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ABSTRACT

This study proposes nine multivariate intraday models using various realized variation measures with
the aim to improve volatility forecasting in the Islamic stock market in Malaysia using a dataset from
1%t April 2008 to 31 March 2018. The findings show that considering independently the jump-robust
realized volatility, additional daily jump realized volatility, and continuous and discontinuous jump
sample path variations improved the in-sample predictive regressions compared to using the standard
realized volatility. For the out-of-sample volatility forecasts evaluation, it is observed that the volatility
models that disentangled the realized volatility into its continuous and discontinuous jump components
have outperformed the rest of the proposed models. This is because both the continuous and
discontinuous variation of returns exhibit distinctive substantial information in yielding the final
volatility dynamic and thus should be modeled disjointedly. However, the empirical results suggest
that the simple autoregressive specification using the standard realized volatility is often performing
better or as well as the new extension models. Lastly, this study may provide useful insight in portfolio
management, risk assessment, and asset pricing, particularly in the Shariah-compliant equities.

Keywords: Realized volatility, volatility forecasting, multivariate heterogeneous autoregressive model,
Islamic stock markets.
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INTRODUCTION

In the past decades, the literature of volatility modeling often analyses the return and volatility
forecasting of the financial time series using the returns data sampled at daily or lower frequency. Even
though one can discover much from the analysis using low-frequency data, it still fails to reveal both
the news effect that incorporated exceedingly rapid as well as short-run dynamic effects and is unable
to describe satisfactorily the stylized facts (Ferrari et al., 2021). Besides, using the squared daily return
as a proxy of conditional volatility may also produce misleading findings due to its noisy nature, where
the noise will mask the strong persistence in the volatility dynamics (Andersen et al., 2003; Jian Zhou,
2020). According to Degiannakis and Floros (2016), the noisier a volatility proxy, the less accurate the
volatility forecast evaluation.

As a result, Andersen and Bollerslev (1998) introduced the concept of realized volatility (RV), which
is computed from the high-frequency data, to curb this issue. RV is a non-parametric ex-post volatility
measure of the return variation that can minimize noise accumulation due to market frictions. In
principle, RV is treated as an ‘observed’ rather than a latent variable. Observable volatility builds
entirely on a new opportunity in volatility modeling and forecasting because it requires a much simpler
technique to be used, whereas if volatility is latent, a complex econometric model will be required
(Andersen et al., 1999). In addition, RV is an unbiased, consistent, and highly efficient proxy
(Barndorff-Nielsen & Shephard, 2002) for true volatility that is based on the theory of quadratic
variation and arbitrage-free processes.

There are rising studies utilizing the theoretical and practical upsides of RV in volatility modeling (Chen
et al., 2021; Degiannakis et al., 2022; Liu & Wang, 2021; Wen et al., 2021). The literature shows that
the RV-based models generally outperform the traditional stochastic volatility (SV) models and the
family of the generalized autoregressive conditional heteroscedastic (GARCH) models of Engle (1982)
and Bollerslev (1986) that are based on squared daily returns in the volatility predictive performance
(Bergsli et al., 2022; Wei, 2021; Tran & Tran, 2021). This is because high-frequency data contains
more information about the real trading situations, and RV is considered an ‘observable’ volatility
proxy. Nonetheless, the RV-based modeling is under-researched on the volatility transmission in a
multivariate approach, specifically in the context of the Islamic stock market.

Over the past decades, the liberalization of capital movements and reformation of national financial
systems have resulted in greater linkages between financial markets in countries around the globe.
Moreover, the expansion of information technology has also allowed information to spread more freely
than ever before. Thus, news and shocks initiated from the rest of the world are more likely to affect
the market (Zhong et al., 2019). Numerous studies (Uludag & Khurshid, 2019; Tang et al., 2021) have
shown that volatility changes are not only due to the dynamic evolution of its own market volatility but
also changes of contagion effect and interdependency across markets. Consequently, the multivariate
analysis has gained greater attention because it helps to control for possible endogeneity issues in
volatility modeling and forecasting equations to overcome the weak assumption of market
independence of the univariate analysis that neglected the dynamic linkages among the variance and
covariance series. Financial institutions face a higher level of risk due to uncertainties in global and
regional financial markets. Therefore, in the context of reducing portfolio risk, the subject of
discovering the transmission of the financial return and volatility over time and across markets has
become the central attraction among practitioners and academic researchers in the hope of formulating
an effective financial risk management strategy.
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Today, Islamic financial market runs in parallel with the conventional financial market. In addition, it
provides investors with a distinct investment philosophy that is rapidly gaining acceptance worldwide.
The rise in the number of Islamic equity indices and sub-indices available in the stock markets has
created the opportunity for investors to allocate their portfolio in various types of sectors. Furthermore,
with the availability of Islamic equities, Muslim investors no longer need to forgo profits to conform to
their religious obligations. The global Islamic financial markets have experienced a remarkable growth
of approximately 17 percent annually (IFDI, 2022), demonstrating their resilience and attracting
investors. The recognition of the potential of diversification opportunities (Iftekhar et al., 2022) in the
Shariah-compliant instruments and standardization of Shariah conformity procedures in the Islamic
equities have precipitated the financialization of Islamic stock markets.

Considering the above-mentioned issues such as the noisy nature of squared daily return and
endogeneity issues in volatility forecasting, hence, this study aims to analyze the forecasting accuracy
of time-varying volatility spillover within the Islamic stock markets, deriving on the theory of realized
volatility and the conceptual framework of heterogeneous market hypothesis (HMH). Motivated by the
theoretical works of Barndorff-Nielsen and Shephard (2004b) and Andersen et al. (2012), who
introduced the jump-robust realized measures and empirical evidence that supports the importance of
the inclusion of daily jump regressors (Sévi, 2014) and jump-robust estimators (Chin et al., 2016) into
the simple Heterogeneous Autoregressive (HAR) model of Corsi (2009), this study extends the
univariate HAR that takes account for intraday jumps into a multivariate context. Also motivated
theoretically (Andersen et al., 2007) and empirically (Seévi, 2014; Wen et al., 2016) on the significance
of decomposing the realized volatility into its continuous and discontinuous jump sample path
variations, this study extends it into the multivariate version as well. On the other hand, being motivated
by the remarkable expansion of the Islamic finance over the past decade, the data selection in this study
involves the Malaysian Islamic stock index and the Islamic sectoral stock indices of Dow Jones Islamic
Market (DJIM). Under the role of high-frequency data, this study contributes a large-scale of empirical
analysis in-the volatility forecasting under the RV-based modeling derived from the Heterogeneous
Autoregressive (HAR) model that considers various components of the realized volatility into a
multivariate setting in the Islamic stock markets, particularly at the sectoral level. The findings of this
study will have implications in risk management and portfolio selection, particularly to address the
unique risks in Islamic investment.

The rest of the paper is organized as follows: Section 2 organizes the rest of the paper by reviewing
relevant literature on the properties of popular jump-robust estimators and the development of HAR-
type models. Section 3 presents the basic setup of jump-robust realized volatility and the framework of
the multivariate HAR model. Section 4 discusses the results of the in-sample estimation performance
and out-of-sample forecast evaluation. Section 5 concludes the paper.

LITERATURE REVIEW

Although the RV is broadly used in estimating the integrated variance of financial time series, the proxy
encounters inconsistency issues under the occurrences of abrupt jumps in the asset prices (Andersen et
al., 2003; Ewing & Malik 2016; Gao et al., 2022) due to economic shocks, political turmoil, natural
disasters, institutional changes, and inter alia. Disregarding the presence of jumps may lead to false
statistical conclusions such as inaccurate descriptive statistics, erroneous hypothesis inferences, and
fallacious forecasts. Some past literature (Ma et al., 2018) show that the discontinuous jump component
does not contain important information and fails to improve the volatility forecast. This assertion seems
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counter-intuitive since large increases in volatility are typically preceded by large jumps that change
the investors’ perception of the value of an underlying asset. A few potential explanations include the
difficulty in achieving a precise measure of jump volatility (Garcia & Hill, 2017) and the potential for
large sample bias in the realized estimators used in previous studies (Corsi et al., 2010). In contrast,
several researchers, for example, Andersen et al. (2011), Bollerslev et al. (2009), Gao et al. (2022), Li
et al. (2017), Maheu et al. (2013), and Qua et al. (2018), claimed that jump returns can provide
significant information in exploring the risk relationships between assets. This is because the jump
returns have a much higher signal to noise ratio and contain an independent measurable risk premium
(Garcia & Hill, 2017).

To tackle this problem, several jump-robust realized variances are introduced in the literature, such as
the realized bi-power variance (Barndorff-Nielsen & Shephard, 2004b), multi power variation
(Andersen & Todorov, 2010), truncated realized variance (Andersen et al., 2012), and quantile realized
variance (Christensen et al., 2010). As such, these estimators offer new and useful information on the
dynamics of stock prices, for instance, it enables to evaluate the presence and significance of price
jumps. The empirical evidence shows that an estimator that can well explain the realized variance jump
process generates a significant impact on future volatility (Mamoona et al., 2022; Massiniliano, 2022)
of the underlying assets whenever there is an arrival of new information (Yuan & Li, 2018) and provides
substantial improvement in the accuracy of the volatility forecast (Fuertes & Olmo, 2012). Therefore,
this study considers incorporating the intraday jump in the proposed volatility models since it has a
strong impact on future volatility.

In addition, the theory of quadratic variation postulates that total variation of an asset return can be
disentangled into continuous and discontinuous jump components. The empirical literature suggests
that the continuous and discontinuous jump variation of returns exhibit distinct information about
volatility dynamics. In other words, though both continuous and discontinuous jump components jointly
produce the final volatility dynamics, their dynamics are different and thus should be modeled
separately (Corsi et al., 2010). The jumps have a very short impact on future volatility, whereas
continuous returns tend to have a persistent impact on future volatility. This is evidenced by Andersen
et al. (2007) that they discovered the continuous component is noticeably more persistent than the
volatility jump component, inferring the continuous component as a significant predictor of future
volatility. The empirical studies also show that decomposition of the realized volatility into its
continuous and discontinuous jump components has yielded improved out-of-sample volatility forecasts
(Andersen et al., 2011). As such, these measures give useful and novel information on modeling the
dynamics of stock prices, which leads this study towards decomposing the realized volatility into its
continuous and discontinuous components in modeling the volatility measures.

The HAR model of Corsi (2009) has appeared as the preferred specification to further improve the RV-
based modeling. It is because the HAR model can attain long memory in a parsimonious process without
having to rely on fractional integration. In addition to this, this model does not necessitate restriction to
the parameters, and it guarantees positive-definite estimates (Choi et al., 2010). Moreover, the HAR
model is easily enhanced by external variables for improving the explanatory power of volatility
dynamics.

Therefore, numerous researchers started to develop new volatility models based on the HAR-RV
framework to further enhance volatility forecasting performance. For instance, the HAR-RV-J model
of Andersen et al. (2007) with an additional daily jump component, the HAR-RV-CJ model of Andersen
et al. (2007), in which the realized volatility is decomposed into its continuous and discontinuous jump
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components and the HAR-RSV model of Patton and Sheppard (2015) use the positive and negative
realized semi variances (RSV), and among other things. Recent literature (Bergsli et al., 2022; Gong &
Lin, 2019) exhibits evidence that HAR-type models provide superior volatility forecasting performance
than the SV-type, GARCH-type, VAR-RV, and ARFIMA-RV models (Shin, 2018).

However, Bubék et al. (2011) use the VHAR model of logarithmic realized variances to look at how
volatility was transmitted between Central European (CE) exchange rates and the EUR/USD foreign
exchange from 2003 to 2009. A similar approach by Soucek and Todorova (2013), who extend the
empirical model of Bubak et al. (2011) by using an orthogonalized version in studying the
interrelationship of the equities (S&P 500, Nikkei 225, FTSE100) and energy (West Texas Intermediate,
WTI) markets from 2002 to 2012. The study by Luo and Ji (2018) is also quite similar to Bubak et al.
(2011); apart from using the realized volatility, they use the positive and negative realized semi-variance
in examining the volatility connectedness between oil and agricultural markets. Based on the existing
literature, there is a minimal study on modeling the volatility transmission using HAR-type models in
the multivariate perspective, particularly in the context of Islamic equities. As a result, this paper
extends the HAR model with the crucial intraday jump specifications into a multivariate setting to
examine the in-sample and out-of-sample volatility forecasting of Islamic equities.

DATA AND METHODOLOGY
Data

The historical data used in this study is the 5-minutely intraday closing price of the Dow Jones Islamic
Market Malaysia Titans 25 (DJMY25) index and ten sectoral indices of the Dow Jones Islamic Market
(DJIM) World index from 1% April 2008 to 315 March 2018. The full sample of the intraday data is
divided into the in-sample data, which spans from 1st April 2008 to 31st March 2017, and the out-of-
sample data, which spans from 1st April 2017 to 31st March 2018. Dobrev and Szerszen (2010) found
that two to five years of high-frequency data are sufficient to achieve a similar level of accuracy as 20
years of daily data. This study uses nine trading years of high-frequency data in modeling the market
return and volatility, which has a more extended period than the required standard as aforementioned.
On the other hand, the sample period includes several major financial crises, such as the global financial
crisis period spiked in the early of 2008 and the European sovereign debt crisis period in the late of
2010, in order to ensure that the data is highly volatile with possible abrupt changes in the indices since
this study examines the robustness of the jump-robust realized volatilities used in this study. The ten
sectoral indices consist of the Dow Jones Islamic Market Basic Materials (DJIBSC), Dow Jones Islamic
Market Consumer Services (DJICYC), Dow Jones Islamic Market Oil & Gas (DJIENE), Dow Jones
Islamic Market Financials (DJIFIN), Dow Jones Islamic Market Healthcare (DJIHCR), Dow Jones
Islamic Market Industrial (DJIIDU), Dow Jones Islamic Market Consumer Goods (DJINCY), Dow
Jones Islamic Market Technology (DJITEC), Dow Jones Islamic Market Telecommunications
(DJITLS), and Dow Jones Islamic Market Utilities (DJIUTI) indices. The DIMY 25 index is paired with
each of these global Islamic sectoral stock indices, forming ten bivariate markets.

Methodology

Using the theory of quadratic variation of semi-martingales, Andersen and Bollerslev (1998) introduced
the first realized volatility (RV) as
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where r; is the intraday return at t and M is the number of returns per day.

Following the approach of Andersen et al. (2001), this study assumes the sample path of an asset price
process belongs to the continuous-time semi-martingale jump-diffusion process as such

where J; is the random jump size and N, is a Poisson process that counts the number of jumps that

takes the value of one in the case of a jump and zero otherwise. Under the finite jump-diffusion process,
W, , the one-period continuously compounded return is defined as

t t
= uds+ [ 0sdWs + X 1cest)s ;0SEST 3

where j ..o only in the presence of a jump in the process. Again, using the theory of the quadratic
variation, the daily realized variance converges in probability as the sampling frequency increases as

such RV, — tt—l 02dss + Yi_1<s<tJ2. Hence, the RV, for day t incorporates two components as the

total variation of price process which are the integrated variance, 1V; = |, ‘

._, 05 dW; and the cumulative
jumps componentJV; = X1 <s<t J3-

As a result, the RV is no longer a consistent estimator of integrated variance as it captures not only the
return volatility at time t but also includes the jump variation (JV). To disentangle the continuous
variation from the jump components, Barndorff-Nielsen and Shephard (2004b) have proposed the
realized bi-power volatility (RBV) defined as

RBV, = J672 Sl freillreica] @

OWZ _
;)
sum of products of the adjacent absolute returns. The RBV estimator ensures the jumps (under M — o)
will not impact the consistency of the volatility estimates. This is due to the return characterizing the
jump being diminished by the multiplication of the adjacent diffusive (non-jump) intraday return.
Asymptotically, as the sampling frequency increases, the jump impact becomes negligible. In other
words, RBV purely measures the continuous component under the condition of the presence of jumps,
hence, RBV is a consistent estimate of integrated variance (RBV; — IV;). The RV can be

where & = \/% and I'(.) isthe gamma function. Equation (4) is interpreted as the cumulative

decomposed into its continuous (diffusive) and discontinuous jump (non-diffusive) components by the

The advantage of using RBV to estimate integrated variance is that it is robust to the finite and small
magnitude of jumps. However, the RBV has some drawbacks in empirical applications. In practice, if
the sampling frequency is not sufficiently high (finite sample), instead of having an adjacent diffusive
intraday return, it might have an adjacent (large) jump intraday return that could lead to an upward bias
in the RBV. Another drawback of RBV is that the presence of zero returns that are multiplied twice
(with the previous and the following intraday return) will have caused a downward bias in the RBV.
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To address the aforementioned issues, Andersen et al. (2012) proposed two estimators of integrated
variance that are more robust to jumps in finite samples as the alternative to RBV. These two new jump-
robust estimators are the median realized volatility,

medRV, = \/L (L) gi—zl med(|rt‘i_1|, |7't,i|: |7”t,i+1|)2 (5)

6—4+3+m \M—-2

and minimum realized volatility,

minRV, = J— () 55t min(red )’ (6)
By applying scaling factors and manipulating short overlapping blocks, both estimators demonstrate
better efficiency properties compared to RBV. Under the presence of a jump, minRV automatically
discards a (large) jump return using the square of the minimum of a given block with two consecutive
intraday absolute returns, and the computation will fully consider the adjacent non-jump (diffusive)
return while medRV uses the square of the median of the block with three consecutive intraday absolute
returns. This approach is referred to as one-sided and two-sided truncation neighboring returns for
minRV and medRV, respectively. The nearest neighbor truncation approach serves as an endogenous
control for the local level of volatility, improving the robustness of the estimators with the assumption
that the returns within each block are 1.1.D. Gaussian. Besides, it allows for the asymptotic distribution
theory, which can shrink the effect of jumps at a quicker asymptotic rate than RBV. In the effort to
obtain reliable results, all three jump-robust realized volatilities that consist of the RBV, medRV, and
minRYV are considered in this study.

Vector Heterogeneous Autoregressive (VHAR) Model

To analyze the potential volatility transmission patterns among the Islamic equities, the univariate HAR
(Corsi, 2009) approach is extended to a multivariate version to model the joint behavior of the series as
used by Bubék et al. (2011) and Soucek and Todorova (2013). In the multivariate version of the HAR
(also known as vector HAR, VHAR), the volatility forecasts are of linear functions containing the daily,
weekly, and monthly realized volatilities.

The general form of the VHAR specification, which models the vector of Cholesky factors using
realized volatility, VHAR (RV) model, is given as follows

RGP = o+ a RV 4RV 4+ ™RV 6

&,19,_,~NIID(0,1) 7)

where the subscript k = 1,2 represent the first and second markets respectively, RV,((,‘?_I, RVk(,‘g’zl and
RVk(,’t”_)1 are the one day lagged daily, weekly (5 days) and monthly (22 days) realized volatility vectors
respectively, and ¢, are assumed to be Gaussian white noise a is an n x 1 vector of constants, a,(c')is
an n X 1 vector of parameters. The weekly and monthly realized volatility estimators are computed as

RV, = ngzl RVY  andRV?Y, = %Zfﬁl RV, Y., respectively.
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VHAR-JR Model

The VHAR (RV) model in equation (7) using the realized volatility as the volatility proxy can be
replaced with the jump-robust (JR) realized measures such as the realized bi-power volatility, median
realized volatility, and minimum realized volatility estimators as follows.

VHAR-JR (RBV):

RVD  _ apo+aPRBVE +aRBVY  + aTVRBVIY, + 6r (8)

VHAR-JR (medRV):

RVk(,ctD = o _I_a}(cd)medm/k(’”tf)_1 + a,(cw)medRVk(l‘le

+a™me dRVk(’rLfl_)1 + Exe 9)
VHAR-JR (minRV):
RVk(f) T ot a,({d) min R V]({f?_l + a]({w) min R V,(::)_l
+a™ min RV, + e, (10)

and monthly RBV™, | medRV, "™, and

where the weekly RBV,", , medRV", and min RV e )

k,it-1"1 k,t—1 kt—1
minRV{}, of the realized measures are computed asRBYSY, = X%, RBVSY,, medRVSY, =
1

, RBVk(,;n—)1=_ i2=21RBVk(,t:)—i , medRV;c(;"_)1=

PimedRVSY, , minRV(Y, = %% minRV{o y

1
= kt—i k,t—i

— Y22, medRV,} , and min R vl = izizjl min RV, respectively.

VHAR-CJ Model

Andersen et al. (2007) take the extension of the HAR-RV-J model a step further. They developed the
HAR-CJ model by decomposing the realized volatility of the HAR-RV model into its continuous and
discontinuous jump variation at different time horizons. In other words, the explanatory variables of the
HAR-RV model, such as the daily, weekly, and monthly realized volatilities, are replaced by the daily,
weekly, and monthly continuous and discontinuous jump components. Likewise, the HAR-CJ model is
extended into the multivariate version. The general form of the extended model Vector HAR-CJ
(VHAR-CJ) takes the following form.

RVD = ay+aPcvi_ +at vl +alP vy,
d d
+ BEOIVE L+ BTV + BT e (11)

where CVi®_, cv)_ and cV T, are the daily, weekly, and monthly continuous realized

variation, respectively; | Vl.’(,‘f’)t_l, Ji Vif,‘:fz_land ]Vif,’c’ft)_l are the daily, weekly, and monthly discontinuous
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jump variation, respectively with i =RBV, medRV or minRV. The weekly and monthly components

of both continuous and discontinuous components are computed as follows CVif;‘fg_l = %2?21 C Vif,f‘ )t_i,

1 d 1 d 1 d
CVL’FI?t)—l =% 2 CViFk,)t—i’ JVifZ?_l = EZ?:lJVifk,)t—i and ]Vi%t)q =2 12=21]Vifk,)t—i'
Similarly, the equation (11) can be written specifically as follows:
VHAR-CJ (RBV):
@ = (@~ (@) W) ~y, (W) (m) ~y,(m)
RV Aot CVepy g1 @ CVR)VBVV,k,t—l +a" CVR?V,k,t—l

d d
+ ﬂ}E )]VREBi)/,k,t—l + ﬂIEW)]VR(I‘;VI;,k,t—l + :Blgm)]v}g;nv),k,tq + &k (12)

VHAR-CJ (medRV):

(@) = (@) pyr(d) W) ~y, (W)
RV, ¢ ko + A CVpearvie—1 T “kw CVmVZdRV,k,t—l
(m) ~y,(m) (d) yy,(d) W) 1y, (W)
+ “km CVmTZdRV,k,t—l + Bk JVmedrv k-1 + ﬁkw J vaZdRV,k,t—l
+ ﬁlgm)]vrggc)lRV,k,t—l + &kt (13)

VHAR-CJ (minRV):

(@ = (@) y,(d) W) ~y, (W)
RV, ¢ Ao+ A " CViinry k-1 T “kw CVmV;n RV kt—1
(m) ~y,(m) (@) y,(d)
+ a CViimrvike-1 1 Be IVminrv k-1

+ 'BIEW)]Vr%}r)lRV,k,t—l + :Blgm)]vr(nrinrzRV,k,t—l + &kt (14)

VHAR-RV-J Model

The benchmark model (Equation (7)) assumes that the price process belongs to a continuous sample
path variation. However, the actual price process consists of both continuous and discontinuous jump
components. Therefore, both the continuous and discontinuous jump components contribute to the
volatility of the price process. It has been shown earlier (in Section 3.2) that the realized variation
estimators can be decomposed into their continuous and discontinuous jump parts. Knowing this, to
evaluate whether the jump component can improve the forecast volatility, Andersen et al. (2007)
proposed the HAR-RV-J by adding an explanatory variable, which is the daily discontinuous jump
variation, into the HAR model (Equation (7)) of Corsi (2009). Motivated by Andersen et al. (2007),
this study generalizes the HAR-RV-J model into the multivariate version as VHAR-RV-J presented.

RVD = apo+aPRVE +a RV,
d d
+ alVRVID + BV + e (15)

d
where 3!,

another three new multivariate HAR models are proposed in this study and can be written as

is the daily discontinuous jump variation with i =RBV, medRV, or minRV. Therefore,
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VHAR-RV-J (RBV):

RVE = apo+aPRVD .+ RV + ™RV,
d d
+ :BIE )]VREB‘)/,k,t—l + Ext (16)

VHAR-RV-J (medRV):

RVD = o+ aRVEY +al RV + ™RV,
d d
+ :BIE )]Vrgle)dRV,k,t—l + ¢ (17)

VHAR-RV-J (MinRV):

RVD = apo+aPRVD +al RV + al™RVID,
d d
+ :BIE )]VrgliglRV,k,t—l + €t (18)

RESULT AND DISCUSSION
Preliminary Analysis

Table 1 shows the summary of the descriptive statistics of the in-sample return and realized variation
measures series. Most of the indices have a positive mean return, with values close to zero. The result
shows DJIENE is the most volatile index relative to other indices because it has the largest standard
deviation, 1.72, while the least volatile index is DIMY25 with a standard deviation of 0.744. The
skewness of return in all markets is approximately symmetric, with the skewness value being less than
0.6 in modulus. However, all the realized variation measures across all markets exhibit a high degree
of positive skewness, suggesting that the lower tail of the distribution is significantly longer at the right
tail. The kurtosis coefficients exceeded three in the daily return and realized measures series across all
markets, illustrating the presence of heavy-tailed behavior and a higher peak. This implies the series
violated the normality properties, which is also supported by the results of the Jarque-Bera normality
test at the 5 percent significance level. As a result, the estimation is based on the student's t-distribution.

Ljung-Box Q-statistic in all the standardized and squared standardized residual series up to lag 12 are
highly significant except for the Q25 (12) statistic in DJITEC. The significant sign of the standardized
residual series, Q;5(12) indicates the evidence of serial correlation and dependency, implying the
conditional mean is forecastable using historical data. Whereas, the significant sign of the squared
standardized residual series, Q25 (12) reveals the presence of time-varying volatility effects in the
series. The Augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP) tests reject the null hypothesis
of a unit root in all series across markets at the 5 percent significance level. This implies that the return
and realized measures series are stationary, suggesting the series could be modeled directly without any
further transformation process. The Hurst exponent, H, measures the long-range dependence (LRD)
behavior of a time series. It is observed that the realized measures show H values are between 0.641
and 0.991. As a result, the realized measures series are consistent across markets and exhibit LRD.
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The Granger causality test and the unconditional correlation coefficient are conducted to capture an
initial understanding of the causality and strength of the relationship, respectively, before exploring into
forecasting the time-varying volatility spillover within the Islamic stock markets. Table 2 displays the
results of the F-statistics obtained from the Granger causality test of the bivariate markets. The findings
of the Granger causality test can be classified into three different outcomes. First, it is found that there
is no significant Granger causality between DIJIMY25 and DJINCY, implying investors may gain
potential benefits by diversifying in these stock markets. Second, the study uncovers a significant
unidirectional Granger causality from DIJMY25 to DJIFIN and DJITLS. This suggests that the price
movement in DIMY 25 may be useful in forecasting the future volatility of DJIFIN and DJITLS but not
vice versa. Third, there is a significant bidirectional Granger causality found in DIMY25-DJIBSC,
DIJMY25-DJICYC, DIMY25-DJIENE, DIMY 25-DJIHCR, DIMY 25-DJIIDU, DIMY 25-DJITEC, and
DIMY25-DJIUTI. The significant causality reveals a correlation between the indices, suggesting that
any changes in one stock market could potentially affect the other. On the other hand, Table 3 shows
the unconditional correlation coefficient of the daily return and realized variation measures between
DJMY25 and the DJIM sectoral stock markets. The measures of the unconditional correlation range
from -0.0016 to 0.3996. These preliminary findings demonstrate that information is transmitted between
the DIMY25 and DJIM sectoral indices. Therefore, it is worth further investigating these equities
markets in terms of their volatility spillover effects meticulously to enhance the estimation and
forecasting of volatility.

bivariate markets. The findings of the Granger causality test can be classified into three different
outcomes. First, it is found that there is no significant Granger causality between DJMY?25 and
DJINCY, implying investors may gain potential benefits by diversifying in these stock markets. Second,
the study uncovers a significant unidirectional Granger causality from DIJIMY25 to DJIFIN and
DJITLS. This suggests that the price movement in DIMY25 may be useful in forecasting the future
volatility of DJIFIN and DJITLS but not vice versa. Third, there is a significant bidirectional Granger
causality found in DIMY25-DJIBSC, DIMY25-DJICYC, DIMY25-DJIENE, DJMY25-DJIHCR,
DJMY25-DJIIDU, DIMY25-DJITEC, and DIMY25-DJIUTI.

The significant causality reveals a correlation between the indices, suggesting that any changes in one
stock market could potentially affect the other. On the other hand, Table 3 shows the unconditional
correlation coefficient of the daily return and realized variation measures between DIJIMY25 and the
DJIM sectoral stock markets. The measures of the unconditional correlation range from -0.0016 to
0.3996. These preliminary findings demonstrate that information is transmitted between the DIMY 25
and DJIM sectoral indices. Therefore, it is worth further investigating these equities markets in terms
of their volatility spillover effects meticulously to enhance the estimation and forecasting of volatility.

Empirical Analysis

Table 4 presents the typology for ten models that consist of the benchmark model and nine proposed
models derived from three main specifications estimated using the 5-minutely intraday data in this
study. The three main specifications are the VHAR-JR, VHAR-RV-J, and VHAR-CJ specifications.
The benchmark model is the VHAR (RV) (model A01), which uses the standard realized volatility as
the volatility proxy.
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Table 1

Summary of Descriptive Statistics of the Return and Realized Variation Measures

Mean S.D. Skew  Kurt JB Qe Qws® ADF PP Hurst Mean S.D. Skew  Kurt JB Qe Q> ADF PP Hurst
Panel A: DIMY25 Panel B: DJIBSC
Ret 0.01 0.74 -0.29 9.2 3451 21 811 -41 -41 0.61 -0.01 1.63 -0.39 10.9 5626 40 2145 -32 -37 0.60
RVol 0.55 0.31 2.64 15.8 1.7x10* 317 501 -4 -28 0.99 0.60 1.20 7.28 78.1 5.2x10° 373 738 -12 -34 0.90
RBVol 0.50 0.28 2.33 111 7824 356 422 -4 -26 0.99 0.50 1.15 8.80 111.2 1.1x10® 314 683 -14 -30 0.87
MedRVol 0.49 0.27 2.25 9.8 5898 387 425 -4 -25 0.99 0.52 1.27 8.14 96.5 8.0x10° 334 710 -14 -32 0.87
MinRVol 0.49 0.28 2.45 12.4 1.0x10* 416 379 -4 -29 0.99 0.52 1.29 8.44 102.3  9.1x10° 323 629 -14 -32 0.86
ContRBVol 0.52 0.28 2.28 10.6 7003 364 395 -4 -27 0.99 0.51 1.16 8.09 93.9 7.6x10° 328 754 -10 -31 0.88
ContMedRVol 0.51 0.28 2.24 10.1 6287 398 384 -4 -27 0.99 0.52 1.24 8.19 99.5 8.6x10° 316 816 -9 -31 0.88
ContMinRVol 0.52 0.29 2.19 9.7 5696 415 383 -4 -28 0.99 0.52 1.25 8.41 104.1  9.4x10° 305 657 -9 -31 0.87
JumpRBVol 0.09 0.20 4.65 50.9 2.1x10° 39 223 -18 -44 0.72 0.19 0.43 6.10 54.6 2.5x10° 634 584 -5 -59 0.88
JumpMedRVol 0.10 0.22 4.25 41.0 1.4x10° 44 348 -17 -44 0.68 0.14 0.31 8.42 118.1 1.2x10° 289 134 -12 -51 0.79
JumpMinRVol 0.08 0.21 5.22 55.1 2.5x10° 26 291 -43 -43 0.64 0.13 0.32 8.13 105.7  9.7x10° 210 115 -14 -50 0.77
Panel C: DJICYC Panel D: DJIENE
Ret  0.03 1.04 -0.44 8.1 2355 15 2430 -45 -45 0.54 -0.02 1.72  -057 12.0 7305 36 2449 -35 -46 0.55
RVol 0.20 113 23.65 699.0 4.3x107 170 19 -17 -39 0.70 0.30 1.03 13.82 260.8 6.0x10° 405 352 -15 -32 0.80
RBVol 0.15 0.90 19.12 4271 1.6x107 293 104 -15 -32 0.69 0.23 1.00 16.34 3437 1.0x107 498 416 -15 -30 0.74
MedRVol 0.14 0.89 18.68 4131 1.5x107 349 170 -16 -30 0.68 0.22 1.05 16.60 357.1 1.1x10" 496 398 -15 -31 0.72
MinRVol 0.15 093 1939 4533 1.8x107 372 155 -16 -31 0.68 0.22 1.06 16.70 3585 1.1x107 497 388 -15 -31 0.72
ContRBVol 0.15 0.89 19.23 4335 1.7x107 266 82 -15 -32 0.69 0.23 0.99 15.63 3151  8.8x10° 396 340 -15 -31 0.75
ContMedRVol 0.15 0.88 1894 425.0 1.6x107 346 170 -15 -30 0.69 0.23 1.02 1545 305.1  8.2x10%° 412 456 -15 -31 0.73
ContMinRVol 0.15 0.92 1953 4604 1.9x10" 330 129 -15 -31 0.69 0.23 0.99 1551 310.8 8.5x10% 387 328 -15 -31 0.74
JumpRBVol 0.08 0.74 3991 17402 2.7x108 12 0.01 -45 -46 0.67 0.11 0.34 9.63 1215 1.3x10¢ 580 850 -7 -49 0.85
JumpMedRVol 0.08 0.78 40.77 17942 2.9x108 8 0.01 -15 -30 0.66 0.10 0.33 10.11 135.2 1.6x10® 610 1023 -7 -48 0.84
JumpMinRVol 0.07 0.78 4115 18177 3.0x108 6 0.01 -15 -31 0.64 0.10 0.34 10.07 130.5 1.5x10¢ 533 78 -7 -48 0.86
Panel E: DJIFIN Panel F: DJIHCR
Ret 0.01 1.68 -0.48 26.3 4.9x10* 55 2105 -32 -55 0.53 0.03 0.95 -0.32 12.2 7541 30 1167 -34 -43 0.55
RVol 0.39 091 1111 161.3 2.3x108 372 414 -8 -36 0.90 0.25 0.97 24.04 715.1 4.5x107 134 20 -18 -38 0.74
RBVol 0.29 0.75 16.49 329.2 9.6x10% 456 575 -13 -23 0.88 0.18 0.70  19.06 420.9 1.6x10" 208 82 -16 -27 0.72
MedRVol 0.29 0.81 15.46 2824  7.1x10% 272 414 -12 -26 0.87 0.18 0.74 19.19 423.7 1.6x10" 223 103 -16 -27 0.72
MinRVol 0.28 0.81 16.74 3325 9.8x10° 419 483 -15 -23 0.87 0.17 0.71  18.99 422.1 1.6x107 205 79 -16 -26 0.72
ContRBVol 0.30 079 1540 2795 6.9x106 292 356 -12 -28 0.88 0.19 0.70  19.03 417.2 1.5x107 202 94 -16 -27 0.72
ContMedRVol 0.30 0.79 15.00 265.1 6.2x10® 251 327 -12 -27 0.88 0.18 0.71 18.80  406.7 1.5x10" 210 103 -16 -28 0.72
ContMinRVol 0.30 0.79  15.83 301.6  8.1x10° 384 386 -13 -24 0.87 0.18 0.69 18.84 4131 1.5x107 201 101 -16 -26 0.72
JumpRBVol 0.15 0.52 11.36 214.2 4.0x106 353 17 -6 -51 0.89 0.11 0.69 39.01 1692.0 2.6x108 51 0.06 -23 -47 0.70
JumpMedRVol 0.14 052 11.34 2100 3.9x10® 321 17 -7 -50 0.87 0.11 0.68 38.97 1689.0 2.5x108 35 0.04 -31 -46 0.68
JumpMinRVol 0.14 0.59 13.76 2753  6.7x10° 441 485 -7 -51 0.90 0.11 0.70 39.31 1710.0 2.6x108 32 0.04 -45 -46 0.69
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Mean S.D. Skew  Kurt JB Qe Qws® ADF PP Hurst Mean S.D. Skew  Kurt JB Qe Qw® ADF PP Hurst
Panel G: DJIIDU Panel H: DJINCY
Ret 0.02 1.24 -0.47 9.7 4056 27 1879 -32 -39 0.59 0.02 0.92 -0.44 9.1 3436 41 2030 -34 -42 0.58
RVol 0.34 091 1165 192.9 3.3x106 399 1040 -14 -26 0.82 0.23 0.65 19.07 456.9 1.9x10" 909 549 -12 -27 0.78
RBVol 0.28 0.89 1441 275.7 6.7x106 565 995 -12 -25 0.78 0.19 0.63 2128 530.8 2.5x107 1135 676 -17 -26 0.76
MedRVol 0.29 0.96 13.68 253.1 5.7x10% 483 935 -11 -26 0.77 0.18 0.68 21.70 551.4 2.7x107 1157 554 -15 -26 0.75
MinRVol 0.29 0.99 14.20 272.6 6.6x10° 530 933 -12 -26 0.77 0.18 0.68 21.45 537.8 2.6x107 1163 681 -15 -26 0.75
ContRBVol 0.28 0.88 1391 259.5 5.9x106 496 1013 -12 -25 0.78 0.19 0.63 21.36 538.1 2.6x107 1078 549 -17 -26 0.76
ContMedRVol 0.29 094 14.04 268.2 6.4x108 495 950 -12 -26 0.78 0.18 0.63 21.12 527.2 2.5x10" 1096 555 -17 -26 0.76
ContMinRVol 0.30 0.97 1450 285.1 7.2x106 518 918 -12 -26 0.78 0.18 0.63 21.07 525.6 2.5x107 1084 553 -17 -26 0.76
JumpRBVol 0.12 0.32 6.91 63.1 3.4x10° 261 420 -5 -47 0.88 0.09 0.21 8.36 97.9 8.3x107 552 1332 -6 -48 0.83
JumpMedRVol 0.09 0.27 9.22 110.1 1.1x10% 241 598 -8 -45 0.75 0.09 0.21 8.20 95.2 7.8x10° 550 1365 -7 -48 0.82
JumpMinRVol 0.08 0.26 9.65 120.3 1.3x10% 144 219 -11 -45 0.75 0.08 0.21 8.14 94.0 7.6x10° 531 1357 -7 -48 0.82
Panel I: DJITEC Panel J: DJITLS
Ret 0.03 1.26 -0.32 8.3 2540 13 2184 -44 -44 0.55 -0.01 1.07 0.26 17.3 1.8x10* 46 1289 -35 -45 0.54
RVol 0.17 0.60 24.75 812.6 5.9x107 137 0 -13 -49 0.75 0.44 0.62 12.19 1940  3.3x10° 209 623 -15 -24 0.83
RBVol 0.12 0.21 25.36 861.6 6.6x107 224 17 -11 -50 0.81 0.38 0.60 1451 249.0 5.5x10° 281 469 -15 -22 0.78
MedRVol 0.11 029 3230 1263.0 1.4x10® 107 3 -13 -47 0.78 0.37 0.62 14.80 258.0 5.9x10° 292 529 -15 -21 0.76
MinRVol 0.12 0.27 25.72 864.7 6.7x107 162 19 -12 -48 0.78 0.37 0.64 14.73 255.2 5.8x10° 255 445 -15 -22 0.77
ContRBVol 0.12 0.21 2512 850.3 6.4x107 235 17 -11 -50 0.81 0.39 0.59 14.58 253.5 5.7x108 280 455 -15 -22 0.78
ContMedRVol 0.12 0.29 3221 1259.0 1.4x10%8 132 5 -12 -47 0.78 0.38 0.59 14.39 247.1 5.4x108 288 552 -11 -21 0.78
ContMinRVol 0.12 0.49 4075 1793.0 2.9x108 49 0 -45 -46 0.70 0.39 0.62 13.85 225.8 4.5%10° 250 392 -11 -23 0.78
JumpRBVol 0.08 0.57 24.46 782.8 5.5x107 102 0 -17 -48 0.72 0.12 0.29 6.66 73.6 4.6%x106 418 167 -6 -50 0.96
JumpMedRVol 0.07 053 2271 679.8  4.1x107 122 0 -16 -48 0.71 0.12 0.29 6.51 70.9 4.3x10° 397 193 -7 -52 0.96
JumpMinRVol 0.06 0.36 14.60 307.0 8.3x106 392 28 -8 -53  0.767 0.10 0.29 6.66 75.6 4.9%x10° 440 195 -8 -50 0.97
Panel K: DJIUTI

Ret -003 126 0.22 216 3.1x10* 139 1682 -11  -42 059

RVol  0.47 0.80 1346 2560 5.8x10° 425 357 -5 -33 085

RBVol  0.40 0.73 1819 4275 1.6x107 665 432 -15  -28 0.80
MedRVol  0.39 0.76 18.63 4488 1.8x107 629 321 -15 27 0.80
MinRVol  0.39 0.78 1872 4464 1.8x10" 689 424 -15 29 0.79
ContRBVol  0.40 070 17.79 4136 15x10" 614 403 -5 -28 081
ContMedRVol  0.40 0.75 1853 4523 1.8x107 544 241 -15 27 0.80
ContMinRVol 041 0.75 16.77 3656 1.2x107 560 567 -15  -29  0.80

JumpRBVol 013 043 1041 1589 2.2x10° 663 87 -7 -53  0.88
JumpMedRVol  0.13 0.43 1073 1696 25x10° 648 81 -7 -55  0.89
JumpMinRVol 0.11 0.40 1150 198.7 35x10° 421 29 -9 -50 0.89

Notes:

(1). Figures in bold denote the rejection of relevant Ho at 5% significance level. (2. S.D., Skew, Kurt, JB, QLe, Qus?, ADF and PP denote the standard deviation, skewness, kurtosis, Jarque Bera
normality test, Ljung-Box Q statistics, Ljung-Box Q? statistics, Augmented Dickey-Fuller test and Phillips-Perron test, respectively. Qis and Qvg? tests are set at lag 12 which commonly the
selection of number of lags is between 10 and 20. (2). The null hypothesis for the following tests is as: JB test, Ho: The series has a normal distribution; Qus, Ho: The series has no serial correlation;
Qve?, Ho: The series has no volatility clustering effect; ADF and PP tests, Ho: The series has no unit root (unit root is also known as non-stationary). (3). Hurst exponent, H is to measure the long-
range dependency with H<0.5, H=0.5 and H>0.5 indicate the series is anti-persistent, follows a random walk and persistent, respectively. Skewness equals to zero indicates the series is normal
distributed and symmetric, negative value indicates skewed left and positive value indicates skewed right. Kurtosis equals to three indicates standard normal distributed, more than three indicates
heavy-tailed and less than three indicates light-tailed.
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Table 2

Results of the Bivariate Granger Causality Test

. Cont  Cont Jump .
Med Min Cont . Jump JumpMin

Lag Ret RVol RBVol Med Min Med
RVol RVol RBVol RVol RVol RBVol RVol RVol

Panel A: DIMY25 - DJIBSC
1 4941 8735 6179 8233 6736 7460 79.70 66.25 4.079 2.611 3.430
2726 3469 3746 49.10 5092 43.37 4859 46.22 8494 5182 5.030
5 7934 7619 6455 7541 5903 7505 7.671 6376 5091  10.76 9.105
59.84 7.364 4213 4470 4697 4179 2990 3461 3175 1615 1.465
22 3641 3168 2964 3.248 285 3319 3305 2893 2537 6.132 5811
1533 3.001 2623 3.235 3.142 2449 2203 2315 4.443 2465 1.215

Panel B: DIMY25 - DJICYC
1 7147 6965 2352 1819 1351 2312 1594 1312 1169 1025 124.7
2219 3.352 4865 4079 3626 6.064 3.217 5743 0.027 2541 0.012
5 1390 2507 1243 9836 6.610 1132 7522 6.520 3587 34.90 45.62
4792 1375 3537 4038 3384 4037 2999 4250 5225 5227 54.87
22 1729 6.939 4.008 3313 2464 3722 2656 2.754 1140 11.38 12.98
1254 3806 1.184 1425 1325 1241 1108 1293 1280 12.38 12.46

Panel C: DIMY25 - DJIENE
1 1545 2529 1491 1579 1121 20.79 19.71 13.60 0.005 0.064 1.745
267.9 2.267 4953 6.414 4495 6.902 7.260 6.845 6.450 4.465 3.318
5 2743 8500 8009 6.737 5212 9520 6.626 5.602 0.479  0.448 0.792
58.75 2.667 1184 1760 1349 1.821 1592 2632 3.801 3311 4.231
22 2827 2251 2221 2335 1.829 2462 218 2.051 1451 1.132 0.982
1445 1821 1.057 1080 0.970 1207 1.010 1215 2562 2.306 1.949

Panel D: DIMY25 - DJIFIN
1 2213 3470 2507 1025 0.763 1444 1265 1207 1437 1.325 41.77
202.7 2.458 1157 3520 1567 4239 2795 1414 6.137 5919 3.996
5 0979 1024 5961 7.165 3544 1022 8.001 4.446 3.144 5672 9.251
4799 5517 1167 3728 1319 3189 3417 1649 1115 2546 14.78
22 4703 3390 3.063 3.358 2943 3.784 3122 2419 2602 3.017 4.295
13.48 4395 0.876 1502 0864 1195 1320 0951 7514 6.908 8.680

Panel E: DIMY25 - DJIHCR
1 1096 7022 1541 1596 9.6203 1523 1570 10.81 1198 105.7 1335
159.0 5156 2565 2366 1.616 3.314 2.288 4.011 0.142 26.58 0.198
5 169 2319 9489 8693 5608 8830 7146 6.077 37.93 3528 46.07
33.75 13.88 3527 5455 4349 3687 4.063 4919 5278 54.62 54.74
22 1715 6.853 3.035 2.897 2097 2847 2321 238 12.03 11.17 13.66
8.900 3.790 1.094 1646 1487 1.095 1286 1383 1294 12.70 12.49

Panel F: DIMY25 - DJIIDU
1 2374 3479 17.69 2415 16.00 2161 2139 1594 2963  1.897 0.329
273.6 6.189 5579 8521 6.678 7.138 7.462 5690 1361 3.804 19.74
5 4607 6.813 3.824 4192 2862 4757 3631 2721 0.988 1.325 1.061
58.30 3564 1647 1231 1106 1550 0.584 0476 8917 6.813 7.737
22 2301 2335 1310 1486 1123 1549 1662 1390 2.063 2.326 3.023
1524 1807 1852 2132 1788 1779 1885 1462 3.759 2.539 4.429

(continued)
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. Cont  Cont Jump .
Med Min Cont . Jump JumpMin
Lag Ret RVol RBVol Med Min Med
RVol RVol RBVol RVol RVol RBVol RVol RVol
Panel G: DIMY25 - DJINCY
1 1445 1491 1397 1597 0987 1.802 2115 1.404 0389 0.100 0.011
175.4 0.005 0.257 0.494 0.393 0.286 0.684 0.370 4501 3431 7.726
5 1.805 2.689 2.012 1542 1523 2121 1.273 1.937 0.197 0.507 0.295
37.89 0.086 0.393 0.673 0.570 0.279 0518 0.304 5.095 5.402 4.150
22 1429 1.040 0959 0921 0915 0928 0.725 0.951 1.065 1.553 0.705
1056 0.638 0.613 0.704 0.695 0.567 0.642 0514 1956 2.340 0.002
Panel H: DIMY25 - DJITEC
1 11.10 1810 1442 1198 1751 1369 95.15 4214 8270 71.59 0.592
2415 2231 8810 1047 26.83 7.063 18.15 0.022 0.288 22.84 1.430
5 2.080 32.04 3044 2247 2980 2747 2114 7.830 19.08 13.50 0.748
51.91 3.168 5.948 4.628 4.441 5064 9.872 8138 36.50 31.08 1.360
22 2211 6.265 7.176 4.653 5.613 6.043 5719 4491 7.666  6.379 1.203
1420 1.364 2196 1678 1649 2104 3.159 20.16 9.815 8.570 1.279
Panel I: DIMY25 - DJITLS
1 29.03 150.6 2.071 1954 1819 2158 2122 1738 0.583 3.081 1.030
93.81 1558 1.618 3.000 2.619 1109 3.066 2421 0.000 0.291 0.352
5 4395 2751 4765 3467 4910 4377 3.063 4591 1871 1.303 0.797
2416 16.38 0.693 1845 1307 0.696 1437 0.658 1.700 1.691 0.210
22 2186 7.659 2.626 2387 2463 2100 1792 2374 1118 1.489 1.507
7563 5211 2274 2610 2106 1936 2.005 1477 2062 2.002 1.621
Panel J: DIMY25 - DJIUTI
1 16.23 33.09 1184 11.71 7.134 1476 13.02 1428 38.63 32.06 0.590
160.9 9.826 7.277 8.724 6.486 8.412 9453 10.29 0.672  7.258 0.409
5 2.752 6584 5971 4859 3971 6.608 4439 0.000 6.192 6.660 1.084
35,78 1511 2304 2509 1.901 1999 2173 0.012 7.745 8.462 0.722
22 1532 2387 2124 2090 1775 2095 1748 0.001 2929 3.073 1.677
10.27 2.803 1.347 1322 1175 1357 1431 0.044 5.019 4.500 4.627
Notes:

1.

The Granger analysis is performed on series that display stationarity such as the daily return and the realized measures
series through estimation of bivariate vector autoregressive (VAR) model at the lag lengths of 1, 5 and 22. The selection
of lags at 1, 5 and 22 days is to correspond to the daily, weekly and monthly volatilities proxies used in the model
specifications under the empirical analysis of this study.

Figures in bold denote the rejection of relevant Ho at 5% significance level.

The reported F-statistics are the Wald statistics for the joint null hypothesis of a given lag (1, 5 and 22) on the first column.
The null hypothesis of the F-statistics reported on the first row of each lag is Ho: DJMY25 does not Granger Cause
Market-i (the respective sectoral market), while the second row is Ho: Market-i (the respective sectoral market) does not
Granger Cause DIMY25.
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Table 3

Unconditional Correlation Coefficient of Daily Return and Realised Variation Measures Series

DIMY25 DIMY25 DIMY25 DIMY25 DIMY25 DIMY25 DIMY25 DIMY25 DIMY25 DIMY25

-DJIBSC -DIJICYC -DJIENE -DJIFIN -DJIHCR -DJIIDU -DJINCY -DJITEC -DJITLS -DJIUTI

Ret 0.3996 0.1914 0.2646 0.1389 0.2002 0.3574 0.3114 0.2418 0.3637 0.3922
RVol 0.3679 0.1092 0.1521 0.1454 0.1181 0.2201 0.102 0.1665 0.1652 0.2077
RBVol 0.2977 0.0539 0.069 0.0051 0.0545 0.1616 0.0409 0.2247 0.0472 0.0938
MedRVol 0.3268 0.044 0.0654 0.0192 0.0527 0.1798 0.0359 0.1808 0.0354 0.0797
MinRVol 0.1846 0.0231 0.0346 -0.0016 0.0262 0.1008 0.0202 0.1115 0.0139 0.0348
ContRBVol 0.3199 0.055 0.0788 0.0345 0.056 0.1688 0.0437 0.2298 0.0515 0.1012
ContMedRVol 0.3219 0.0468 0.0756 0.0282 0.0593 0.1805 0.0394 0.1859 0.0455 0.093

ContMinRVol 0.3132 0.0429 0.0779 -0.0001 0.052 0.175 0.038 0.1449 0.0441 0.1035
JumpRBVol 0.1264 0.0097 0.0484 0.0391 0.0278 0.0674 0.0482 0.0128 0.0866 0.0172
JumpMedRVol 0.0322 0.0051 0.0606 0.0508 0.0095 0.0449 0.0649 0.0301 0.0871 0.0208
JumpMinRVol 0.033 0.007 0.0865 0.0077 0.011 0.0409 0.0556 0.041 0.0885 0.0133

Note: The Pearson correlation coefficients range from —1 to +1 where +1 implies a strong positive relationship, -1 implies a strong negative relationship and 0 implies there is
no relationship between the two markets.

Table 4

Typology of Model Specifications

Main Specification Model Name Model Code
Benchmark model VHAR (RV) A01
VHAR-JR (RBV) A02
VHAR-JR VHAR-JR (medRV) A03
VHAR-JR (minRV) A04
VHAR-RV-J (RBV) A05
VHAR-RV-J VHAR-RV-J (medRV) A06
VHAR-RV-J (minRV) A07
VHAR-CJ (RBV) A08
VHAR-CJ VHAR-CJ (medRV) A09
VHAR-CJ (minRV) A10
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For the VHAR-JR specification, it consists of three models which are the VHAR-JR (RBV) (model
A02), VHAR-JR (medRV) (model A03), and VHAR-JR (minRV) (model A04). The model A02, A03
and A04 are extended from the benchmark model by replacing the standard realized volatility using
alternative jump-robust realized measures which are the realized bi-power volatility (RBV), median
(medRV) and minimum (minRV) realized volatility, respectively.

For the VHAR-RV-J specification, it consists of three models, which are the VHAR-RV-J (RBV)
(model A05), VHAR-RV-J (medRV) (model A06) and VHAR-RV-J (minRV) (model AQ7). The model
A05, A06 and AQ7 are extended from the benchmark model by inclusion of a daily jump component
into the benchmark model which are the daily RBV, medRV and minRV, respectively.

For the VHAR-CJ specification, it consists of three models, which are the VHAR-CJ (RBV) (model
A08), VHAR-CJ (medRV) (model A09) and VHAR-CJ (minRV) (model A10). The models A08, A09
and A10 are extended from the benchmark model by decomposing the realized volatility into its
continuous and discontinuous jump components. These models enable readers to comprehend
additional information about the continuous and discontinuous jump components in capturing the return
volatility dynamic of the stock markets.

Next, this study discusses the comparison of the relative performance of the various VHAR-type models
for the in-sample estimation based on the goodness-of-fit (R? values) shown in Table 5. The results
show that the DIMY25 values are greater than 64 percent across all the VHAR-type models. This
signifies the overall goodness-of-fit of all models can capture well the volatility dynamic of the
DJMY 25 market across all pairwise. However, the R? for the sectoral indices exhibit lower R? values
with a range within 30 percent to 50 percent (except DJICYC, DJIHCR, and DJITEC).

Table 6 shows the final ranking of the ten competing models. It is found that VHAR-CJ (medRV)
(model AQ9) is the best performing model, followed by VHAR-JR (medRV) (model A03) and VHAR-
JR (RBV) (model A02). On the other hand, the benchmark model (model AO1) exhibits the worst
performance, followed by VHAR-RV-J (medRV) (model A06) and VHAR-RV-J (minRV) (model
AQ7). It is observed that the jump-robust realized volatilities in the VHAR-JR specification appear to
enhance the explanatory power in the volatility dynamic relative to the benchmark model. This result
is in line with the findings in Chin et al. (2016) and Andersen et al. (2012) in their univariate analysis
on the conventional stock market, namely the DAX and Dow Jones 30, respectively. As for the VHAR-
RV-J specification, the inclusion of daily lagged realized jump regressors is seen to have marginally
higher R? values compared to the benchmark model, indicating the daily realized jump component has
an added value to improve the predictive regression. Also, the VHAR-CJ specification seems to exhibit
higher explanatory power of regression compared to the benchmark model and the VHAR-RV-J
specification, but it is only closely as good as the models of the VHAR-JR specification.

Out-of-Sample Forecast Evaluation

Compared with the in-sample forecasting performance, this study concerns more about the out-of-
sample forecasting performance of the models for the out-of-sample predictive power, which delivers
more significant and practical values for investors. This is due to the market players being more
apprehensive towards the ability of a model to enhance future performance than its ability to analyse
the past patterns. In order to make an effective evaluation of the out-of-sample forecasting
performance, this study employs six loss functions, which are the mean squared error (MSE), mean
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absolute error (MAE), quasi-likelihood (QLIKE), LE, heterogeneous mean squared error (HMSE), and
heterogeneous mean absolute error (HMAE). The loss functions are used to assess the significant
difference in the predictive performance of each volatility model as well as a post-forecasting diagnostic
regression. The best model produces the lowest loss value among the competing models.

Table 7 shows all the six loss functions with the corresponding ranking for all volatility models across
the pairwise, whereas Table 8 summarizes the overall ranking of all competing models across the
pairwise based on the final score summing from the total score of all the six loss functions from Table
7. Based on Table 8, it is observed that the benchmark model (model A01) has the lowest loss values
in the DIMY25-DJIBSC, DIMY25-DJIHCR, DIJMY25-DJIIDU, and DIMY25-DJINCY pairwise,
indicating the benchmark model provides the best prediction on their future volatility. As for the
DIMY25-DJIFIN and DIMY25-DJITEC pairwise, the VHAR-JR (RBV) (model A02) exhibits to be
the superior model for forecasting its volatility. On the other hand, VHAR-CJV (medRV) (model A09)
is found to be the best performing model in the DIMY?25-DJITLS and DIMY25-DJIUTI pairwise.
Whereas DIMY25-DJICYC and DIJMY25-DJIENE pairwise are best captured by VHAR-CJVol
(minRV) (model A10). The empirical results exhibit that there is no single superior methodology for
the in-sample forecasting performance of each sectoral market. The finding is parallel to the work of
Dudek et al. (2023), where different models may perform better depending on the specific market data,
choice of the quantile estimations, and different distributional assumptions selected.

As for the out-of-sample forecast evaluation, based on the overall ranking shown in the last column of
Table 8, the benchmark model (model AO1) is found to be the top-performing model, followed by the
VHAR-CJ (RBV) model (model A08) and the VHAR-CJ (medRV) (model A09). It can be witnessed
that the models using the standard realized volatility (model A01) and decomposition of the realized
volatilities into its continuous and discontinuous components (models A08 and A09) as the volatility
proxy are seen to be superior compared to the models using jump-robust realized volatilities and the
addition of the daily jump component. This suggests a simpler volatility model such as the VHAR (RV)
using the standard realized volatility can capture the volatility forecast superiorly compared to those
complex and sophisticated models that involve various regressors of realized measures. This result is
in line with Sévi (2014), who claims that the simple yet innovative HAR model provides significantly
better forecast evaluation compared to sophisticated models using the decomposition of realized
variance into its positive and negative semivariances component. This can be explained by the principle
of parsimony (Sharmaa & Vipulb, 2016), where the more parameters and more complex a model is, the
larger the penalty factor; hence, a more parsimonious model is more rewarded than a complicated
model.

On the other hand, the VHAR-CJ specification, which decomposes the realized volatility into its
continuous and discontinuous components, seems to exhibit higher explanatory power of regression
compared to the VHAR-JR and VHAR-RV-J specifications. The empirical literature (Bollerslev et al,
2016) suggests that the continuous and discontinuous jump variation sample paths of returns exhibit
distinct information about volatility dynamics. This is due to the two components displaying different
time series properties where the long memory of volatility is largely coming from the continuous
component while the jumps have short-lived effects that are only useful for short-term forecasting.
Thus, incorporating the continuous sample path and jump component measures in the volatility
forecasting model ensures that the continuous part has a relevant predictive power to improve financial
risk measuring, asset pricing, and financial derivatives pricing. As a result, how to separately model the
continuous and discontinuous jump of the price process turns to be indispensable in volatility
forecasting.
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Table 5

Model Ranking Based on R? Values for the In-sample Estimation of VHAR-type Models across the Pairwise Models

DJMY25-DJIBSC DIMY25-DJICYC DIMY25-DJIENE DIMY25-DJIFIN DIMY25-DJIHCR
Model Market 1 Market 2 Total Market 1 Market 2 Total Market 1 Market 2 Total Market 1 Market 2 Total Market 1 Market 2 Total
Score Score Score Score Score
(Score) (Score) (Rank) (Score) (Score) (Rank) (Score) (Score) (Rank) (Score) (Score) (Rank) (Score) (Score) (Rank)
A01 64.26 (10) 41.87 (9) 19 (10) 64.11 (10) 17.45 (10) 20 (10) 64.09 (10) 31.93 (7) 17 (10) 64.07 (10) 30.63 (10) 20 (10) 64.12 (10) 15.79 (10) 20 (10)
A02 68.35 (4) 42.54 (3) 7(4) 68.28 (3) 28.98 (6) 9(5) 68.27 (3) 324 (1) 4(1) 68.24 (3) 4512 (1) 4(1) 68.26 (3) 33.51 (5) 8 (5)
A03 70.3 (1) 42.3 (5) 6 (3) 70.18 (1) 33 (4) 5(2) 70.21 (1) 31.62 (8) 9(2) 70.2 (1) 39.6 (4) 5(2) 70.16 (1) 32.99 (6) 7(4)
A04 66.36 (6) 40.52 (10) 16 (9) 66.21 (6) 31.38 (5) 11 (6) 66.21 (6) 31.22 (9) 15 (8) 66.21 (6) 44.28 (2) 8 (4) 66.19 (6) 35.98 (4) 10 (6)
A05 64.43 (7) 42.34 (4) 11 (5) 64.39 (7) 23.29 (8) 15 (7) 64.3 (7) 32.07 (2) 9(2) 64.24 (8) 31.67 (8) 16 (8) 64.37 (7) 24.87 (7) 14 (7)

A0B 64.37 (9) 42.13 (6) 15 (7) 64.32 (9) 22.93 (9) 18 (9) 64.21(9) 31.95 (6) 15 (8) 64.16 (9) 31.59 (9) 18 (9) 64.31(9) 23.69 (9) 18 (9)
A07 64.41 (8) 4212 (7) 15 (7) 64.33 (8) 23.47 (7) 15 (7) 64.23 (8) 32.05 (3) 11 (6) 64.26 (7) 3318 (7) 14 (7) 64.34 (8) 24.25 (8) 16 (8)

A08 68.44 (3) 42.89 (2) 5(2) 68.17 (4) 33.03(3) 7@3) 68.2 (4) 31.99 (5) 9(2) 68.13 (4) 37.42 (6) 10 (6) 68.18 (4) 39.3(2) 6(2)
A09 68.74 (2) 44.03 (1) 3(1) 68.62 (2) 34.64 (1) 3(1) 68.68 (2) 31.13(10) 12 (7) 68.65 (2) 39.08 (5) 7@3) 68.62 (2) 3754 (3) 5(1)
Al10 67.95 (5) 419 (8) 13 (6) 67.89 (5) 343(2) 7(3) 67.85 (5) 32.04 (4) 9(2) 67.79 (5) 434 (3) 8(4) 67.9 (5 39.32 (1) 6(2)
DJMY25-DJIIDU DIJMY25-DJINCY DJMY25-DJITEC DIMY25-DJITLS DIJMY25-DJIUTI
Model Market 1 Market 2 g otal Market 1 Market 2 g otal Market 1 Market 2 g otal Market 1 Market 2 g otal Market 1 Market 2 g otal
(Score) (Score) (Ri\?]rli) (Score) (Score) (Ri\?]rli) (Score) (Score) (Ri\?]rli) (Score) (Score) (Ri\?]rli) (Score) (Score) (Rc;:]rf)
A01 64.09 (10) 40.52 (6) 16 (9) 64.08 (10) 36.83 (10) 20 (10) 64.42 (10) 8.86 (8) 18 (10) 64.1 (10) 43.15 (10) 20 (10) 64.13 (10) 33.6 (10) 20 (10)
A02 68.23 (3) 40.71 (3) 6 (1) 68.21 (3) 3767 (1) 4(1) 68.32 (3) 10.36 (5) 8(4) 68.24 (3) 47.13 (4) 7@3) 68.29 (4) 35.92 (5) 9(4)
A03 70.16 (1) 39.31(8) 9(4) 70.14 (1) 37.44 (3) 4(1) 70.15 (1) 8.01 (9) 10 (5) 70.2 (1) 47.77 (2) 3(1) 70.24 (1) 36.57 (3) 4(2)
A04 66.2 (6) 38.02 (10) 16 (9) 66.16 (6) 37.58(2) 8(4) 66.2 (6) 6.86 (10) 16 (8) 66.22 (6) 47.22 (3) 9(4) 66.26 (6) 34.14(7) 13 (6)
A05 64.38 (7) 41.62 (1) 8(3) 64.25 (7) 36.96 (7) 14 (7) 64.82 (7) 9.85 (6) 13 (7) 64.27 (7) 4459 (7) 14 (7) 64.43 (7) 34.38 (6) 13 (6)
A06 64.2 (9) 40.54 (5) 14 (7) 64.17 (9) 36.93 (8) 17 (8) 64.68 (9) 9.48 (7) 16 (8) 64.19 (9) 4417 (8) 17 (8) 64.32 (8) 3411 (8) 16 (8)
A07 64.37 (8) 40.61 (4) 12 (6) 64.21 (8) 36.91(9) 17 (8) 64.69 (8) 10.48 (4) 12 (6) 64.22 (8) 43.89 (9) 17 (8) 64.27 (9) 34.08 (9) 18 (9)
A08 68.22 (4) 40.73 (2) 6(1) 68.17 (4) 36.99 (6) 10 (6) 68.19 (4) 13.81 (1) 5(1) 68.1 (4) 47 (5) 9(4) 68.36 (3) 36.93 (2) 5(@3)
A09 68.59 (2) 40.13 (7) 9(4) 68.65 (2) 37.27 (5) 7(3) 68.6 (2) 12.52 (3) 5(1) 68.65 (2) 48.77 (1) 3(1) 68.77 (2) 36.94 (1) 3(1)
A10 67.94 (5) 39.3(9) 14 (7) 67.86 (5) 3731 (4) 9(5 67.97 (5) 12.99 (2) 7(3) 67.84 (5) 45.55 (6) 11 (6) 67.98 (5) 36.37 (4) 9(4)

Note: Each volatility model is given a score number with 1 up to 10 based on the R? values in ascending order for each market across the pairwise. The score number 1 denotes the volatility
model with the highest R? value while the score number 10 denotes the volatility model with the lowest R? value.
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Table 6

In-sample Final Ranking Across VHAR-type Models

DJMY25- DIJMY25- DJMY25- DIMY25- DJMY25- DIMY 25- DJMY25- DIMY 25- DIMY 25- DJMY25- Final

DJIBSC DJICYC DJIENE DJIFIN DJIHCR DJIIDU DJINCY DJITEC DJITLS DJIUTI Score

Model Total Score gg;?é ;—g;?é ;—g;?é Total Score  Total Score Total Score Total Score Total Score Total Score (Final
(Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) (Rank) Ranking)
A01 19 (10) 20 (10) 17 (10) 20 (10) 20 (10) 16 (9) 20 (10) 18 (10) 20 (10) 20 (10) 190 (10)

A02 7(4) 9(5) 4 (1) 4 (1) 8(5) 6 (1) 4 (1) 8(4) 7(3) 9(4) 66 (3)

A03 6 (3) 5(2) 9(2) 5(2) 7(4) 9(4) 4 (1) 10 (5) 3@ 4(2) 62 (2)
A04 16 (9) 11 (6) 15 (8) 8 (4) 10 (6) 16 (9) 8 (4) 16 (8) 9(4) 13 (6) 122 (6)
A05 11 (5) 15 (7) 9(2) 16 (8) 14 (7) 8(3) 14 (7) 13 (7) 14 (7) 13 (6) 127 (7)
A06 15 (7) 18 (9) 15 (8) 18 (9) 18 (9) 14 (7) 17 (8) 16 (8) 17 (8) 16 (8) 164 (9)
A07 15 (7) 15 (7) 11 (6) 14 (7) 16 (8) 12 (6) 17 (8) 12 (6) 17 (8) 18 (9) 147 (8)

A08 5(2) 7(3) 9(2) 10 (6) 6(2) 6 (1) 10 (6) 5(1) 9(4) 5@) 72 (4)

A09 3@ 3@ 12 (7) 7() 5() 9(4) 7() 5() 3@ 3(1) 57 (1)

A10 13 (6) 7(3) 9(2) 8 (4) 6(2) 14 (7) 9(5) 7(3) 11 (6) 9(4) 93 (5)

Note: The final ranking of the competing models is determined by summing up the Total Score columns (from Table 3) across all pairwise models. The lowest the sum of the final score, the
highest the final ranking of the models.
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Table 7

Out-of-Sample Forecast Evaluation Results where RV; is the Volatility Proxy

Loss MSE MAE QLIKE LE HSME HMAE
Function
Model Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2
(Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score)

Panel A: DJIMY25-DJIBSC
AO1  0.0026 (1) 0.0051(1) 0.0338(1) 0.0296(1) -0.9301(l) -2.2058(1) 0.0708 (1) 0.5194(1) 0.0846(6) 2.1567(7)  0.2284(5)  0.9312(7)
A02  0.0041(8)  0011(7)  0.0383(8) 0.0337(2) -09115(8) -2.0255(6) 0.0926(8) 0.5415(2) 0.0748(2) 09052 (1)  0.2227(3)  0.6092 (3)
AO3  0.0045(9) 00114 (8) 0.0408(9) 0.0355(6) -0.9004 (9) -1.8631(9)  0.108(9)  0.6835(6) 0.0795(5) 0.9184(3) 0.2317(6)  0.6033 (2)
AO4  0.0046 (10) 0.0116(9) 0.0412 (10) 0.0351(5) -0.8987 (10) -1.8829(8) 0.1116 (10) 0.6511(5) 0.0846(7)  0.9113(2) 0.2371(10) 0.5927 (1)
AO5  0.0028 (3) 0.0096 (5) 0.0343(3) 0.0399(9) -0.9278(4) -2.0551(5) 0.0748(4)  0.8059 (9) 0.0894 (10)  4.4442 (9)  0.2337(9)  1.2279 (9)
AO6  0.0028 (4) 0.0081(2) 0.0344 (4) 0.0402 (10) -0.9278(3) -2.0811(3) 0.0747(3) 0.8222(10) 0.089(9)  4.9453 (10)  0.2334(8)  1.3242 (10)
AO07  0.0028 (2) 0.0085(3) 0.0343(2) 0.0379(7) -0.9284(2) -2.0996(2) 0.0738(2) 0.7375(7) 0.0881(8) 3.6743(8) 0.2328(7) 1.1696 (8)
AO8  0.0037 (5) 0.0118(10) 0.0366(5) 0.0382(8) -0.9182(5) -1.7658(10) 0.085(5)  0.7753(8)  0.0784(4)  1.6203(6)  0.2235(4)  0.8512 (6)
A09  0.0039 (7) 0.0095(4)  0.0374(7) 0.0343(3) -09151(7) -1.9911(7) 0.0873(7) 0.6247(4) 0071(1)  1.1428(5) 02175(1) 0.7343 (5)
A10  0.0038(6)  0.01(6) 0.037(6)  0.0345(4) -0.9168(6) -2.0764(4) 0.0865(6) 05453 (3) 0.0769(3)  1.0337(4) 0.2224(2)  0.7077 (4)

Panel B: DIMY25-DJICYC

AO1  0.0026 (1) 00012(7) 00338(1) 0011(10)  -0.93(1) -3.385(3)  0.0711(1) 4.2509(7)  0.0855(7) 7.6714(10) 0.2293(5)  2.9058 (10)
A02  0.0041(8) 00012 (3) 0.0382(8) 0.0077 (6) -0.9121(8) -3.4891(2) 0.0918(8) 1.9599(3) 0.0749 (2)  6.0806 (7)  0.2225(4)  1.6743 (6)
A03  0.0045(9) 0.0012(6) 0.0406(9) 0.0073(3)  -0.901(9)  -3.6032(1) 0.1072(9) 1.8925(2) 0.0794(5)  4.9622(5)  0.231(6)  1.4333 (3)
A04  0.0046 (10) 0.0012(5) 0.041(10)  0.007 (1) -0.8994 (10) -3.2039 (4) 0.1107 (10) 1.2681(1)  0.0848 (6)  4.2119 (4)  0.2367 (10)  1.4122 (1)
AO5  0.0028(3) 0.0014 (8) 0.0344(3) 0.0098 (8) -0.9277(3) -1.6903(5) 0.0754(3) 3.9431(5) 0.0911 (10) 6.0956 (8)  0.2355(9)  2.3767 (8)
A06  0.0028 (4) 0.0014 (10) 0.0345(4)  0.0103(9) -0.9277 (4) -0.4565(9) 0.0754 (4) 5.1273(8) 0.0907 (9)  6.586(9)  0.2353(8)  2.6776 (9)
A07  0.0028(2) 00014 (9) 0.0343(2) 0.0097 (7) -0.9283(2) -16378(7) 0.0741(2) 3.9865(6) 0.0891(8)  5.5937 (6)  0.2338 (7)  2.2777 (7)
A08  0.0036(5) 0.0012(4) 0.0363(5) 0.0076 (5) -0.9194 (5) -1.4898(8) 0.0829 (5) 5.8766(10) 0.0768 (4)  3.7634 (1)  0.2216 (2)  1.5064 (4)
A09  0.0038(7) 00011 (2) 0.0371(7) 0.0071(2) -0.9163(7) -0.3812(10) 0.0856(6) 5.3668(9) 0.0703 (1)  3.7757(2)  0.2157 (1)  1.4135(2)
A10  0.0038(6) 0.0011(1) 0.0369(6) 0.0073(4) -0.9173(6) -1.6646(6) 0.0857 (7) 3.5326(4) 0.0766 (3)  4.1826 (3)  0.2221(3)  1.5078 (5)

(continued)
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Loss MSE MAE QLIKE LE HSME HMAE
Function
Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2
(Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score)
Panel C: DIMY25-DJIENE
A01 0.0026 (1) 0.0019 (8) 0.0337 (1) 0.0109 (7)  -0.9303 (1) -4.3282(2) 0.0703 (1) 2.6238 (6) 0.0834 (6) 18.916 (8) 0.2271 (5) 4.4676 (7)
A02 0.0041 (8) 0.0018 (2) 0.0382 (8) 0.0094 (4)  -0.9117 (8) 2.2378 (7) 0.0922 (8) 2.4073 (3) 0.0746 (2) 12.6721(2) 0.2223 (4) 3.6661 (5)
A03 0.0045 (9) 0.0018 (1) 0.0407 (9) 0.0093 (3)  -0.9005(9) 27.2917 (10)  0.1079 (9) 2.5434 (4) 0.0793 (5) 12,7872 (3)  0.2313 (8) 3.6635 (4)
A04 0.0046 (10)  0.0019 (6) 0.0412 (10) 0.0091 (1)  -0.899 (10) 4.3811(8) 0.1112 (10) 2.3788(2) 0.0845 (7) 13.1196 (4) 0.2368 (10)  3.5516 (2)
A05 0.0028 (3) 0.0018 (3) 0.0343 (3) 0.0118 (10)  -0.9281 (4)  -4.2604 (4) 0.0741 (4) 2.9015(10) 0.0876 (10) 21.5806 (10) 0.2318 (9)  4.9714 (10)
A06 0.0028 (4) 0.0019 (7) 0.0343 (4) 0.0115(9)  -0.9281 (3) -4.289 (3) 0.0739 (3) 2.7914 (9) 0.0869 (9)  20.4057 (9)  0.2311(7) 4.7649 (9)
AQ7 0.0028 (2) 0.0019 (9) 0.0342 (2) 0.011 (8) -0.9286 (2)  -4.3321 (1) 0.0729 (2) 2.6382 (7) 0.086 (8) 15.4561 (7)  0.2306 (6) 4.5967 (8)
A08 0.0037 (5) 0.0018 (4) 0.0365 (5) 0.0095 (5) -0.9186(5) -0.2839 (6) 0.0837 (5) 2.5555 (5) 0.0753 (3) 13.4756 (5)  0.2204 (2) 3.5526 (3)
A09 0.0039 (7) 0.002 (10) 0.0375 (7) 0.0101 (6)  -0.9148 (7) 9.3517 (9) 0.0875 (7) 2.7507 (8) 0.0697 (1) 14.1725 (6) 0.216 (1) 3.8959 (6)
Al0 0.0038 (6) 0.0019 (5) 0.0371 (6) 0.0092 (2)  -0.9165(6) -4.1813(5) 0.0865 (6) 2.204 (1) 0.0756 (4) 11.3855 (1) 0.2215(3) 3.5059 (1)
Panel D: DIMY25-DJIFIN
A01 0.0026 (1) 0.0013 (1) 0.0338 (1) 0.0133(10) -0.9301 (1) -3.7834 (4) 0.0708 (1) 1.5012 (10)  0.0845 (6) 12.1327(9) 0.2281(5)  2.4955 (10)
A02 0.0041 (8) 0.0016 (4) 0.0382 (8) 0.0105 (1)  -0.9119 (8) -3.806 (1) 0.0922 (8) 1.1263 (1) 0.075 (2) 6.443 (1) 0.2225 (4) 1.8657 (1)
A03 0.0045 (9) 0.0017 (8) 0.0406 (9) 0.0115(4)  -0.9008 (9) -3.6661 (10)  0.1075 (9) 1.275 (6) 0.0795 (5) 7.8935 (4) 0.2309 (6) 2.0311 (5)
A04 0.0046 (10) 0.0016 (7) 0.0411(10) 0.0108 (2) -0.899(10) -3.7207(8) 0.1113(10) 1.1983(2) 0.0848 (7) 7.119 (2) 0.2368 (10)  1.9518 (2)
A05 0.0028 (3) 0.0016 (3) 0.0344 (3) 0.0127 (9)  -0.9278 (3)  -3.7807 (5) 0.0748 (4) 1.4479 (9) 0.0893 (10) 12.363 (10)  0.2337 (9) 2.3929 (9)
A06 0.0028 (4) 0.0015 (2) 0.0344 (4) 0.0125(8)  -0.9278 (4)  -3.7902 (3) 0.0747 (3) 1.4254 (8) 0.0888 (9) 12.0607 (8)  0.2333(7) 2.3635 (8)
A07 0.0028 (2) 0.0016 (5) 0.0343 (2) 0.0109 (3)  -0.9282 (2) -3.8018(2) 0.0741 (2) 1.2162 (4) 0.0888 (8) 9.2988 (5) 0.2336 (8) 1.9867 (4)
A08 0.0036 (5) 0.0017 (9) 0.0363 (5) 0.0115(5) -0.9194 (5)  -3.7541 (7) 0.0827 (5) 1.2161 (3) 0.0764 (3) 9.6201 (6) 0.2208 (2) 1.9862 (3)
A09 0.0038 (7)  0.0017 (10)  0.0373 (7) 0.0125(7)  -0.9159 (7)  -3.6819 (9) 0.086 (6) 1.3246 (7) 0.07 (1) 10.1858 (7)  0.2161 (1) 2.134 (7)
Al0 0.0038 (6) 0.0016 (6) 0.037 (6) 0.0115 (6) -0.917 (6) -3.7617 (6) 0.0861 (7) 1.2446 (5) 0.0765 (4) 7.4381 (3) 0.2222 (3) 2.0401 (6)
Panel E: DIMY25-DJIHCR
A01 0.0026 (1) 0.0024 (1) 0.0338 (1) 0.0184 (7)  -0.9301 (1) -2.862 (2) 0.0709 (1) 1.0932 (4) 0.085 (7) 4.2439 (8) 0.2287 (5) 1.472 (8)
A02 0.0041 (8) 0.0046 (7) 0.0382 (8) 0.0147 (1)  -0.9119 (8) -2.97 (1) 0.0921 (8) 0.5738 (1) 0.0749 (2) 0.9139 (3) 0.2225 (3) 0.6599 (3)
A03 0.0045 (9)  0.0048 (10)  0.0406 (9) 0.0155(3)  -0.9008 (9)  -2.7876 (4) 0.1075 (9) 0.7921 (3) 0.0795 (5) 0.8925 (2) 0.2311 (6) 0.6548 (2)
A04 0.0046 (10)  0.0048 (9) 0.0411(10) 0.0149 (2) -0.8992 (10) -2.8019 (3) 0.111 (10) 0.6223 (2) 0.0848 (6) 0.6393 (1)  0.2367 (10)  0.5804 (1)
A05 0.0028 (3) 0.0043 (4) 0.0344 (4) 0.021 (9) -0.9278 (3)  -0.5937 (10)  0.0752 (4) 2.8369 (9) 0.0906 (10)  4.2608 (9) 0.2351 (9) 1.4885 (9)
A06 0.0028 (4) 0.0041 (3) 0.0344 (3) 0.0217 (10) -0.9278 (4)  -1.1339(9) 0.075 (3) 3.0759 (10) 0.0898 (9)  4.9935 (10)  0.2342(8)  1.6394 (10)
A07 0.0028 (2) 0.004 (2) 0.0343 (2) 0.0198 (8)  -0.9283(2) -1.8771(6) 0.074 (2) 2.7478 (8) 0.0887 (8) 3.2515 (7) 0.2337 (7) 1.465 (7)
A08 0.0036 (5) 0.0047 (8) 0.0364 (5) 0.016 (5) -0.9193 (5)  -2.1411 (5) 0.0831 (5) 1.1952 (5) 0.0769 (3) 1.2233 (5) 0.2218 (2) 0.7274 (5)
A09 0.0038 (7) 0.0045 (6) 0.0372 (7) 0.0165 (6)  -0.9161 (7)  -1.4556 (8) 0.0859 (6) 1.3509 (6) 0.0702 (1) 1.2725 (6) 0.2161 (1) 0.7513 (6)
Al0 0.0038 (6) 0.0044 (5) 0.0369 (6) 0.0156 (4)  -0.9171(6)  -1.4689 (7) 0.0861 (7) 1.7224 (7) 0.077 (4) 1.1979 (4) 0.2225 (4) 0.7094 (4)

Model

(continued)
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Loss

Function MSE MAE QLIKE LE HSME HMAE
Model Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2
(Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score)
Panel F: DIMY25-DJIIDU
A01 0.0026 (1) 0.001 (1) 0.0337 (1) 0.0104 (1)  -0.9303 (1) -3.1523(2)  0.0704 (1) 0.3814 (3) 0.084 (6) 1.2668 (7) 0.2276 (5)  0.7494 (7)
A02 0.0041 (8) 0.0022 (8) 0.0383 (8) 0.0122 (5)  -0.9117 (8)  -3.1093 (4)  0.0923 (8) 0.3548 (2) 0.0749 (2) 0.7666 (3) 0.2227 (3)  0.5842 (3)
A03 0.0045 (9) 0.0022 (9) 0.0407 (9) 0.013 (8) -0.9006 (9)  -3.0512(9)  0.1079 (9) 0.4169 (6) 0.0795 (5) 0.784 (5) 0.2315(7)  0.5886 (4)
A04 0.0046 (10) 0.0024 (10) 0.0412 (10) 0.0128 (7)  -0.8989 (10) -3.0613(8)  0.1114 (10) 0.3953 (4) 0.0849 (7) 0.753 (1) 0.2371 (10)  0.5776 (2)
A05 0.0028 (3) 0.0015 (6) 0.0343 (4) 0.014 (10)  -0.9281(3) -3.0698 (6)  0.0743 (4) 0.5522(10) 0.0886 (10) 2.2249 (10)  0.2329(9)  0.9393 (10)
A06 0.0028 (4) 0.0011 (3) 0.0343 (3) 0.0127 (6)  -0.9281(4)  -3.0876 (5)  0.0741 (3) 0.5178 (9) 0.0878 (9) 2.0438 (9) 0.232 (8) 0.9124 (9)
A07 0.0028 (2) 0.0011 (2) 0.0342 (2) 0.0116 (4) -0.9287 (2)  -3.1364 (3)  0.0728 (2) 0.4171 (7) 0.0861 (8) 1.47 (8) 0.2308 (6)  0.7855 (8)
A08 0.0037 (5) 0.0021 (7) 0.0366 (5) 0.0137(9) -0.9186 (5) -2.9972 (10)  0.0842 (5) 0.5061 (8) 0.0773 (4) 1.1949 (6) 0.2227 (2)  0.7085 (6)
A09 0.0038 (7) 0.0014 (5) 0.0373 (7) 0.0111(3) -0.9153(7)  -3.0648 (7)  0.0869 (6) 0.4038 (5) 0.0705 (1) 0.7688 (4) 0.2166 (1)  0.6051 (5)
A10 0.0038 (6) 0.0013 (4) 0.0372 (6) 0.0106 (2) -0.9162 (6)  -3.1622 (1)  0.0873(7) 0.2949 (1) 0.077 (3) 0.7617 (2) 0.2231 (4) 0.537 (1)
Panel G: DIMY25-DJINCY
A01 0.0026 (1) 0.002 (1) 0.0338 (1) 0.0115(1) -0.9302 (1)  -3.0258 (1)  0.0706 (1) 0.3292 (2) 0.0846 (6) 1.0143 (7) 0.2282 (5)  0.6857 (7)
A02 0.0041 (8) 0.0044 (8) 0.0382 (8) 0.0137 (7) -0.912 (8) -2.8721(8)  0.0919 (8) 0.3624 (4) 0.0749 (2) 0.4833 (6) 0.2224 (4)  0.4718 (6)
A03 0.0045 (9) 0.0045 (9) 0.0406 (9) 0.0142 (9)  -0.9009 (9) -2.789 (9) 0.1074 (9) 0.4265 (9) 0.0795 (5) 0.431 (2) 0.2311(6)  0.4521 (4)
A04 0.0046 (10)  0.0045 (10) 0.0411 (10) 0.0143(10) -0.8993(10) -2.7724(10) 0.1108 (10) 0.4351 (10)  0.0848 (7) 0.4495 (3)  0.2367 (10)  0.4602 (5)
A05 0.0028 (3) 0.0028 (4) 0.0344 (3) 0.0137(8) -0.9279(3) -2.9871(4)  0.0749 (3) 0.4102 (8) 0.0897 (10)  1.3244 (9) 0.2342 (9)  0.7803 (10)
A06 0.0028 (4) 0.0027 (2) 0.0345 (4) 0.0136 (6) -0.9278 (4)  -2.9913(3)  0.0749 (4) 0.4046 (7) 0.0894 (9)  1.3401 (10) 0.2341(8)  0.7777(9)
A07 0.0028 (2) 0.0027 (3) 0.0344 (2) 0.0133(4) -0.9283(2) -2.9957 (2) 0.074 (2) 0.3932 (6) 0.0884 (8) 1.2692 (8) 0.2335(7)  0.7589 (8)
A08 0.0036 (5) 0.004 (5) 0.0365 (5) 0.0131(2) -0.9191(5) -2.9431(5)  0.0834 (5) 0.3238 (1) 0.0773 (4) 0.4735 (4) 0.2222 (3)  0.4372(2)
A09 0.0038 (7) 0.0041 (6) 0.0372 (7) 0.0132(3) -0.9159(7)  -2.9099 (6)  0.0862 (7) 0.3393 (3) 0.071 (1) 0.3309 (1) 0.2168 (1) 0.415 (1)
A10 0.0038 (6) 0.0041 (7) 0.0368 (6) 0.0135(5) -0.9174(6)  -2.9036 (7)  0.0856 (6) 0.3635 (5) 0.0765 (3) 0.4767 (5) 0.2214 (2)  0.4436 (3)
Panel H: DIMY25-DJITEC
A01 0.0027 (1) 0.0103 (4) 0.034 (1) 0.0125(6)  -0.9296 (1)  2.0928 (10) 0.072 (1) 1.8394 (6) 0.0868 (7) 2.377 (6) 0.2309 (5)  0.9128 (6)
A02 0.0041 (8) 0.0102 (2) 0.0381 (8) 0.0108 (1) -0.912 (8) -2.3493 (1)  0.0921 (8) 0.5092 (1) 0.0753 (2) 0.4976 (1) 0.2228 (4)  0.5147 (1)
A03 0.0045 (9) 0.0103 (6) 0.0405 (9) 0.0113 (4)  -0.9011 (9) -0.937 (8) 0.1072 (9) 0.7279 (4) 0.0798 (5) 0.6576 (3) 0.2313(6)  0.5798 (3)
A04 0.0046 (10)  0.0103 (3)  0.0411(10) 0.0109 (2) -0.8994 (10) -1.9471(2) 0.1109 (10) 0.5501 (2) 0.0851 (6) 0.5647 (2)  0.2371 (10)  0.5406 (2)
A05 0.0029 (3) 0.0103 (9) 0.0347 (3) 0.0128 (8)  -0.9274 (3) -1.193 (5) 0.0758 (3) 47719 (9)  0.0908 (10) 2.926 (7) 0.2359 (8)  0.9492 (8)
A06 0.0029 (4) 0.0103 (8) 0.0348 (4) 0.013 (9) -0.9272 (4) -1.856 (3) 0.076 (4) 2.9042 (7) 0.0905 (9) 3.9456 (9) 0.2362 (9) 1.0175 (9)
A07 0.0028 (2) 0.0102 (1) 0.0346 (2) 0.0127 (7)  -0.9279(2)  -1.1436 (6) 0.075 (2) 4.4105 (8) 0.0902 (8) 2.9998 (8) 0.2355 (7) 0.916 (7)
A08 0.0036 (5) 0.0103 (5) 0.0362 (5) 0.0112(3) -0.9197 (5)  -1.0725(7)  0.0825 (5) 0.6125 (3) 0.0767 (4) 0.7258 (4) 0.2212 (3)  0.5874 (4)
A09 0.0038 (7) 0.0103 (7) 0.037 (7) 0.0118 (5)  -0.9167 (7) 1.5591 (9) 0.0849 (6) 1.1781 (5) 0.0699 (1) 1.423 (5) 0.2152 (1)  0.7233 (5)
A10 0.0037 (6) 0.0104 (10) 0.0368 (6) 0.0135(10) -0.9176 (6) -1.2898(4)  0.0851 (7)  5.1656 (10) 0.0759 (3)  4.5447 (10)  0.2207 (2)  1.0361 (10)
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Loss MSE MAE QLIKE LE HSME HMAE
Function
Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2 Market 1 Market 2
(Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score) (Score)
Panel I: DIMY25-DJITLS

A01 0.0026 (1) 0.0018 (1) 0.0338 (1) 0.0174 (6)  -0.9302 (1) -1.368 (2) 0.0705 (1) 0.046 (5) 0.0843 (6) 0.0627 (7) 0.2278 (5) 0.1927 (7)
A02 0.0041 (8) 0.0032 (6) 0.0382 (7) 0.0163 (3) -0.9119(8) -1.3672(3) 0.0921 (8) 0.0393 (2) 0.075 (4) 0.0401 (2) 0.2222 (4) 0.1538 (4)
A03 0.0045 (9) 0.0038 (9) 0.0406 (9) 0.0168 (4)  -0.9008 (9)  -1.3594 (6) 0.1076 (9) 0.0469 (6) 0.0796 (5) 0.0428 (4) 0.2312 (6) 0.1531 (3)
A04 0.0046 (10)  0.004 (10)  0.0411(10) 0.0196 (7) -0.8993 (10) -1.3538(7)  0.1109 (10)  0.0569 (7) 0.0849 (7) 0.0546 (6)  0.2367 (10)  0.1828 (6)
A05 0.0028 (3) 0.0036 (8) 0.0343 (3) 0.0286 (10)  -0.9281 (4) -1.3447 (10) 0.0744 (4) 0.0927 (10) 0.089 (10)  0.1271(10)  0.2333(9)  0.3044 (10)
A06 0.0028 (4) 0.0034 (7) 0.0343 (4) 0.028 (9) -0.9281 (3)  -1.3467 (9) 0.0741 (3) 0.0892 (9) 0.0878 (9) 0.1221 (9) 0.2323 (8) 0.2981 (9)
AQ7 0.0028 (2) 0.0032 (4) 0.0342 (2) 0.0248 (8)  -0.9287 (2)  -1.3526 (8) 0.073 (2) 0.0762 (8) 0.0865 (8) 0.1016 (8) 0.2314 (7) 0.2657 (8)
A08 0.0038 (5) 0.0032 (5) 0.0369 (5) 0.0161(2) -0.9172(5) -1.3671(4) 0.085 (5) 0.04 (3) 0.0739 (2) 0.0416 (3) 0.2189 (2) 0.1524 (2)
A09 0.0041 (7) 0.0031 (3) 0.0383 (8) 0.0155 (1) -0.9122(7)  -1.3695 (1) 0.0908 (7) 0.036 (1) 0.0696 (1) 0.0373 (1) 0.2169 (1) 0.1451 (1)

Al0 0.004 (6) 0.0031 (2) 0.0376 (6) 0.017 (5) -0.9143 (6)  -1.3659 (5) 0.089 (6) 0.0448 (4) 0.0741 (3) 0.0529 (5) 0.2198 (3) 0.165 (5)

Panel J: DIMY25-DJIUTI

A01 0.0026 (1) 0.0009 (1) 0.0337 (1) 0.0236 (8)  -0.9303 (1)  -1.8598 (6) 0.0698 (1) 0.2177 (9) 0.0819 (6)  0.8343 (10)  0.2254 (5) 0.5309 (9)
A02 0.0041 (8) 0.0012 (6) 0.0383 (8) 0.0209 (4)  -0.9115(8)  -1.8644 (3) 0.0925 (8) 0.186 (4) 0.0741 (2) 0.6019 (4) 0.2214 (2) 0.4407 (4)
A03 0.0045 (9) 0.0013 (9) 0.0407 (9) 0.0195 (1) -0.9002 (9) -1.8613 (4) 0.1082 (9) 0.1739 (2) 0.0791 (5) 0.4962 (1) 0.2308 (8) 0.3931 (1)
A04 0.0046 (10) 0.0014 (10) 0.0412 (10) 0.0218 (6) -0.8987 (10) -1.851(10) 0.1115(10) 0.2042 (6) 0.0841 (7) 0.6587 (6)  0.2362 (10)  0.4568 (5)
A05 0.0028 (3) 0.0012 (5) 0.0342 (4) 0.0236 (7)  -0.9282 (4)  -1.8571(8) 0.0739 (4) 0.2152 (7)  0.0873 (10)  0.7264 (7) 0.2311 (9) 0.5061 (7)

A06 0.0028 (4) 0.0011 (3) 0.0341 (2) 0.0238 (9) -0.9283(3)  -1.8581 (7) 0.0735 (3) 0.216 (8) 0.0861 (9) 0.7657 (8) 0.2297 (7) 0.518 (8)
A07 0.0028 (2) 0.0012 (8) 0.0341(3) 0.0244 (10) -0.9287 (2)  -1.8539 (9) 0.0725(2) 0.2274 (10)  0.0846 (8) 0.8174 (9) 0.229 (6) 0.533 (10)
A08 0.0037 (5) 0.0011 (4) 0.0365 (5) 0.0207 (3)  -0.9186 (5)  -1.8657 (2) 0.0843 (5) 0.1831 (3) 0.0787 (4) 0.5952 (3) 0.223 (4) 0.4365 (3)
A09 0.0039 (7) 0.0011 (2) 0.0375 (7) 0.0197 (2)  -0.9151 (7) -1.873 (1) 0.0873 (7) 0.1658 (1) 0.0715 (1) 0.5076 (2) 0.2177 (1) 0.4119 (2)
Al0 0.0038 (6) 0.0012 (7) 0.0372 (6) 0.0215(5) -0.9162 (6)  -1.8609 (5) 0.0872 (6) 0.1967 (5) 0.0773 (3) 0.6552 (5) 0.2227 (3) 0.4594 (6)

Model

Notes: 1. Each volatility model is given a score number of 1 up to 10 based on the average loss value in ascending order for each market across the pairwise. The score number 1 denotes the
volatility model with the lowest average loss value while the score number 10 denotes the volatility model with the highest average loss.

2. Certain loss values within the market seem to have similar numerical value but given different rankings is due to the issue of accuracy of decimal places shown in this table. In actual,
their loss values are dissimilar with very small difference in magnitude, thus, they are given different ranking.
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Table 8

Final Ranking across Pairwise and Overall Ranking of the Out-of-Sample Forecast Evaluation

DIMY25- DIJMY25- DJMY25- DIMY25- DIMY25- DJIMY25- DIMY25- DIMY25- DIMY25- DIMY25-

PalWise  h)gsc  DIICYC ~ DJIENE  DJIFIN  DJHCR  DJIDU  DJINCY DJITEC DJITLS DJIUTI Os‘grz’:'
Final Score Final Score Final Score Final Score Final Score Final Score . . . Final Score Overall

Model (Final (Final (Final (Final (Final (Final i'_”a'l SRcorlf IF:'_“a'I iforlf i'_“all icorlf (Final (Rank)

Rank) Rank) Rank) Rank) Rank) Rank) (Final Rank)  (Final Rank)  (Final Rank) Rank)

AOL 33 (1) 63 (4) 53 (2) 59 (4) 46 (1) 36 (1) 34 (1) 54 (3) 43(2) 58 (3) 479 (1)
A02 58 (3) 65 (5) 61 (4) 47 (1) 53 (2) 62 (5) 77 (8) 45 (1) 59 (5) 61 (4) 588 (4)
A03 81 (9) 67 (7) 74 (6) 84 (10) 71(7) 89 (9) 89 (9) 75 (7) 79 (7) 67 (6) 776 (8)
AO4 87 (10) 72 (9) 80 (9) 80 (9) 74 (8) 89 (9) 105 (10) 69 (6) 100 (10)  100(10) 856 (10)
A05 79 (8) 73(8) 80 (9) 77 (8) 83 (9) 85 (8) 74 (7) 76 (8) 91 (9) 75 (8) 793 (9)
A0B 76 (6) 87 (10) 76 (8) 68 (6) 83 (9) 72 (6) 70 (6) 79 (9) 83 (8) 71 (7) 765 (7)
AO7 58 (3) 65 (5) 62 (5) 47 (1) 61 (4) 54 (3) 54 (4) 60 (4) 67 (6) 79 (9) 607 (6)
A08 76 (6) 58 (3) 53 (2) 58 (3) 58 (3) 72 (6) 46 (2) 53 (2) 43(2) 46 (2) 563 (2)
A09 58 (3) 56 (2) 75 (7) 76 (7) 67 (6) 58 (4) 50 (3) 65 (5) 39 (1) 40 (1) 584 (3)
A10 54 (2) 54 (1) 46 (1) 64 (5) 64 (5) 43 (2) 61 (5) 84 (10) 56 (4) 63 (5) 589 (5)

Note: The scores for the 6 loss functions in Table 7 are summed and the final ranking of the models are based on these total scores. The model with the lowest total score is identified as the best
model.
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CONCLUSION

The main aim of this study is to investigate a methodology for improving the dynamic of stock return
volatility based on the theory of realized volatility (RV) and the theoretical framework of heterogeneous
market hypothesis (HMH). The RV is known to be a consistent, efficient, and unbiased proxy of the
unobservable return volatility, while HMH captures the heterogeneity in the market and long memory
in the time series. This study offers a comprehensive comparison of in-sample estimation and out-of-
sample volatility performance, utilizing ten multivariate RV-based models that effectively capture the
long memory property, which significantly impacts market efficiency and predictability. The estimation
of the parameters is performed through a simple ordinary least squares (OLS) regression, while the
computation of the realized variation measures is computed from the 5-minutely data of the Malaysian
Islamic stock index and global Islamic sectoral stock indices. The findings of this study exhibit that all
nine proposed models have outperformed the benchmark model, VHAR (RV), in the in-sample
estimation. On the other hand, for out-of-sample volatility forecasting, the benchmark model is found
to be the best performing model. More than that, this study shows that using a volatility proxy of
standard realized volatility and breaking down realized volatility into its continuous and discontinuous
jump components gives us more information than just using jump-robust realized volatilities and adding
the daily jump regressor to the benchmark model when predicting volatility in Islamic stock markets.
Overall, the findings shows that a simple autoregressive specification mimicking long memory and
using standard realized volatility as volatility proxy does not perform significantly worse than more
complicated models in including the various realized variation measures. To provide a more generalized
and reliable inferences of a superior volatility forecasting model, the methodology used in this study
can be extended to account for different timespans of a more recent dataset, different distributional
assumptions, different market data, different sampling frequencies and the incorporation of other
possible methodologies, such as adding the multivariate conditional volatility modeling and its various
extensions. The findings of this study may provide useful insights for policymakers, academic
researchers, and market investors that have practical applications in market risk regulation, portfolio
management, option strategy formulation, and pricing.
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