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ABSTRACT

Alzheimer’s disease (AD) is a progressive neurological disorder and the leading cause of dementia,
accounting for 60-80% of cases. Early detection of AD is crucial for timely intervention, as the disease
significantly impacts cognitive functions and daily activities. Diagnosing AD in clinical settings
remains challenging due to subtle early symptoms, diverse presentations, lengthy diagnostic processes,
and inconsistent criteria that heavily rely on medical expertise. Accurate and timely diagnosis during
the early stages is essential for effective treatment and intervention. Modern imaging techniques, such
as Magnetic Resonance Imaging (MRI), have become essential in diagnosing Alzheimer’s by providing
detailed insights into structural brain changes. This study explores the application of the Vision
Transformer (ViT) model for classifying MRI images of Alzheimer’s patients, focusing on enhancing
accuracy and reliability through data augmentation during pre-processing. A dataset of 8,000 MRI
images, categorised into four groups—non-demented, very mild demented, mild demented, and
moderate demented—was used to evaluate the ViT model. The experiment achieved promising results,
with an accuracy of 98.19%, sensitivity of 96.34%, specificity of 98.80%, and an F1-score of 96.37%.
These findings underscore the model’s effectiveness in distinguishing between affected and unaffected
individuals, minimising misdiagnosis and enabling timely clinical interventions. However, some
challenges remain, particularly in the classification between “Non-Demented” and “Very Mild
Demented” cases. Future research should focus on enhancing data augmentation techniques and
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increasing data diversity in these categories to improve the model’s performance further. The ViT model
holds great potential for advancing Alzheimer’s diagnosis, offering a valuable tool for early detection
and intervention in clinical settings.

Keywords: Alzheimer’s, deep learning, image classification, MRI, vision transformer.

INTRODUCTION

Alzheimer’s disease is a degenerative neurological condition responsible for 60-80% of dementia cases,
according to the Alzheimer’s Association. The symptoms of this disease vary in Severity and
progressively hinder an individual’s ability to perform daily tasks, manifesting as apathy, depression,
communication difficulties, disorientation, impaired judgment, and challenges with swallowing and
walking, alongside notable behavioural changes (Abubakar et al., 2022; Alzheimer’s Association,
2021). Initially, these symptoms are mild, but they worsen over time, eventually leading to a need for
full-time care.

While Alzheimer’s disease predominantly impacts individuals aged 65 and older, it is not an inevitable
consequence of ageing and can also manifest in younger people. The progression of the disease is
typically categorised into four stages. The initial stage, known as Non-Dementia, is characterised by
the absence of symptoms or cognitive impairment. This is followed by Very Mild Dementia, marked
by early signs such as challenges in recalling the location of everyday objects. The third stage, Mild
Dementia, involves noticeable difficulties in retaining information and changes in behavior. The fourth
stage, Moderate Dementia, is distinguished by substantial cognitive decline, impairments in speech,
personal care activities like bathing and dressing, and is often accompanied by emotional instability and
disturbances in sleep patterns (Alzheimer’s Association, 2023; Suganthe et al., 2021). It predominantly
affects older individuals, with both incidence and prevalence rising as age increases (Li et al., 2022).
While this condition is more prevalent in low- and middle-income countries and regions (Gao & Liu,
2021), Nichols et al. (2019) report highlights that Alzheimer’s has escalated into a critical global health
concern.

According to Nichols et al. (2022), the number of Alzheimer’s patients surged to 43.8 million by 2016,
representing a 117% increase from 20.3 million in 1990. Data from the World Health Organization
(2017) further highlights the global escalation of Alzheimer’s cases, with an estimated 46.8 to 50 million
individuals diagnosed and 10 million new cases emerging each year. As Alzheimer’s disease is strongly
associated with ageing, this trend is expected to intensify as populations grow older and life expectancy
rises. By 2050, it is projected that 152 million people will be affected by Alzheimer’s disease and related
dementias (World Alzheimer Report, 2019).

A significant challenge confronting Alzheimer’s researcher is the absence of effective treatments for
the disease to date (Irankhah, 2020; Pulido et al., 2020). Existing treatments for Alzheimer’s disease,
including combination therapies, N-methyl-D-aspartate (NMDA) receptor antagonists, and
cholinesterase inhibitors, are thought to mitigate or postpone symptom progression (Dafre & Wasnhik,
2023). Nevertheless, the clinical diagnosis of Alzheimer’s remains challenging due to the subtlety of
early symptoms, the heterogeneity in symptom presentation, the protracted detection process, and the
variability in diagnostic criteria, which frequently depend on the clinician’s expertise. Therefore,
prompt and precise diagnosis during this early phase is crucial to enable swift intervention and treatment
(Al Rahbani et al., 2024; Helaly et al., 2022).
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Recently, there has been an increasing focus on the application of advanced imaging techniques and
computational methods to enhance the precision of Alzheimer’s disease diagnoses. Modalities such as
Magnetic Resonance Imaging (MRI) are pivotal in examining the structural and functional alterations
in the brain associated with Alzheimer’s (Wong, Xu, Ayoub, et al., 2023; Wong, Xu, Chen, et al., 2023).
MRI serves as a prominent neuroimaging tool in the medical field, extensively employed to capture
grayscale brain images with varying contrasts. Specifically, MRI is instrumental for diagnostic
purposes, image segmentation, and additional applications (Vimala et al., 2023; Zhou et al., 2020).

This imaging technique offers crucial insights into the pathological alterations, such as atrophy and
infarction, that manifest in the brain as a result of Alzheimer’s disease. Furthermore, deep learning
methodologies, particularly Convolutional Neural Networks (CNNs), have demonstrated considerable
promise in the analysis of medical images, including the diagnosis of Alzheimer’s disease (Chen et al.,
2024). CNNs have played a pivotal role in medical image analysis research for several years.
Convolutional filters are employed to analyse and extract critical features from medical images. Various
studies have implemented CNNs across a range of applications, including tumour detection and
classification (Arevalo et al., 2016), skin lesion identification (Azad et al., 2019; Karimijafarbigloo et
al., 2023), and brain tumour segmentation (Azad et al., 2022). Furthermore, CNNs have made
substantial contributions to the evaluation of various imaging modalities within clinical medicine,
encompassing X-ray radiography, Computed Tomography (CT), MRI, ultrasound, and digital
pathology.

However, despite their exceptional performance, CNNs exhibit inherent conceptual limitations; they
are unable to model explicit long-range dependencies owing to the constraints imposed by the receptive
field of the convolutional kernel. As noted by Kim et al. (2020), CNNs also face challenges in accurately
detecting specific patterns in designated locations; to address this issue, patching techniques can be
integrated into the CNN architecture. This approach enables CNNs to better capture image details by
focusing on more minor features such as edges, textures, or patterns within specific regions.
Furthermore, this technique must be implemented with precision to align with the architectural
requirements of CNNS.

In response to the challenges outlined earlier, extensive research has concentrated on Transformers and
their attention mechanisms. These can be understood as a dynamic process of weight adjustment that
depends on input features within CNN-based architectures (Azad et al., 2024; Bello et al., 2019;
Karimijafarbigloo et al., 2023; Ramachandran et al., 2019; Vaswani et al., 2021). Transformers have
demonstrated superiority across a wide range of Natural Language Processing (NLP) applications,
including machine translation, text classification, and question-answering (Vaswani et al., 2017). Their
remarkable success in NLP has led to the widespread adoption of Transformer architecture within
contemporary Computer Vision (CV) models. Since the introduction of Vision Transformers (ViT)
(Dosovitskiy et al., 2021), Transformers have emerged as a superior alternative to Convolutional Neural
Networks (CNNs) for various tasks, including image recognition, object detection (Zhu et al., 2021),
image segmentation, video comprehension, and image super-resolution (Arnab et al., 2021; Azad et al.,
2024). A pivotal aspect of the Transformer architecture is its self-attention mechanism, which adeptly
models the relationships among sequence elements, thereby facilitating the exploration of long-range
dependencies (Azad et al., 2024). This self-attention mechanism allows for the assignment of varying
weights to different segments of the input, which are subsequently integrated with patches and
positional embeddings (Dosovitskiy et al., 2021).
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The primary aim of this study is to assess the efficacy of the VIiT architecture in the multiclass
classification of MRI images for Alzheimer’s disease, specifically distinguishing between Non-
Dementia, Moderate Dementia, Mild Dementia, and Very Mild Dementia. The study emphasises
enhancing accuracy and reliability through data augmentation during the pre-processing phase.
Furthermore, this research seeks to:

¢ Enhance the dependability of early Alzheimer’s disease detection utilising the ViT model.

¢ Minimise diagnostic errors by improving the precision of MRI image analysis.

e Support clinical practice by delivering effective models for early diagnosis and timely
intervention.

RELATED WORK

A patient suspected of having Alzheimer’s disease should undergo a comprehensive clinical assessment
and detailed medical history review. During this evaluation, healthcare professionals assess the clinical
symptoms, conduct interviews with patients and caregivers to gather information about their concerns
and analyse alterations in memory, language, and other cognitive abilities. Common cognitive
assessments utilised in this context include the Mini-Mental State Examination (MMSE) and the
Montreal Cognitive Assessment (MoCA). Furthermore, the patient’s medical history, medication usage,
and familial health background are examined to validate the Alzheimer’s diagnosis, as numerous other
medical conditions may present similar symptoms. Additionally, brain imaging modalities, such as
MR, play a crucial role in diagnosing Alzheimer’s disease. However, these imaging techniques can be
costly and necessitate specialised equipment and trained professionals. The high expenses are further
exacerbated by the need for neuropsychologists or other specialists who are tasked with administering
and interpreting the results of these assessments (Breijyeh & Karaman, 2020; Juganavar et al., 2023).

Numerous studies have undertaken efforts over the past few decades to mitigate the substantial costs
associated with diagnostic procedures. Recently, researchers have begun using transformer models in
this domain to assist in the diagnostic process and facilitate cost reductions. A comprehensive overview
of prior research pertaining to Alzheimer’s is presented in Table 1.

Table 1

A Comprehensive Overview of Prior Research

Researcher Data Research Objective
Lyu et al. (2022) ImageNet-21K consists of MRl  Improving brain imaging
images classification with transfer learning
techniques dengan model ViT.
Almurafeh et al. MRI images sourced from Kaggle Classifying MRI images for
(2023) Alzheimer’s disease detection using
transformers (ViT).
Shin et al. (2023) PET 18F-Florbetaben Evaluating the Effectiveness of ViT

and CNN-VGG19 in Classifying
Alzheimer’s Images (Binary &
Ternary).

(continued)
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Researcher Data Research Objective
Shaffi et al. (2024) OASIS & ADNI (MRI) Enhancing Alzheimer’s disease
classification using a ViT ensemble.
Tang et al. (2024) ADNI (PET & MRI) Advancing Alzheimer’s disease

diagnosis via multi-modal data
integration (PET & MRI).
The proposed MRI images sourced from Kaggle Precisely identifying and categorising
studied MRI images of Alzheimer’s disease
in multiclass classification.

Lyu et al. (2022) addressed the challenge of data limitations in brain imaging by implementing a cross-
domain transfer learning approach. Their study employed the ViT, initially trained on the ImageNet-
21K dataset, before transferring it to a brain imaging dataset. This approach incorporated a slice-wise
convolutional embedding technique aimed at enhancing standard patch operations. The findings
indicated that this methodology effectively transferred knowledge from the natural imaging domain to
brain imaging, achieving classification performance that is on par with recent research efforts.
Almufareh et al. (2023) devised machine learning methodologies for the detection of Alzheimer’s
disease through the analysis of neuroimaging data, particularly utilising MRI scans. Their research
employed attention-based mechanisms alongside a ViT approach, commencing with the pre-processing
of MRI images prior to classification by the network. The model was trained on publicly available
datasets from Kaggle, achieving remarkable results with an accuracy of 99.06%, precision of 99.06%,
recall of 99.14%, and an F1-score of 99.1%. Furthermore, the study included comparative analyses
demonstrating that this approach outperformed alternative techniques, establishing it as an effective
model for the expedited and precise diagnosis of Alzheimer’s disease, thereby enhancing the quality of
life for patients.

Shin et al. (2023) used a technique for detecting dementia-related images using the ViT on PET scans
with 18F-Florbetaben, comparing its performance to that of the CNN VGG19 model. The ViT was
chosen due to its ability to establish direct relationships among images, which is particularly beneficial
for analysing the complexities of the brain. The study evaluated both binary classifications (normal
versus abnormal) and ternary classifications (healthy controls, moderate cognitive impairment, and
Alzheimer’s disease). The results revealed that ViT outperformed VGG19 in binary classification tasks
but did not exhibit the same advantage in ternary classification. Thus, it can be concluded that ViT has
not consistently shown superiority over CNN in classifying Alzheimer’s disease when utilising PET
imaging.

Research by Shaffi et al. (2024) proposed the implementation of ViT models to enhance the
classification efficiency of Alzheimer’s disease using MRI images. They constructed an ensemble
framework comprising four fundamental ViT models, incorporating both hard-voting and soft-voting
methodologies. The evaluation was carried out using the OASIS and ADNI datasets, specifically
addressing challenges associated with imbalanced data. The ViT ensemble demonstrated a 2% increase
in accuracy relative to individual models, and when compared to CNNs and traditional machine learning
models, the ViT models exhibited improvements in accuracy of 4.14% and 4.72%, respectively.

Tang et al. (2024) integrated multi-modal data to enhance the diagnostic process for Alzheimer’s

disease. By employing MRI and PET imaging, they utilised a 3D convolutional neural network (3D
CNN) to extract significant features, subsequently scaling the Transformer model to investigate the
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global correlations among these features. This combined multi-modal information was visualised to
pinpoint brain regions associated with Alzheimer’s disease. Consequently, the model achieved an
accuracy of 98.1% on the ADNI dataset, identifying the left parahippocampal region as a consistently
significant area pertinent to the diagnosis of Alzheimer’s disease.

The research findings outlined above generally demonstrate promising outcomes in classifying MRI
and PET images for Alzheimer’s diagnosis. The ViT was selected for its capability to capture intricate
relationships in medical imaging data. For instance, Lyu et al. (2022) indicated that transfer learning
from natural to brain imaging domains enhances classification performance. Almufareh et al. (2023)
underscored the efficacy of attention-based mechanisms in ViT for Alzheimer’s detection, while Shaffi
et al. (2024) reported improved accuracy using a ViT ensemble framework. Conversely, Shin et al.
(2023) identified limitations in ViT’s performance in ternary classification compared to CNNs,
suggesting the need for further refinement in multi-class categorisation strategies. This study preferred
ViT over CNNSs due to its ability to capture long-range pixel relationships, advantageous for analysing
complex brain structures, and the effectiveness of its pre-trained models on large datasets like ImageNet
for transfer learning in medical imaging.

THE PROPOSED METHOD

The proposed method employs a deep learning approach utilising the ViT for computer vision tasks.
The process begins with the collection and pre-processing of an MRI Alzheimer’s image dataset. Data
are split into 90% for model development (further divided into training and validation sets) and 10%
for testing. Pre-processing includes normalisation, resizing to 224x224, and augmentation techniques
like Resize, Cropping, Flipping, Rotation, and Color Adjustment. A pre-trained ViT model is fine-
tuned, optimised with various learning rates and batch sizes, and evaluated using metrics such as
accuracy, specificity, sensitivity, and F1-score. The research methodology proposed in this study is
shown in Figure 1.

Figure 1

The Research Method for the Study

Start
Y
Dataset
v
Data Splitting

Y

Training Validation Testing
Data Data Data

\¢— Image Pre-processing

|Resize |
Image Pre-processing —

Augmentation

[ 1
‘ Crop ‘ Flip ‘IcoiorAdJustmem Rotation |

Fitting Model
Training Validation > with the Best > Evl::‘d::on g -
Data Data Parameter o

[
2

Building a Pre-trained Fine Tuning ViT for
ViT Model

Training with Multiple
> Parameter ~—

135



Journal of Information and Communication Technology, Vol. 24, Number 1 (January) 2025, pp: 130-152

Diagnostic Modalities for Alzheimer’s Disease

Medical professionals employ two primary methods to differentiate between samples with and without
dementia: neuroimaging and non-neuroimaging techniques. Neuroimaging modalities, including CT,
MRI, and Positron Emission Tomography (PET), are integral to the diagnosis of Alzheimer’s disease.
CT scans are used to assess brain abnormalities such as size variations, injury, or the presence of tumors.
MRI offers high-resolution images of brain structures, aiding in the detection of atrophy in specific
regions. PET, on the other hand, utilises radioactive tracers to evaluate the brain’s metabolic activity,
providing a comprehensive assessment of its condition. Among these techniques, MRI is widely
regarded as the most effective for identifying early physical changes associated with Alzheimer’s
disease. Furthermore, non-neuroimaging methods such as blood tests, genetic profiling, and
neuropsychological assessments contribute to disease diagnosis, though neuroimaging remains the
foremost diagnostic tool (Malik & Singh, 2024; Mi et al., 2024).

Dataset

This study employs image data sourced online from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), specifically focusing on MRI scans related to Alzheimer’s disease. The dataset, accessible via
the Kaggle platform Azheimer’s MRI, comprises a total of 8,000 MRI images of the human brain,
categorised into four classifications: non-demented, mildly demented, very mildly demented, and
moderately demented. Each class contains 2,000 images, ensuring a balanced distribution across all
categories. The distinctions between the various types of dementia are illustrated in Figure 2, which
displays the MRI results.

Data Splitting

Data splitting refers to the process of partitioning a dataset into distinct subsets for the purposes of
training and model evaluation. Although this might appear straightforward, dataset partitioning
demands a precise methodology, as both the dataset’s size and the partition ratio can significantly
influence the model’s overall outcomes and performance. Consequently, partitioning the data into
training, testing, or validation sets is a widely adopted strategy for determining model hyperparameters
and assessing generalisation performance (Muraina, 2022).
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Figure 2

MRI Images Illustrating (a) Non-Demented, (b) Very Mild Demented, (c) Mild Demented, and (d)
Moderate Demented Classifications

The division of data into separate subsets is a fundamental strategy to prevent overfitting. Muraina
(2022) highlights that partitioning the dataset into three distinct segments is vital for minimising both
overfitting and bias during model selection. He advocates for the largest portion of the data to be used
for training, while the validation (or development) set, and the test set should be of equal size. In a
similar vein, Joseph and Vakayil (2021) suggest that the training set itself can be further subdivided,
incorporating a validation subset. Conversely, some researchers choose to forgo a separate test set,
opting instead to split the data into just two parts: the development and the test set. In this framework,
the model is trained on the training set, hyperparameters are optimised using the development set, and
final performance assessments are made based on the outcomes from this process.

Data Augmentation

Data augmentation encompasses a variety of techniques applied at the data level rather than modifying
the model architecture. These methods enhance deep learning model performance by generating diverse
and balanced samples for the training dataset. Optimal model accuracy depends on the dataset’s quality
and quantity, requiring sufficient diversity and size, both of which data augmentation can provide
(Alomar et al., 2023). Augmentation techniques can be categorised by their purpose—either increasing
dataset size or diversity—or by the specific problem they address. For instance, random erasing tackles
occlusion (Zhong et al., 2020), rotation and flipping mitigate viewpoint variations (Divon & Tal, 2018),
brightness adjustments handle lighting changes (Liu et al., 2021) and cropping and zooming address
scaling and background issues.
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Vision Transformer Frameworks

Deep learning is a subset of Artificial Neural Networks (ANNS) characterised by its use of multiple
layers to process intricate data and execute machine learning tasks typically performed by humans to
obtain specific knowledge. Fundamental deep learning models, such as the Multi-Layer Perceptron
(MLP), operate by mapping inputs to outputs through mathematical functions (Bengio et al., 2021). In
contrast to traditional algorithms, such as those in machine learning that necessitate manual feature
engineering, deep learning demonstrates superiority by automatically analysing complex data. This
capability renders it exceptionally valuable across various domains, including healthcare, finance, and
social sciences. Notably, deep learning has been applied in areas such as object detection, stock price
forecasting, and disease classification.

One of the significant advancements in deep learning is the ViT, an architecture specifically designed
for image processing. ViT is based on the transformer model—an attention-driven mechanism initially
developed for natural language processing tasks, which has since been adapted for various computer
vision applications, including image classification, segmentation, and object detection (Dosovitskiy et
al., 2021; Gheflati & Rivaz, 2022). By leveraging the attention mechanism, ViT efficiently processes
image data compared to earlier models such as CNNSs. In numerous tasks, ViT has demonstrated
performance that is either comparable to or exceeds that of CNNs, which have been traditionally
employed in image processing (Khan et al., 2022).

The VIiT architecture comprises three key components: the segmentation of the image into smaller
patches (patch embeddings), the incorporation of positional embeddings, and the subsequent processing
through transformer encoders, as illustrated in Figure 3. In the initial step, the image is segmented into
smaller patches, which are then represented as vectors. Each patch typically measures 16x16 pixels and
is subsequently flattened linearly according to Equation 1 (Dosovitskiy et al., 2021).

hw

hpwp

n 1)
In this equation, (h, w) denotes the resolution of the input image, where /4 represents the height and w
the width. Conversely, (hp, wp) specifies the resolution of each square patch, which is measured at
mxm, and n denotes the total number of patches generated. Subsequently, positional embeddings are
applied to convey information regarding the relative positioning of each patch (Vaswani et al., 2017).
This step is crucial, as the VIT lacks an inherent mechanism to identify natural sequences within images,
unlike CNNSs. The arrangement of the patch embeddings is determined using Equation 2:

Zp = [Vclass;X1E; X,E; ---FXnE] + Epos' )
Ee R(pzc)xDEpos e R(n+1)xD

In this context, Vclass refers to the one-hot encoding of a matrix token generated by the computer,
while Xn denotes the nth patch presented in matrix form. Additionally, E represents the embedding
matrix corresponding to the patch, and Epos signifies the position encoding, also formatted as a matrix.
After the image has been processed into patches and positional embeddings, the outcomes are compiled
into a z0 vector, which is subsequently inputted into the transformer encoder block (Dosovitskiy et al.,
2021). The transformer encoders are fundamental components of the ViT architecture, with an
illustration of the process within the transformer encoder depicted in Figure 4.
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The transformer encoder is composed of several critical components, one of which is the Multihead
Attention mechanism. This mechanism enables the model to concentrate on various regions of the image
concurrently. Through Multihead Attention, the model can identify multiple significant areas within the
image without requiring sequential processing. This capability is a primary advantage of the ViT
compared to CNNs, which tend to depend more on the spatial arrangement of images. The structure of

Multihead Attention is illustrated in Figure 5.
Figure 3

VIiT Architecture

Vision Transformer (ViT)

MLP
Head

Transformer Encodler

o ST S dda e

[class] embodding me.ar Projection ol‘ l'laucncd Patches

I -
m —IKEWE

'

Figure 4

Transformer Encoder

Transformer Encoder




Journal of Information and Communication Technology, Vol. 24, Number 1 (January) 2025, pp: 130-152

Figure 5

Multihead Attention Structure
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According to the depiction of the Multi-Head Attention architecture, the query (Q), key (K), and value
(V) are linearly projected multiple times, with distinct projections corresponding to each dimension of
dq, dk, and dv. The calculations for the matrices Q, K, and V are detailed in Equations 3, 4,and 5 (Fan
etal., 2021):

Q=W,Z ©)
K =W,z (4)
V=Ww,zZ (5)

Where Wq, Wk, and Wv represent the weights associated with linear transformations, typically
characterised by small magnitudes. These weights are initialised randomly from suitable distributions,
such as Gaussian, Xavier, or Kaiming distributions, and this initialisation occurs only once prior to the
commencement of the training process.

Each projection is subsequently processed concurrently via the attention mechanism, yielding a dv-
dimensional output. The calculation of the output matrix within the attention model is defined by
Equation 6 (Han et al., 2023):

Q K"
Attention (Q, K, V) = softmax< \/d_ ) -V (6)
k
The outcomes of all these attention mechanisms are integrated and reprojected to generate the final
output. Multi-head attention enables the model to simultaneously capture information from various
representations across different subspaces and positions, as detailed in Equation 7, utilising the W
parameter matrix for the queries (Q), keys (K), values (V), and the final output (Vaswani et al., 2017).
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MultiHead = Concat(head;, .. , heady) - W° )
with head; = Attention(QW,%, KWX, vw})

An additional element that enhances the transformer encoder is the MLP, which operates through a
dense layer utilising GeLU activation. Researchers employ residual connections and layer normalisation
to maintain and stabilise information from the preceding layer before it proceeds to the next layer (Bazi
etal., 2021). This methodology enables the ViT to process images with greater efficacy and efficiency.

Performance Evaluation

A widely employed metric for assessing multi-class or single-label classification models—where each
data instance can be linked to only one class at a time—is the confusion matrix (Krstinic et al., 2023).
The confusion matrix offers a detailed overview of the classifier’s performance. Typically, it
encompasses four key metrics: True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN). These metrics are instrumental in determining whether a patient is correctly diagnosed
with a particular disease (Hasnain et al., 2020).

The TP value indicates a scenario in which the prediction of the disease aligns with the actual condition,
confirming that an individual is indeed affected by the disease. Conversely, FP refers to a situation
where an individual is forecasted to have the disease despite being in a state of good health. In the
context of predictive analysis, the TN value indicates that the model predicts an individual as healthy,
and this prediction is accurate. On the other hand, FN occurs when the model predicts an individual as
healthy, but the individual is, in fact, suffering from a disease (Juneja et al., 2020).

The specified values of TP, TN, FP, and FN can be utilised to calculate various evaluation metrics for
assessing the performance of the implemented methods. The metrics consist of accuracy, sensitivity,
specificity, and F1-score. Accuracy measures the degree to which the predicted outcomes align with the
actual values, reflecting the proportion of samples that are correctly and incorrectly classified (Xhumari
& Haloci, 2023). Sensitivity evaluates the model’s capacity to correctly identify positive instances, a
critical factor in disease prediction (Juneja et al., 2020). Specificity assesses the model’s proficiency in
correctly recognising negative classes, often used in medical contexts for disease diagnosis (Juneja et
al., 2020). The F1 score represents the harmonic mean of precision and recall (Xhumari & Haloci,
2023). A high F1 score indicates the model’s strong performance in label prediction. A classification
model is deemed to exhibit excellent performance if its evaluation metrics exceed 90%. Performance is
classified as good for scores ranging from 81-90%, moderate for 71-80%, poor for 61-70%, and failed
if the score falls below 60%. The calculation of these evaluation metrics is formally defined by
Equations 8, 9, 10, and 11:

e TP + TN oo ®
CTTP+TN+FP+FN 7

L TP
Sensitivity = ———x 100% ©)
(TP + FN)
TN
Specifity = ———————x 1009 10
pecifity TN + FP)x Yo (10)
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2TP (11)
F1 — score = x 100%
2TP + FP + FN

RESULTS AND DISCUSSION

The initial phase of this study requires the input of data into the Python directory to enable further
processing. The dataset consisted of 8000 MRI images associated with Alzheimer’s disease, organised
into four specific categories: non-demented, mildly demented, very mildly demented, and moderately
demented. The pre-processing techniques employed encompass data augmentation, including
modifications through methods such as resizing, flipping, color adjustments, and the transformation of
images to grayscale. Figure 6 provides a detailed explanation of the augmentation process.

Initially, all images with a resolution of 200 x 190 pixels were resized to 224 x 224 pixels. This
adjustment was made to align the size of Alzheimer’s images with the input dimensions of a pre-trained
model, “google/vit-base-patch16-224”. Furthermore, the normalisation procedure was applied to the
images, altering their pixel values to ensure a mean of zero and a variance of one, as derived from the
pre-trained model. The normalising step is crucial forenabling faster and more uniform convergence of
the model during training.

Figure 6

Illustration of the Augmentation Process(a) Resize, (b) Flip, (c) Color Adjustment, and (d) Grayscale
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(d)

Following the augmentation and normalisation procedures, the image is prepared for subsequent
analysis by converting it into a suitable format for processing by the model. Additionally, this research
involves fine-tuning the “google/vit-base-patch16-224” model by retraining it. Originally, the model
was trained on a diverse dataset comprising both general and medical images, which enabled it to adapt
to a wide range of image types. This model is specifically optimised for the classification of Alzheimer’s
disease MRI images into four distinct categories. Moreover, fine-tuning is conducted with a strategy to
mitigate overfitting, which includes setting the dropout rate to 0.2.

The training process utilised a dataset comprising 8,000 samples, which were partitioned into three
distinct subsets: training, validation, and testing. A total of 90% of the dataset, equating to 7,200
samples, was designated for model training, while the remaining 10%, or 800 samples, was reserved
for evaluation purposes. Within the 7,200 training samples, 90% (6,480 samples) were allocated for
model training, and 10% (720 samples) for validation. Thus, the data was segmented into 6,480 samples
for primary training, 720 samples for validation, and 800 samples for final testing. The distribution of
these datasets is depicted in Figure 7.

Figure 7

Distribution of MRI Image Data for Alzheimer’s Disease

Splitting Data
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Throughout the training phase, various parameter combinations were employed to achieve optimal
performance, specifically by testing different pairings of learning rates and batch sizes: 0.01 with a
batch size of 32, 0.01 with a batch size of 64, 0.001 with a batch size of 32, 0.001 with a batch size of
64, 0.0001 with a batch size of 32 and 0.0001 with a batch size of 64, each trained over 50 epochs. The
results of training the model with these various parameters are presented in Table 2.

Table 2

Comparison of Training Outcomes Across Various Parameter Combinations

Learning Rate/Batch Size Accuracy Sensitivity Specificity F1-Score
0.01/32 62.50% 25.00% 75.00% 10.00%
0.01/64 62.50% 25.00% 75.00% 10.00%
0.001/32 75.12% 50.25% 83.41% 48.40%
0.001/64 75.18% 50.37% 83.45% 50.57%
0.0001/32 97.37% 94.75% 98.25% 94.78%
0.0001/64 98.19% 96.34% 98.80% 96.37%

The analysis results presented in Table 2 indicate that the most effective combination of parameters for
the classification model is a learning rate of 0.0001 and a batch size of 64. This parameter configuration
yields superior performance across all evaluation metrics, achieving an accuracy of 98.19%, sensitivity
of 96.34%, specificity of 98.80%, and an F1 score of 96.37%. These outcomes highlight the model’s
proficiency in accurately classifying images, with minimal error. Following the identification of the
optimal parameters, the model was evaluated using a test set comprising 10% of the total dataset—800
images distributed across four categories, with 200 images per category. The classification results are
summarised in the confusion matrix shown in Figure 8, which provides a breakdown of true positives
(TP), true negatives (TN), false positives (FP), and false negatives (FN) for each class.

Figure 8

Confusion Matrix for Predicting Alzheimer’s Disease
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Based on the confusion matrix depicted in Figure 8, the True Positive (TP), True Negative (TN), False
Positive (FP), and False Negative (FN) values for each class are determined. For the “Mild Demented”
class, the model identifies 192 cases as TP and 595 cases as TN, with 7 cases classified as FP and 8 as
FN. In the “Moderately Demented” class, the model accurately classifies all cases, yielding TP and TN
values of 200 and 600, respectively, with no FP or FN. In the “Non-Demented” class, the model reports
178 TP, 595 TN, 5 FP, and 8 FN. Lastly, for the “Very Mild Demented” class, the TP value is 19, TN
is 595, FP is 7, and FN is 22. A summary of the evaluation results for each class is presented in Table
3.

Table 3

Evaluation Metrics Results for Each Class

Class Accuracy Sensitivity Specificity F1-Score
Mild Demented 0,99 0,99 0,99 0,98
Moderate Demented 1,00 1,00 1,00 1,00
Non Demented 0,97 0,89 0,99 0,93
Very Mild Demented 0,96 0,97 0,96 0,93
Average 0,98 0,96 0,98 0,96

This evaluation revealed that the “Mild Demented” category attained an accuracy of 0.99, accompanied
by high sensitivity and specificity. The ‘“Moderate Demented” category demonstrated flawless
performance, with all metrics scoring 1.00. For the “Non-Demented” category, the model achieved an
accuracy of 0.97, a sensitivity of 0.89, and a specificity of 0.99. The “Very Mild Demented” category
exhibited an accuracy of 0.96, with a sensitivity of 0.97 and specificity of 0.96, reflecting solid
performance despite some misclassification instances. These errors were primarily attributed to the
inherent difficulty in distinguishing features across categories, particularly between “Non-Demented”
and “Very Mild Demented,” which share overlapping characteristics. Furthermore, the incorrect
application of augmentation techniques may introduce bias into the model training process. Figures 9
and 10 present examples of both correctly classified and misclassified MRI images.
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Figure 9

Correctly Classified Sample Set
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Figure 10
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In summary, the model demonstrated exceptional performance, achieving an average accuracy of 0.98,
along with sensitivity, specificity, and an average F1 score of 0.96, 0.98, and 0.96, respectively. These
results underscore the model’s strong capability in accurately classifying MRI images across various
stages of Alzheimer’s disease. For future studies, it is advisable to enhance the datasets for the “Non-
Demented” and “Very Mildly Demented” categories, thereby enabling the model to better capture the
distinguishing features of each class. Furthermore, a comprehensive assessment of the augmentation
methods employed, particularly cropping, is recommended to ensure that critical information within the
images is preserved and not inadvertently lost. These refinements aim to reduce the likelihood of
classification inaccuracies in the process.

Following the training and performance evaluation of the model using the ViT architecture, the
subsequent task is to interpret the results and contrast them with findings from prior research. Table 4
provides a comparative analysis of the ViT model’s performance against various methods previously
employed for classifying Alzheimer’s MRI images, as documented in the literature.

Table 4

Comparative Analysis of the Proposed Model with Previous Research

Researcher Accuracy Sensitivity Specificity F1-score
Lyu et al. (2023) 95.3% 94.4% - 93.20%
Almufareh et al. (2023) 99.06% 99.06% 99.14% 99.1%
Shin et al. (2023) 80% & 56.67%  60% & 56.67% - 66.67% & 55.45%
Shaffi et al. (2024) 99.29% 97.54% 99.68% -
Tang et al. (2024) 98.1% 95.82% 99.09% 97.81%
Proposed Method 98,19% 96,34% 98,80% 96,37%

The results indicate a notable enhancement in accuracy and other evaluation metrics, with accuracy
reaching 98.19%, sensitivity at 96.34%, specificity at 98.80%, and an F1 score of 96.37%. In contrast,
a study by Lyu et al., which utilised data from ImageNet-21K, reported an accuracy of 95.3% and a
sensitivity of 94.4%, thereby underscoring the advancements made with the proposed approach.
Almufareh et al. reported an accuracy of 99.06% and a specificity of 99.14% in classifying Alzheimer’s
MRI images. These findings are notably competitive, particularly given that their analysis was
conducted on a dataset of approximately 80,000 MRI images—roughly ten times the size of the dataset
employed in the present study. In comparison, Shaffi et al. achieved an accuracy of 99.29%, although
the absence of reported F1 scores limits a comprehensive evaluation of their performance. Additional
research, including studies by Tang et al. and Shin et al., has demonstrated promising results; however,
the methodology presented in this study surpasses others in terms of specificity.

The strength of this approach is rooted in the deployment of a meticulously optimised ViT model, which
attains an impressive specificity of 98.80%, significantly reducing diagnostic errors in identifying
individuals without Alzheimer’s disease. Furthermore, the F1 score of 96.37% reflects a robust
equilibrium between precision and sensitivity—two critical metrics in medical diagnostics. While
several prior studies have yielded remarkable results, the methodology presented herein achieves
competitive performance, with accuracy nearing the highest previously reported figures, while also
demonstrating substantial effectiveness in classifying Alzheimer’s-related MRI images.
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CONCLUSION

This study highlights the significance of early detection of Alzheimer’s disease through the application
of advanced imaging techniques, particularly MRI, in conjunction with ViT models. An analysis of
8,000 MRI images, categorised into four distinct groups, resulted in an accuracy of 98.19%, sensitivity
of 96.34%, specificity of 98.80%, and an F1-score of 96.37%. These results indicate that the employed
model is not only effective in classifying images but also proficient in identifying individuals who are
unaffected by Alzheimer’s, which is essential for reducing misdiagnoses and facilitating timely
interventions.

While the findings of this study demonstrate competitive performance in comparison to prior research,
several challenges remain to be addressed, particularly the misclassification between the ‘Non-
Demented’ and ‘Very Mild Demented’ categories. It is recommended that future research focuses on
enhancing the data volume in these categories and assessing the applied augmentation techniques. These
measures aim to improve both the accuracy and reliability of the model, as well as enhance the
effectiveness of early detection in clinical practice for patients with Alzheimer’s disease.
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