning (DL) are used to analyse large
datasets, including soil, water content, and environmental factors,
enabling precise irrigation schedules. The system’s ability to adapt
to changing conditions helps improve water efficiency, reduce waste,
and maintain crop health. Furthermore, the Al model leverages
predictive tools to forecast future irrigation needs and adjusts the
irrigation schedule dynamically, optimising water use while ensuring
crop growth. This approach is particularly valuable for addressing
challenges such as water scarcity and the unpredictable nature of
climate change in agriculture (Obaideen et al., 2022). ML predicts
irrigation needs, enabling proactive water management strategies that
reduce consumption and increase productivity. Technologies such
as ANN, fuzzy logic and expert systems enable adaptive decision-
making and real-time monitoring, leading to higher yields and
optimised water use. ANN-based controllers are particularly effective
due to their learning and adaptability, making irrigation more efficient
and sustainable (Bwambale et al., 2022). The algorithm can analyse
large amounts of data to identify patterns and predict future water
needs, helping farmers in planning and managing their irrigation
systems more effectively. Other than that, in-situ Al sensors monitor
soil moisture levels and provide alerts when irrigation is needed,
reducing manual labour and improving overall efficiency (Tomar et
al., 2023).

Smart irrigation systems offer numerous benefits for both urban and
rural agriculture. These systems enhance agricultural productivity
by minimising water waste and ensuring crops receive the precise
amount of water needed for optimal growth and yield. Additionally,
they contribute to reducing agriculture’s environmental impact by
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promoting efficient water use, decreasing runoff, and supporting
sustainable farming practices. These systems can be tailored to various
agricultural environments, including urban areas with varying access
to space, water, and electricity, although they may involve higher
costs or operational limitations in some cases. Overall, Al-driven
smart irrigation systems offer improved sustainability, efficiency and
adaptability in various farming environments (Vallejo-Gomez et al.,
2023).

However, implementing Al-based irrigation systems faces several
key challenges. First, data availability is a significant issue as ML
algorithms require large volumes of data to construct accurate
predictions. In many regions, there is limited reliable data on soil
moisture, weather patterns and crop growth, which impacts the
accuracy of data predictions. Second, sensor reliability is a concern
due to the high cost of installation and maintenance, as well as
susceptibility to environmental factors such as temperature, humidity
and electromagnetic interference, which can affect their accuracy.
Third, a stable and reliable power supply is required in areas with
limited electricity, especially in remote agricultural areas. The
high cost of implementing intelligent irrigation systems is another
significant obstacle, particularly for small-scale farmers (Ghareeb et
al., 2023). Finally, farmers may lack the technical expertise to operate
and maintain these systems, which hinders widespread adoption
(Mohan et al., 2021). Apart from that, the concerns about privacy
and security related to storing, processing and sharing sensitive data
collected by the system, alongside the potential for cyber-attacks,
further complicate the implementation of Al in irrigation (Tzachor et
al., 2022).

Integrating Al into irrigation systems has revolutionised agriculture
by optimising water use, boosting crop productivity and reducing
environmental impacts. This is especially important given global water
shortages and the rising demand for food due to population growth.
Al in irrigation uses ML algorithms to provide precise agriculture
techniques, tailoring irrigation based on data inputs like soil moisture,
weather forecasts and satellite images. The ML algorithms analyse
this data to recommend optimal irrigation schedules. Apart from that,
the systems can also automate watering, improving efficiency and
reducing the need for manual labour.

Reinforcement learning (RL) irrigation is considered a superior
approach compared to conventional irrigation techniques and other Al
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irrigation models due to its adaptive decision-making ability (Saikai et
al., 2023). While traditional methods rely on fixed schedules or basic
rules, RL-based irrigation systems continuously learn and evolve
by interacting with the environment. This allows them to optimise
water use based on real-time conditions and weather forecasts. The
flexibility of RL irrigation enables it to effectively manage water
resources, minimise wastage and maintain crop productivity, even in
the face of uncertain weather patterns. Moreover, RL irrigation has the
potential to surpass other Al-driven methods by refining its strategies
over time, balancing both immediate and future considerations for
water efficiency and crop yield. Consequently, RL irrigation offers a
more robust, efficient and viable solution for sustainable agricultural
practices, especially in areas where water is a limiting factor. The
Deep Reinforcement Learning for Irrigation Control (DRLIC) system
is practical for irrigation because it seamlessly integrates with existing
agricultural infrastructure, such as micro-sprinklers and soil moisture
sensors and leverages real-time data to optimise water use efficiently.
By employing a data-driven approach, DRLIC dynamically adapts to
varying soil and weather conditions, reducing the need for manual
adjustments and ensuring optimal irrigation levels to maintain crop
health. The inclusion of a safety mechanism further enhances its
practicality by preventing potential crop damage from unforeseen
conditions, while its training methodology using a soil-water simulator
accelerates deployment without lengthy field trials.

Moreover, the system has demonstrated significant water savings in
real-world tests, making it a cost-effective and sustainable solution
for irrigation in water-scarce regions. Overall, DRLIC’s adaptability,
compatibility, safety, and efficiency make it a highly practical choice
for modern irrigation management (Ding & Du, 2024). The Deep
Q-Learning Network Reinforcement Learning Irrigation (DQN RL-
Irr) strategy leverages short-term weather forecasts to make optimal
irrigation decisions, conserving water by reducing unnecessary
irrigation and improving rainfall utilisation. This strategy effectively
balances the risks of water waste and potential yield loss due to
uncertainties in weather forecasts, making it a practical and efficient
solution for managing irrigation in paddy rice cultivation (Chen et
al., 2021). The proposed Semi-centralised Multi-agent Reinforcement
Learning (SCMARL) framework combines both centralised and
decentralised RL agents to handle spatial variability in large-scale
agricultural fields, optimising water use across different management
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zones. The SCMARL approach achieved better water savings and
improvement in Irrigation Water Use Efficiency (IWUE) compared
to a learning-based multi-agent model predictive control (MPC)
approach (Agyeman et al., 2024). This demonstrates RL’s ability
to efficiently coordinate irrigation decisions while addressing non-
stationarity and scalability issues, making it a robust solution for
precise irrigation management.

This work aims to propose an irrigation algorithm that minimises
water usage while maintaining tree growth based on typical irrigation
practices at the farm. Reinforcement Learning Irrigation (RL-Irr), an
approach that relies heavily on weather conditions, current tree growth,
and soil conditions, was introduced to attain this objective. RL-Irr
is a non-model Al approach that adapts and learns dynamically as it
uses real-time data and continuous interaction with the environment
to optimise water usage efficiently and does not require any pre-built
models to plan irrigation. In this study, the irrigation performance was
compared with the rain-fed irrigation (rain-fed) and SMB-Irr models,
and the results were evaluated based on the amount of water used and
the simulated tree growth by AQUACROP. The Related Work section
explains that SMB-Irr is the farmers’ most used tool to identify the
best daily irrigation volume. Therefore, it is crucial to recognise that
the results obtained from the simulation rely on replicating real-world
processes, interactivity, models, algorithms, and randomness, and
thus, the findings provide insights for further empirical investigations
to imitate real-world processes of durian farming and adaptive
irrigations over time.

METHODOLOGY
Research Design

This work approach consists of four distinct steps, each with an
intended output.

1) Soil sensor and weather station installation at the site and data
collection
Soil sensors were installed at specific locations to collect daily
soil moisture readings. A weather station was positioned at the
site’s highest point to record daily weather data. Data from
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2)

3)

4)

both the soil sensors and the weather station were utilised to
calculate rewards in the proposed algorithm.

AQUACROP parameters calibration

Rain-fed was the system practised on the farm, where irrigation
was carried out based on rainfall data. The growth of selected
durian trees was measured weekly, and the irrigation volume
was measured daily, starting in November 2020. In this study,
a custom crop was created in the AQUACROP model, as
durian or biologically similar species (e.g., apple) were not
available in the AQUACROP library. The model parameters
were calibrated using the tree growth data collected on-site as
the target output, with adjustments made to reflect the rain-fed
model applied on the farm.

Development of Irrigation Model

Soil moisture and weather data will be incorporated into the
proposed irrigation model. This model will analyse all relevant
factors for initiating the irrigation system, including current
and forecasted weather conditions, soil characteristics, and
historical irrigation records. The model’s performance will be
evaluated by comparing the irrigation volume used, ensuring
that water efficiency is achieved without compromising tree
growth.

Testing and evaluation for the proposed irrigation model

The proposed model aims to reduce irrigation volume without
compromising tree growth. The model was validated using
independent tree growth data from the farm, which was not used
during the tuning the AQUACROP parameters. The irrigation
model’s performance was evaluated by comparing the total
irrigation volume with other existing irrigation models.

Farm Irrigation Setup

The work was conducted at MIE Agro Durian Farm in Selangor,
Malaysia, located at coordinates 1°33°30.3336” N 103°37°33.4596”
E. Each sub-block of the farm has a 2200-litre water reservoir with a
pump for irrigation. Water was applied to each tree using a 1 80-microjet
spray, which dispersed water at a flow rate of 0.5 litres per minute.
Water was sprayed within the tree’s canopy during irrigation to ensure
optimal root absorption (Zakaria, 2020), as shown in Figure 2. The
microjet spray flow rate was 0.5 litres per minute. Figure 3 shows the
setup overview of the system implemented at the site.
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Figure 2
Microjet Irrigation Spray

Figure 3
Setup Overview of the System at MIE Agro Farm
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On the farm, 5,000 durian trees were planted in four blocks, each
containing multiple sub-blocks. The trees in each sub-durian block
are planted on terraces. The number of terraces varies between
subblocks, and each terrace’s slope gradient depends on the subblock’s
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characteristics. Each sub-block is equipped with a 2200-litre water
tank for irrigation purposes. In this work, sub- block D13, Al and
A3 were selected where the trees were planted between five and
eight trees on each terrace. Each tree had a soil moisture sensor and
a microjet irrigation sprinkler. A controller was connected to the
water pump to control its operation, such as turning it on and off. A
weather station was installed at the site’s highest point, and a server
was located in the site control room. The sensors, weather station and
water pump controller were powered by batteries and solar panels and
connected to the site server using wireless connectivity to facilitate
future implementation scaling. The data were transmitted by the soil
sensors and weather station to the server at the frequency of 5-minute
intervals and were processed daily by the server using the proposed
algorithm to control the irrigation system.

AQUACROP Simulation Software

AQUACRORP is a simulation software that models how crop yield
responds to water. It models based on user input data, considering
factors like soil type, climate, crop type and management practices
to predict how changes in water availability affect crop yield. It
simulates water movement within the soil-plant-atmosphere system
and the impact of different irrigation strategies on crop yield. This
helps optimise water use in agriculture and promotes sustainable
water management.

In the present work, the AQUACROP model is utilised to simulate
the efficacy of the suggested irrigation strategy. AQUACROP
employs above-ground biomass as an indicator of tree growth, which
is determined through calculations involving the height of the trees
for the forest-type trees, as shown in Equation 1.

Y =10 + 6.4 x tree height ()

where Y is the above-ground tree biomass in kilogram (kg), and the
tree height is in metres (m). Data about the trees were systematically
gathered weekly at the farm, and information from the trees
exhibiting optimal growth was aggregated and established as the
growth benchmark for this research. Consequently, the recommended
irrigation strategy was modified daily to align with the attainment of
this growth objective.
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Standard parameters were configured in a custom crop setup in
AQUACROP. As shown in Table 1, some parameters are standard
for the trees, which refer to the crop-dependent parameters based on
the crop’s biological characteristics, while others are site-dependent
parameters, which are based on the site setup and conditions that
significantly affect tree growth.

Table 1

AQUACROP Custom Crop Input Parameters

Parameters Definition Remarks
. Maximum temperature Site dependent
Maximum temperature (°C) ximu peratu P
at site
. Minimum temperature Site dependent
Minimum temperature (°C) Y peratd P
at the site
Rate canopy cover Crop dependent

Canopy growth coefficient, CGC (CC) increase at the
initial planting state

Rate canopy cover Crop dependent
Canopy decline coefficient, CDC  (CC) decreases due to
ageing or dying
Crop coefficient, K, Ratio crop evapo- Crop & site dependent
transpiration over site
evapotranspiration
Maximum canopy cover, CC, (%) Maximum coverage of Crop & site dependent
the canopy
Maximum rooting depth, Z (m)  Maximum depth of the Crop & site dependent
tree root
Initial root depth, Z (m) Initial depth of the tree Crop & site dependent
root after transplant
Irrigation efficiency (%) Percentage efficiency  Site dependent
of the irrigation setup
Soil surface wetted Percentage of wetted ~ Site dependent
area during irrigation
Tree spacing (m?) Distance between trees Site dependent
Reference harvest index (HI,) Standard ratio of total ~Crop dependent
biomass in ideal condi-
tion

Rain-fed Irrigation (Rain-fed)

This work focused on three (3) sub-blocks on the farm: D13, A1 and
A3. The sub-blocks used rain-fed irrigation, an agricultural irrigation
technique that relies solely on rainfall as the water source. This
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method is the primary way of farming, though its success depends
greatly on the amount and distribution of rainfall. A weather station
was set up on-site to measure daily rainfall and help decide when to
irrigate. The irrigation was done manually, providing each tree with
30 litres of water for one (1) hour. The pseudo-code of the rain-fed
irrigation practised on the farm is shown in Algorithm 1.

Algorithm 1: Algorithm for Irrigation Control Based on Rain-fed

Input: Rain volume: rain volume measured from 10:00 AM the previous
day until 7:00 AM on the current day.
Output: Irrigation control decision.

Procedure:

1. Check rain status at 8:00 AM daily:
2. If rain occurred between 10:00 AM the previous day and 7:00 AM
today:

If rain volume < 5 mm

Irrigate 30 litres.

Else If rain volume > 10 mm

No irrigation for the next 2 days.
Else

No irrigation for the current day.
9. Else (If No Rain Occurred):

10. Irrigate 30 litres.

End Procedure

PN B W

Soil Moisture Balance Irrigation (SMB- Irr)

The SMB-Irr system determines the optimal timing and the optimal
amount of crop irrigation by considering soil moisture levels. It
balances water inputs such as rain and irrigation with outputs, such
as evapotranspiration, drainage and runoff relative to the soil’s water-
holding capacity. The SMB-Irr system used in this work was based
on the Field Capacity (0fc) and Wilting Point (Owp) of the soil, the
variables which are specific to the soil type and were chosen according
to the Malaysia Soil Standard (Ashraf, 2017) and the USDA Soil
Standard (Jabro et al., 2008). The following steps outline how to
calculate irrigation volume using SMB-Irr:

Step 1: Calculate the soil threshold value, 0, by using the formulation
in Equation 2.

6 = Opc — (ASMD x (65 — Oyyp) ()
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where ASMD stands for Available Soil Moisture Deficit, which
represents the allowable deficit for the trees before they experience a

deficit state of a moisture shortage, assuming the ASMD durian tree
1s 0.2, which is 20%.

Step 2: Calculate the weighted average soil moisture, 0, at the root
zone level by using Equation 3.

6a = (Osy x Ds)/RZD G)

where 0, is the soil moisture value from the sensor, D, is the Sensor
Depth and RZD is the Root Zone Depth, where RZD is 0.1-metre for
the trees between one (1) to three (3) years of age.

Step 3: Compare 0, and 0, values. If 0, is lower than 0, calculate the
irrigation volume as in Step 4. If higher, no irrigation is required.

Step 4: Calculate the irrigation volume, V,_ by using Equation 4.
Vigr = (gfc — 6(1) X RZD x 1000 (4)

where the V._is in litre

Reinforcement Learning Irrigation (RL- Irr)

RL is a non-model type of Al that involves an agent learning to
make decisions by interacting with its environment. In reinforcement
learning (RL), the agent is not given explicit instructions on which
actions to take. Instead, it must autonomously explore and experiment
with different actions to determine which ones yield the highest
rewards. This approach is inspired by behavioural psychology and is
particularly effective in complex contexts where explicit programming
is impractical. The agent tries different actions to see which ones
produce the best rewards (Devraj et al., 2021). The process involves
an agent, a set of states representing the environment and the actions
taken by the agent. The agent receives feedback in the form of rewards
or penalties and develops a policy, which is a systematic approach
for selecting actions based on the current state of the environment.
RL uses this feedback to reinforce effective strategies and diminish
ineffective ones. The fundamentals of RL are shown in Figure 4.
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Figure 4

Fundamental Architecture of RL (Sutton & Barto, 1999)
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InRL, itis crucial to strike a balance between exploring and attempting
new approaches and exploitations by using familiar knowledge
(Ladosz et al., 2022). The agent interacts with the environment in
discrete time steps. At each time step, t, the agent receives some
representation of the state of the environment S(t) and selects an action
A(t) based on that state to perform in the environment. The action then
changes the state of the environment, and the agent receives a reward
R(t+1) and a new state S(t+1) as feedback from the environment. If
the action leads to an undesired outcome, the agent receives a penalty
(a negative reward) instead of a reward. This process continues, and
the agent’s objective is to learn a policy by mapping from states to
actions in order to maximise the cumulative reward over time. RL
is utilised in various fields, including robotics, transportation, energy
and computer systems (Aradi, 2022; Jayaramireddy et al., 2023;
Polydoros & Nalpantidis, 2017; Yu et al., 2021).

The implementation of RL in this work is as follows:

1)  Agent (i) is the entity that performs actions in the problem. In
this work, the agent represents the system’s core elements that
interact with the environment, formulate decisions based on
information and acquire knowledge from the consequences of
those decisions.

2)  Environment (€) is the space in which the agent performs
actions. In this work, the environment encompasses all the
elements that influence the actions, which are soil conditions,
weather conditions and tree growth.

3)  Action (4) is the potential moves that can be performed by the
agent. In this context, the action refers to the absolute irrigation
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4)

5)

6)

volume set in the system. These volumes ranged from 0 to 30
litres, with increments of 2 litres.

State (S) is the specific condition of the environment at a
specific time. In this work, state refers to the specific condition
of the soil at a given time. The soil condition is categorised
as dry (soil moisture is less than 25%), good (soil moisture is
between 25% to 35%) or wet (soil moisture is more than 35%).
Policy (T1)is the guideline employed by the agent to determine
the next step of action to take based on the current state. In this
work, Policy refers to the sequence of irrigation actions that the
agent takes to solve the problem.

Rewards and Penalties (R) are the outcomes the agent receives
after taking an action. They are result-oriented and can be either
positive (Reward) or negative (Penalty). The calculation of
Rewards and Penalties must be in line with the environment to
ensure that the agent receives them accurately. In this work, the
Reward depends on soil tension, tree growth and water balance.
A Penalty is incurred if the irrigation action causes the soil to
become either Dry or Wet.

Figure 5 presents the RL states employed for tree irrigation in this study.
Y1 and NI represent Yes Irrigation and No Irrigation, respectively.

Figure 5

RL State for RL-Irr

Yl Yl
OEOHOE
NI NI

The diagram above illustrates the actions taken by the agent in
response to varying soil conditions. In scenarios without irrigation,
the soil retains its ‘Dry’ state. Its transition to an ‘OK’ state occurs
only upon the commencement of irrigation. The soil maintains its
condition without further irrigation in this ‘OK’ state. However,
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prolonged periods without irrigation will lead the soil back to a ‘Dry’
state. Conversely, initiating irrigation while the soil is in an ‘OK’
state causes it to become ‘Wet’. Typically, irrigation is withheld in
the “Wet’ state to prevent soil saturation. Nonetheless, rainfall might
occur when the soil is already ‘Wet’, thereby maintaining its ‘Wet’
state. The soil eventually reverts to the ‘OK’ state after a certain period
without irrigation and gradually becomes drier. This dynamic reflects
the agent’s adaptive responses to the evolving moisture levels in the
soil, corresponding to the root water uptake from the trees.

This work has several target goals, such as enhancing water efficiency,
conserving soil fertility and maximising crop vitality. An effectively
designed reward function can skilfully balance these objectives by
providing suitable incentives for actions that contribute to each goal.
Moreover, the reward function can account for the inherent trade-
offs within the application. For instance, in irrigation management,
higher water consumption may initially promote crop growth but
could negatively impact long-term water conservation. The reward
function is crucial in reconciling these conflicting requirements. It
will ensure that the RL agent’s learning path is theoretically rigorous
and practically applicable, bridging the gap between mathematical
modelling and the complexity of real-world implementation. Equation
5 shows the Rewards function used in this work.

Rtotal = (Wsoil tension X Rsoil tension) (5)
+ (Wtree growth X Rtree growth)
+ (Wrain X Rrain) + (WEt X REt)

The variable w represents the weight assigned to different elements,
determined by the proportion of each element relative to the overall
weight distribution. These weights were set according to the specific
objectives of irrigation and the prevailing conditions during that
period. For example, W, ; ..., Was assigned a higher value in instances
of arid soil and a lower value in other cases. Conversely, w,,,, growin WS
high when irrigation occurred on the first day of the week, as per the
standard operating procedure of the farm, which involved collecting
data on tree growth exclusively on this day. This approach ensures
that the weighting aligns with the immediate environmental needs and
the operational procedures of the farm. Similarly, the variables w,,,
and w,, were assigned high values, respectively, if the actual value
was lower than the calculated value, and a lower value if it was higher.
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In Equation 6, the term ‘Rewards’ (R) encapsulates the rewards
attributed to each critical element: soil tension, tree growth and water
efficiency. These rewards are intricately linked to the prevailing
conditions of the respective period, ensuring that the rewards allocated
to the agent are optimised based on the actual environmental and
operational circumstances. Equations 6 to 9 outline the formulas for
calculating the rewards for the elements.

Rsoil tension (6)
= —(soil tensionigrget - soil tensionactual)

Rtree growth (7)
= —(tree growthygrger — tree growthgceyar)

Rgy = _(Etforecast - Etactual) ®)

Rrain = _(Rainforecast - Rainactual) (9)

The target for tree growth was calculated using a model crafted and
simulated with the AQUACROP software. The study suggests that
using a deseasonalised fuzzy time series model for rainfall forecasting
yields higher accuracy than traditional methods, as shown by lower
MSE and RMSE values (Othman & Azhari, 2016). However, the use
of actual rainfall data at a specific location is preferred for real-time
predictions since it reflects the real-world environmental conditions
and variability. Rainfall predictions are based on forecasts from the
Malaysian Meteorological Department (MET). Additionally, the
forecast for evapotranspiration (Et) is computed utilising the Penman-
Monteith (PM) Equation, which incorporates meteorological forecast
data from the MET. This integrated approach ensures a comprehensive
and accurate assessment of precipitation and evapotranspiration,
which is crucial for effective irrigation planning and management.

The flowchart in Figure 6 above illustrates the proposed RL-Irr
system. On the first day (d=1), the system assessed the soil tension
using the current soil moisture value, tree growth, previous irrigation
volume, rain prediction from the MET website and calculated
evapotranspiration based on forecasted weather data from the MET
website. The system then calculated the Rewards using the formula
from Equations 6 to 9. Q-Learning for all possible actions (irrigation
volume) was calculated and updated in the Q-table. Then, the system
simulated irrigation using AQUACROP and observed the simulated
tree growth from the simulation output. The variance between the
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simulated and expected tree growth, based on actual growth data
collected at the site, was calculated and input into the system for the
next day’s irrigation (d=n+1).

Figure 6

System Flow for the Proposed RL-Irr

tree growth based on the simulated irrigation, the actual
rain & the actual evapotranspiration
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RESULTS AND DISCUSSION

This section compares the irrigation volume between SMB-Irr, rain-
fed, and RL-Irr. In this study, the actual tree growth data were gathered
on-site using the SMB technique for irrigation. The soil type was
sandy clay loam, and the soil moisture threshold for the SMB was set
to 35 percent based on the soil field capacity standard for sandy clay
loam soil (RainMachine, 2018). If the current soil moisture fell below
the threshold value, irrigation would be initiated for a few minutes
until the moisture reaches the set threshold.

Tree Growth

AQUACROP evaluates irrigation efficiency using biomass values
proportional to tree height, as shown in Equation (1). Weekly
tree growth data were collected for trees at D13, A1 and A3. The
AQUACROP model was calibrated to match tree growth using the
rain-fed irrigation method practiced on-site. Since the AQUACROP
model is unavailable for durian, calibration was necessary to ensure
the model accurately reflected tree growth (Ismail et al., 2015). The
study then simulated the suggested irrigation methods using the
calibrated AQUACROP model to assess their effectiveness. Figures 6
to 9 show the tree growth pattern from November 2020 to December
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2023. Weekly measurements were taken at three farm sub-blocks:
D13, A3, and Al. Sub-blocks D13 and A3 consisted of five terraces
of different elevations, each with 10 to 20 trees, totalling 100 trees
per sub-block. Sub-block A1l consisted of one terrace with 10 trees.
Since tree growth was nearly identical on each terrace, the average
growth per terrace was used in this study instead of individual tree
measurements.

Figure 7

Tree Height from Week 1 (November 2020) to Week 113 (March 2023)
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Figure 8

Tree Girth from Week 1 (November 2020) to Week 113 (March 2023)
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Figure 9

Tree Height Growth Rate from Week 1 (November 2020) to Week 113
(March 2023)
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Figure 10

Tree Girth Growth Rate from Week 1 (November 2020) to Week 113
(March 2023)
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The trees were transplanted at heights of 1 to 1.5 meters in Week 1.
Figures 7 and 8 display the growth metrics, specifically tree height
and girth, for three sub-blocks (D13, Al, and A3) from Week 1
(November 2020) to Week 113 (March 2023). Figure 7 illustrates
tree height in centimetres on the y-axis and the week number on
the x-axis. The trees exhibited a steady increase in height from the
beginning, with the growth rate represented by the slope of the curve.
The curve follows a sigmoidal pattern, typical of biological growth,
with an initial slow phase, rapid growth and a slowdown as the trees
matured. Sub-block D13 consistently exhibited the highest growth
throughout the period, followed closely by Al, while A3 exhibited
significantly lower growth. Figure 8 shows the trunk girth of the
trees in millimetres (mm) on the y-axis, plotted against the week
number on the x-axis. As tree height increased, the trunk girth also
grew over time. All sub-blocks showed an increase in trunk size, with
sub-block D13 exhibiting the most significant increase, followed by
Al and A3, similar to the height growth trend. These results suggest
that soil conditions at D13 positively impacted tree growth. The
consistent growth across all blocks indicates that the care provided
was effective, adhering to the farm’s standard operating procedures,
including proper irrigation and nutrient supply (Zakaria, 2020).

Figures 9 and 10 illustrate tree height and girth growth rates for D13,
Al,and A3 from Week 1 (November 2020) to Week 113 (March 2023).
Figure 6 displays the weekly growth rate of tree height in centimetres.
The height growth rates for all sub-blocks vary significantly each
week, showing spikes and drops. This variability is likely due to
environmental and biological factors, such as inconsistent weather
and nutrient and water uptake variations. The growth rates for each
sub-block were inconsistent throughout the monitoring period, which
is typical for open-field farming, where environmental factors affect
tree growth (Cocozza et al., 2021).

Additionally, Figure 10 indicates the weekly increase in tree girth,
measured in millimetres (mm). The girth growth rates were generally
lower than the height growth rates, which is typical of biological
growth patterns. The girth growth rates were more consistent, with
less fluctuation than height growth. Both height and girth growth were
affected by weather, environmental changes, resource availability, and
the trees’ natural biological cycles. Trees in sub-block D13 showed
higher growth peaks in both height and girth compared to those in A1l
and A3. Despite using the same procedures for all trees, the trees in
D13 responded better, indicating more favourable growth conditions.
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Irrigation Volume

The farm utilised a rain-fed irrigation method, supplying 30 litres of
water to the trees on days with no rain or less than 5 mm of rainfall.
The growth of the trees based on this irrigation method is depicted in
Figures 7 and 8. Additionally, Figure 11 displays the monthly total of
days with less than 5 mm of rain, indicating when 30 litres of water
were applied, using data from the farm’s weather station.

Figure 11
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Based on the analysis of rainfall frequency, the farm required irrigation
almost every day. In March 2023, there was the highest amount of
rainfall, with only three days out of 30 receiving less than Smm of
rain. On the other hand, January 2023 experienced the least amount
of rain, with all 31 days having less than 5Smm of rain daily. A single
weather station represented the entire farm area. When the rainfall
was less than Smm, each sub-block received 30 litres of irrigation,
effectively tripling the total irrigation volume for D13, Al, and A3
combined.

Figures 12 to 14 illustrate the daily irrigation volume using SMB-
Irr and RL-Irr for all terraces. Despite each sub-block having five
terraces, the irrigation volume applied to the trees was consistent
across all terraces within each sub-block.
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Figure 12

Irrigation Volume Using SMB-Irr and RL-Irr for D13
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Figure 13

Irrigation Volume Using SMB-Irr and RL-Irr for Al
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Figure 14

Irrigation Volume Using SMB-Irr and RL-Irr for A3
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Figures 12 to 14 display the daily water usage for irrigation in litres
for three sub-blocks (D13, A1 and A3) from November 2020 to March
2023. The data compares two irrigation methods: SMB-Irr (based on
soil moisture) and RL-Irr. Both methods exhibited daily variations
influenced by rainfall, temperature, evapotranspiration and the needs
of the trees over the three years. Water usage fluctuated, with some
days requiring significantly more water, indicating the necessity for
adaptive irrigation strategies. RL-Irr used less water overall compared
to SMB-Irr across all sub-blocks. RL-Irr did not perform irrigation
on several days, such as November 3, 2020, September 15, 2021,
and various days in October 2021, November 2021, December 2021,
May 2022 and December 2022. On the other hand, SMB-Irr showed
sudden increases in irrigation when soil moisture was low, but such
occurrences were rare in RL-Irr. RL-Irr accounted for additional
factors to determine the specific amount of water needed each day.
Figures 15 to 17 illustrate the cumulative weekly irrigation volume
for each terrace, and Table 2 compares the total irrigation volumes of
SMB-Irr and RL-Irr with the measured rain-fed method.
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Figure 15

Cumulative Irrigation Volume for Trees at D13
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Figure 16

Cumulative Irrigation Volume for Trees at A1
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Figure 17

Cumulative Irrigation Volume for Trees at A3
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Table 2

Total Irrigation Volume for All Sub-blocks Calculated Using Different
Irrigation Strategies

Irrigation Volume (litres)

Irrigation Method DI3 Al A3 Total
Rain-fed 18840 18840 18840 56520
SMB-Irr 6731 6161 7862 20754
RL-Irr 4704 4290 5606 14600

The graphs illustrate the cumulative weekly irrigation volume for trees
at sub-blocks D13, A1 and A3 over a period of 113 weeks. Each graph
compares three irrigation methods: rain-fed, SMB-Irr and RL-Irr. The
X-axis represents the number of weeks, while the Y-axis shows the
cumulative volume of irrigation water in litres.

The rain-fed method indicated the highest cumulative irrigation
volume across all three sub-blocks, with a consistent increase in

water usage over time. The SMB-Irr method used a moderate amount
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of water, with its cumulative volume steadily rising but remaining
below the rain-fed method throughout the period. Notably, the RL-Irr
method demonstrated the lowest cumulative irrigation volume for all
sub-blocks, increasing much slower than the other two methods. The
RL-Irr method consistently used the least water over the 113 weeks
for all sub-blocks, indicating that RL-Irr is the most water-efficient
method among the three, offering substantial water savings while
maintaining adequate irrigation.

Based on Table 1, the RL-Irr method uses approximately 75.03
percent, 77.23 percent and 70.24 percent less water than the rain-fed
method for sub-blocks D13, A1 and A3, respectively, with a total
percentage difference of about 74.16 percent. Similarly, RL-Irr uses
approximately 30.13 percent, 30.39 percent and 28.72 percent less
water than the SMB-Irr method for sub-blocks D13, Al and A3,
respectively, with a total percentage difference of about 29.68 percent.
This indicates that RL-Irr is significantly more water-efficient than the
other two methods across all sub-blocks.

The RL-Irr system is highly effective and uses less water consistently
in all sub-blocks. If RL-Irr can meet the trees’ water needs while
maintaining their growth, it could be a more sustainable irrigation
method that conserves water, especially in water-scarce regions or
during droughts. Using RL-Irr instead of SMB-Irr could significantly
reduce water usage, lower irrigation costs and lessen the strain on
water supplies, particularly in large-scale agriculture.

Tree Height Comparison with Rain-fed, SMB- Irr and RL- Irr
Strategies

Tree growth section demonstrates that measuring tree girth may be
less significant due to the minimal changes observed. Consequently,
comparisons are made based on the tree heights of sub-blocks D13,
Al and A3 to validate the outcomes of the irrigation strategies.
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Figure 18

Simulated Tree Height for Trees Sub-block D13 Using the AQUACROP
Model with Different Irrigation Strategies
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Figure 19

Simulated Tree Height for Trees Sub-block A1 Using the AQUACROP
Model with Different Irrigation Strategies
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Figure 20

Simulated Tree Height for Trees Sub-block A3 Using the AQUACROP
Model with Different Irrigation Strategies
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Figures 18 to 20 illustrate the impact of different irrigation techniques
on tree growth over a period of 113 weeks. The growth from rain-
fed irrigation was used as a benchmark. The AQUACROP model was
adjusted to match the growth of rain-fed trees. The data indicates that
the tree growth AQUACROP simulated closely matched the rain-fed
growth. The trees showed a progressive increase in height over time.
The figures demonstrate that different irrigation methods and rain-fed
conditions resulted in similar growth patterns, with the lines closely
overlapping. The rain-fed trees exhibited steady growth that closely
mirrored the growth of trees using SMB-Irr and RL-Irr methods. The
proximity of the lines in each figure suggests that various irrigation
methods and rain-fed conditions led to similar tree heights after
the monitoring period. The growth curves illustrate that irrigation
technologies and natural rainfall contributed similarly to the trees’
growth. This is further illustrated in Figures 21 to 23.
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Figure 21

Simulated Tree Height Growth Rate for Tree Sub-block D13 Using the
AQUACROP Model with Different Irrigation Strategies
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Figure 22

Simulated Tree Height Growth Rate for Tree Sub-block A1 Using the
AQUACROP Model With Different Irrigation Strategies
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Figure 23

Simulated Tree Height Growth Rate for Tree Sub-block A3 Using the
AQUACROP Model With Different Irrigation Strategies
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The figures compare the growth rates of tree heights in sub-blocks
D13, Al and A3 using three different irrigation methods: rain-
fed, SMB-Irr, and RL-Irr. Rain-fed serves as the baseline, SMB-Irr
supplies water when soil moisture falls below 25%, and RL-Irr uses
a Reinforcement Learning algorithm to optimise water usage. In
sub-block D13, there is a significant increase in growth under RL-Irr
towards the end of the observed period. Similarly, sub-blocks A1 and
A3 also show fluctuations with peaks in growth under both SMB-Irr
and RL-Irr. Overall, the RL-Irr method generally resulted in higher
growth rates than rain-fed and SMB-Irr, indicating better optimisation
of water usage for improved growth. However, the effectiveness of
RL-Irr varied across different trees, likely due to individual tree health
and conditions. In sub-block A3, RL-Irr occasionally showed the
highest growth rate peaks, especially towards the end of the observed
period. Across all sub-blocks, RL-Irr sometimes optimised water
amounts to significantly boost growth by leveraging past and current
data to predict and apply the most beneficial irrigation schedule, thus
avoiding over- and under-irrigation.
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Table 3

Statistical Analysis for Rain-fed, SMB-Irr and RL-Irr for Tree Growth
(mm)

Mean (m) (mm) Standard Deviation (s) (mm)
Sub-block D13 Al A3 D13 Al A3
Rain-fed 247 2.46 2.51 1.84 1.87 1.35
SMB-Irr 1.89 1.88 1.92 1.20 2.10 1.41
RL-Irr 241 2.36 2.46 1.60 2.19 1.54

Table 3 shows a statistical comparison of tree growth under three
different irrigation methods: rain-fed, SMB-Irr, and RL-Irr. The
analysis revealed noticeable differences in the performance of tree
growth. The rain-fed shows relatively consistent growth across all
sub-blocks, with mean values of 2.47 mm, 2.46 mm and 2.51 mm,
respectively, and standard deviations ranging from 1.35 mm to 1.87
mm. SMB-Irr exhibits lower mean growth values of 1.89 mm, 1.88
mm and 1.92 mm, with varying levels of consistency, with the lowest
standard deviation in sub-block D13, which is 1.20 mm and higher
variability in sub-block A1, which is 2.10 mm. RL-Irr demonstrates
higher mean growth values closer to rain-fed, which is at 2.41 mm,
2.36 mm, and 2.46 mm, but with slightly higher standard deviations
than SMB-Irr, indicating moderate consistency. Overall, RL-Irr
combines near-optimal growth performance identical to rain-fed with
a moderate level of variability, suggesting that it offers a balanced
approach to achieving high growth and maintaining consistent results
across different sub-blocks.

This study’s results demonstrate the RL-Irr system’s efficiency in
optimising water usage for durian trees while maintaining growth
performance. RL-Irr consistently reduced water consumption
compared to traditional rain-fed and SMB-Irr methods. Specifically,
RL-Irr achieved a water savings of up to 74.16 percent compared
to rain-fed irrigation and approximately 29.68 percent compared to
SMB-Irr across all sub-blocks. These findings highlight the potential
of RL-Irr for water conservation and saving.

In addition, the simulation results indicate that tree growth under
RL-Irr was comparable to that under rain-fed and SMB-Irr methods.
Figures 18 to 23 show that tree height and girth growth patterns were
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similar across all sub-blocks, despite the reduced irrigation volume
in the RL-Irr system. This suggests that RL-Irr can maintain optimal
tree growth while using less water, providing a balanced solution for
sustainable irrigation.

The implications of these results are notable for agriculture, particularly
in durian cultivation, where efficient water management is critical.
The RL-Irr system could be widely adopted to improve irrigation
efficiency, reduce water costs, and promote sustainable farming
practices. Since the RL-Irr parameters were calibrated using site-
specific data, replicating the system in diverse locations with varying
soil types and climates is recommended to enhance its robustness.
Future studies should also consider including a larger sample of trees
and different terrains to further refine the algorithm’s sensitivity and
overall effectiveness.

CONCLUSION

This study applied Reinforcement Learning Irrigation (RL-Irr) to
irrigate durian trees grown in an open area. The amount of water
given to the trees was adjusted daily based on the trees’ current
growth rate, soil tension, previous irrigation volume, rain forecast,
and evapotranspiration forecast. This approach differs from traditional
irrigation methods, as irrigation was fine-tuned daily by adjusting
the RL-Irr rewards to ensure a precise water supply to the trees. The
AQUACROP model was used to simulate tree growth under various
irrigation volumes, and its feedback was utilised to adjust the reward
system in the RL-Irr algorithm for subsequent irrigation schedules.

When comparing RL-Irr with rain-fed (practised on the farm) and
SMB-Irr, RL-Irr proved to be more efficient, effectively hydrating
the trees while reducing water consumption. This suggests that RL-
Irr can maintain optimal tree growth while conserving water, making
it an ideal solution for sustainable agriculture. Adaptive irrigation
systems like RL-Irr offer a way to address water wastage, particularly
in regions facing water scarcity, and help combat the challenges posed
by climate change.

The study was conducted in Malaysia, where 120 trees (2.5% of the
total 4,800 trees on the farm) were used. As RL-Irr parameters, such
as weather data, are site-specific, replicating this system in different
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regions with varying weather and soil conditions is recommended
to improve its robustness. Future studies should consider testing
the algorithm with more trees across varying terrains to enhance
sensitivity. While the results provide valuable insights into adaptive
irrigation, they are based on model assumptions and should be further
validated through real-world applications.
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