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ABSTRACT 

 
This study proposes nine multivariate intraday models using various realized variation measures with 
the aim to improve volatility forecasting in the Islamic stock market in Malaysia using a dataset from 
1st April 2008 to 31st March 2018.  The findings show that considering independently the jump-robust 
realized volatility, additional daily jump realized volatility, and continuous and discontinuous jump 
sample path variations improved the in-sample predictive regressions compared to using the standard 
realized volatility.  For the out-of-sample volatility forecasts evaluation, it is observed that the volatility 
models that disentangled the realized volatility into its continuous and discontinuous jump components 
have outperformed the rest of the proposed models. This is because both the continuous and 
discontinuous variation of returns exhibit distinctive substantial information in yielding the final 
volatility dynamic and thus should be modeled disjointedly.  However, the empirical results suggest 
that the simple autoregressive specification using the standard realized volatility is often performing 
better or as well as the new extension models.  Lastly, this study may provide useful insight in portfolio 
management, risk assessment, and asset pricing, particularly in the Shariah-compliant equities.  
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INTRODUCTION 
 

In the past decades, the literature of volatility modeling often analyses the return and volatility 
forecasting of the financial time series using the returns data sampled at daily or lower frequency.  Even 
though one can discover much from the analysis using low-frequency data, it still fails to reveal both 
the news effect that incorporated exceedingly rapid as well as short-run dynamic effects and is unable 
to describe satisfactorily the stylized facts (Ferrari et al., 2021).  Besides, using the squared daily return 
as a proxy of conditional volatility may also produce misleading findings due to its noisy nature, where 
the noise will mask the strong persistence in the volatility dynamics (Andersen et al., 2003; Jian Zhou, 
2020).  According to Degiannakis and Floros (2016), the noisier a volatility proxy, the less accurate the 
volatility forecast evaluation.   
 
As a result, Andersen and Bollerslev (1998) introduced the concept of realized volatility (RV), which 
is computed from the high-frequency data, to curb this issue.  RV is a non-parametric ex-post volatility 
measure of the return variation that can minimize noise accumulation due to market frictions. In 
principle, RV is treated as an ‘observed’ rather than a latent variable. Observable volatility builds 
entirely on a new opportunity in volatility modeling and forecasting because it requires a much simpler 
technique to be used, whereas if volatility is latent, a complex econometric model will be required 
(Andersen et al., 1999).  In addition, RV is an unbiased, consistent, and highly efficient proxy 
(Barndorff‐Nielsen & Shephard, 2002) for true volatility that is based on the theory of quadratic 
variation and arbitrage-free processes.  
 
There are rising studies utilizing the theoretical and practical upsides of RV in volatility modeling (Chen 
et al., 2021; Degiannakis et al., 2022; Liu & Wang, 2021; Wen et al., 2021).  The literature shows that 
the RV-based models generally outperform the traditional stochastic volatility (SV) models and the 
family of the generalized autoregressive conditional heteroscedastic (GARCH) models of Engle (1982) 
and Bollerslev (1986) that are based on squared daily returns in the volatility predictive performance 
(Bergsli et al., 2022; Wei, 2021; Tran & Tran, 2021).  This is because high-frequency data contains 
more information about the real trading situations, and RV is considered an ‘observable’ volatility 
proxy. Nonetheless, the RV-based modeling is under-researched on the volatility transmission in a 
multivariate approach, specifically in the context of the Islamic stock market. 
 
Over the past decades, the liberalization of capital movements and reformation of national financial 
systems have resulted in greater linkages between financial markets in countries around the globe.  
Moreover, the expansion of information technology has also allowed information to spread more freely 
than ever before. Thus, news and shocks initiated from the rest of the world are more likely to affect 
the market (Zhong et al., 2019). Numerous studies (Uludag & Khurshid, 2019; Tang et al., 2021) have 
shown that volatility changes are not only due to the dynamic evolution of its own market volatility but 
also changes of contagion effect and interdependency across markets. Consequently, the multivariate 
analysis has gained greater attention because it helps to control for possible endogeneity issues in 
volatility modeling and forecasting equations to overcome the weak assumption of market 
independence of the univariate analysis that neglected the dynamic linkages among the variance and 
covariance series.  Financial institutions face a higher level of risk due to uncertainties in global and 
regional financial markets. Therefore, in the context of reducing portfolio risk, the subject of 
discovering the transmission of the financial return and volatility over time and across markets has 
become the central attraction among practitioners and academic researchers in the hope of formulating 
an effective financial risk management strategy.  
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Today, Islamic financial market runs in parallel with the conventional financial market.  In addition, it 
provides investors with a distinct investment philosophy that is rapidly gaining acceptance worldwide. 
The rise in the number of Islamic equity indices and sub-indices available in the stock markets has 
created the opportunity for investors to allocate their portfolio in various types of sectors.  Furthermore, 
with the availability of Islamic equities, Muslim investors no longer need to forgo profits to conform to 
their religious obligations.  The global Islamic financial markets have experienced a remarkable growth 
of approximately 17 percent annually (IFDI, 2022), demonstrating their resilience and attracting 
investors. The recognition of the potential of diversification opportunities (Iftekhar et al., 2022) in the 
Shariah-compliant instruments and standardization of Shariah conformity procedures in the Islamic 
equities have precipitated the financialization of Islamic stock markets.   
 
Considering the above-mentioned issues such as the noisy nature of squared daily return and 
endogeneity issues in volatility forecasting, hence, this study aims to analyze the forecasting accuracy 
of time-varying volatility spillover within the Islamic stock markets, deriving on the theory of realized 
volatility and the conceptual framework of heterogeneous market hypothesis (HMH).  Motivated by the 
theoretical works of Barndorff-Nielsen and Shephard (2004b) and Andersen et al. (2012), who 
introduced the jump-robust realized measures and empirical evidence that supports the importance of 
the inclusion of daily jump regressors (Sévi, 2014) and jump-robust estimators (Chin et al., 2016) into 
the simple Heterogeneous Autoregressive (HAR) model of Corsi (2009), this study extends the 
univariate HAR that takes account for intraday jumps into a multivariate context. Also motivated 
theoretically (Andersen et al., 2007) and empirically (Sévi, 2014; Wen et al., 2016) on the significance 
of decomposing the realized volatility into its continuous and discontinuous jump sample path 
variations, this study extends it into the multivariate version as well.  On the other hand, being motivated 
by the remarkable expansion of the Islamic finance over the past decade, the data selection in this study 
involves the Malaysian Islamic stock index and the Islamic sectoral stock indices of Dow Jones Islamic 
Market (DJIM). Under the role of high-frequency data, this study contributes a large-scale of empirical 
analysis in the volatility forecasting under the RV-based modeling derived from the Heterogeneous 
Autoregressive (HAR) model that considers various components of the realized volatility into a 
multivariate setting in the Islamic stock markets, particularly at the sectoral level. The findings of this 
study will have implications in risk management and portfolio selection, particularly to address the 
unique risks in Islamic investment. 
 
The rest of the paper is organized as follows: Section 2 organizes the rest of the paper by reviewing 
relevant literature on the properties of popular jump-robust estimators and the development of HAR-
type models. Section 3 presents the basic setup of jump-robust realized volatility and the framework of 
the multivariate HAR model.  Section 4 discusses the results of the in-sample estimation performance 
and out-of-sample forecast evaluation. Section 5 concludes the paper. 
 
 

LITERATURE REVIEW 
 
Although the RV is broadly used in estimating the integrated variance of financial time series, the proxy 
encounters inconsistency issues under the occurrences of abrupt jumps in the asset prices (Andersen et 
al., 2003; Ewing & Malik 2016; Gao et al., 2022) due to economic shocks, political turmoil, natural 
disasters, institutional changes, and inter alia. Disregarding the presence of jumps may lead to false 
statistical conclusions such as inaccurate descriptive statistics, erroneous hypothesis inferences, and 
fallacious forecasts. Some past literature (Ma et al., 2018) show that the discontinuous jump component 
does not contain important information and fails to improve the volatility forecast.  This assertion seems 
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counter-intuitive since large increases in volatility are typically preceded by large jumps that change 
the investors’ perception of the value of an underlying asset. A few potential explanations include the 
difficulty in achieving a precise measure of jump volatility (Garcia & Hill, 2017) and the potential for 
large sample bias in the realized estimators used in previous studies (Corsi et al., 2010). In contrast, 
several researchers, for example, Andersen et al. (2011), Bollerslev et al. (2009), Gao et al. (2022), Li 
et al. (2017), Maheu et al. (2013), and Qua et al. (2018), claimed that jump returns can provide 
significant information in exploring the risk relationships between assets. This is because the jump 
returns have a much higher signal to noise ratio and contain an independent measurable risk premium 
(Garcia & Hill, 2017).    
 
To tackle this problem, several jump-robust realized variances are introduced in the literature, such as 
the realized bi-power variance (Barndorff-Nielsen & Shephard, 2004b), multi power variation 
(Andersen & Todorov, 2010), truncated realized variance (Andersen et al., 2012), and quantile realized 
variance (Christensen et al., 2010). As such, these estimators offer new and useful information on the 
dynamics of stock prices, for instance, it enables to evaluate the presence and significance of price 
jumps. The empirical evidence shows that an estimator that can well explain the realized variance jump 
process generates a significant impact on future volatility (Mamoona et al., 2022; Massiniliano, 2022) 
of the underlying assets whenever there is an arrival of new information (Yuan & Li, 2018) and provides 
substantial improvement in the accuracy of the volatility forecast (Fuertes & Olmo, 2012). Therefore, 
this study considers incorporating the intraday jump in the proposed volatility models since it has a 
strong impact on future volatility.   
 
In addition, the theory of quadratic variation postulates that total variation of an asset return can be 
disentangled into continuous and discontinuous jump components. The empirical literature suggests 
that the continuous and discontinuous jump variation of returns exhibit distinct information about 
volatility dynamics. In other words, though both continuous and discontinuous jump components jointly 
produce the final volatility dynamics, their dynamics are different and thus should be modeled 
separately (Corsi et al., 2010). The jumps have a very short impact on future volatility, whereas 
continuous returns tend to have a persistent impact on future volatility. This is evidenced by Andersen 
et al. (2007) that they discovered the continuous component is noticeably more persistent than the 
volatility jump component, inferring the continuous component as a significant predictor of future 
volatility. The empirical studies also show that decomposition of the realized volatility into its 
continuous and discontinuous jump components has yielded improved out-of-sample volatility forecasts 
(Andersen et al., 2011). As such, these measures give useful and novel information on modeling the 
dynamics of stock prices, which leads this study towards decomposing the realized volatility into its 
continuous and discontinuous components in modeling the volatility measures.  
 
The HAR model of Corsi (2009) has appeared as the preferred specification to further improve the RV-
based modeling. It is because the HAR model can attain long memory in a parsimonious process without 
having to rely on fractional integration. In addition to this, this model does not necessitate restriction to 
the parameters, and it guarantees positive-definite estimates (Choi et al., 2010). Moreover, the HAR 
model is easily enhanced by external variables for improving the explanatory power of volatility 
dynamics.   
 
Therefore, numerous researchers started to develop new volatility models based on the HAR-RV 
framework to further enhance volatility forecasting performance. For instance, the HAR-RV-J model 
of Andersen et al. (2007) with an additional daily jump component, the HAR-RV-CJ model of Andersen 
et al. (2007), in which the realized volatility is decomposed into its continuous and discontinuous jump 
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components and the HAR-RSV model of Patton and Sheppard (2015) use the positive and negative 
realized semi variances (RSV), and among other things. Recent literature (Bergsli et al., 2022; Gong & 
Lin, 2019) exhibits evidence that HAR-type models provide superior volatility forecasting performance 
than the SV-type, GARCH-type, VAR-RV, and ARFIMA-RV models (Shin, 2018).   
 
However, Bubák et al. (2011) use the VHAR model of logarithmic realized variances to look at how 
volatility was transmitted between Central European (CE) exchange rates and the EUR/USD foreign 
exchange from 2003 to 2009. A similar approach by Soucek and Todorova (2013), who extend the 
empirical model of Bubák et al. (2011) by using an orthogonalized version in studying the 
interrelationship of the equities (S&P 500, Nikkei 225, FTSE100) and energy (West Texas Intermediate, 
WTI) markets from 2002 to 2012.  The study by Luo and Ji (2018) is also quite similar to Bubák et al. 
(2011); apart from using the realized volatility, they use the positive and negative realized semi-variance 
in examining the volatility connectedness between oil and agricultural markets. Based on the existing 
literature, there is a minimal study on modeling the volatility transmission using HAR-type models in 
the multivariate perspective, particularly in the context of Islamic equities. As a result, this paper 
extends the HAR model with the crucial intraday jump specifications into a multivariate setting to 
examine the in-sample and out-of-sample volatility forecasting of Islamic equities. 
 
 

DATA AND METHODOLOGY 
Data 
 
The historical data used in this study is the 5-minutely intraday closing price of the Dow Jones Islamic 
Market Malaysia Titans 25 (DJMY25) index and ten sectoral indices of the Dow Jones Islamic Market 
(DJIM) World index from 1st April 2008 to 31st March 2018.  The full sample of the intraday data is 
divided into the in-sample data, which spans from 1st April 2008 to 31st March 2017, and the out-of-
sample data, which spans from 1st April 2017 to 31st March 2018. Dobrev and Szerszen (2010) found 
that two to five years of high-frequency data are sufficient to achieve a similar level of accuracy as 20 
years of daily data. This study uses nine trading years of high-frequency data in modeling the market 
return and volatility, which has a more extended period than the required standard as aforementioned.  
On the other hand, the sample period includes several major financial crises, such as the global financial 
crisis period spiked in the early of 2008 and the European sovereign debt crisis period in the late of 
2010, in order to ensure that the data is highly volatile with possible abrupt changes in the indices since 
this study examines the robustness of the jump-robust realized volatilities used in this study. The ten 
sectoral indices consist of the Dow Jones Islamic Market Basic Materials (DJIBSC), Dow Jones Islamic 
Market Consumer Services (DJICYC), Dow Jones Islamic Market Oil & Gas (DJIENE), Dow Jones 
Islamic Market Financials (DJIFIN), Dow Jones Islamic Market Healthcare (DJIHCR), Dow Jones 
Islamic Market Industrial (DJIIDU), Dow Jones Islamic Market Consumer Goods (DJINCY), Dow 
Jones Islamic Market Technology (DJITEC), Dow Jones Islamic Market Telecommunications 
(DJITLS), and Dow Jones Islamic Market Utilities (DJIUTI) indices. The DJMY25 index is paired with 
each of these global Islamic sectoral stock indices, forming ten bivariate markets.  
 
Methodology 

 
Using the theory of quadratic variation of semi-martingales, Andersen and Bollerslev (1998) introduced 
the first realized volatility (RV) as  
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𝑅𝑅𝑉𝑉𝑡𝑡 = �∑ 𝑟𝑟𝑡𝑡,𝑖𝑖
2𝑀𝑀

𝑖𝑖=1   for   𝑖𝑖 = 1, 2, . . .𝑀𝑀                                          (1) 

 
where 𝑟𝑟𝑡𝑡 is the intraday return at 𝑡𝑡 and 𝑀𝑀 is the number of returns per day. 
 
Following the approach of Andersen et al. (2001), this study assumes the sample path of an asset price 
process belongs to the continuous-time semi-martingale jump-diffusion process as such 
 

𝑑𝑑 𝑙𝑙𝑙𝑙 𝑃𝑃𝑡𝑡 = 𝜇𝜇𝑡𝑡𝑑𝑑𝑑𝑑 + 𝜎𝜎𝑡𝑡𝑑𝑑𝑊𝑊𝑡𝑡  + 𝐽𝐽𝑡𝑡𝑑𝑑𝑁𝑁𝑡𝑡  ;  0 ≤ 𝑡𝑡 ≤ 𝑇𝑇                      (2) 
 

where 𝐽𝐽𝑡𝑡 is the random jump size and tN  is a Poisson process that counts the number of jumps that 
takes the value of one in the case of a jump and zero otherwise. Under the finite jump-diffusion process, 

, the one-period continuously compounded return is defined as 
 

𝑟𝑟𝑡𝑡 ≡ ∫ 𝜇𝜇𝑠𝑠𝑑𝑑𝑑𝑑
𝑡𝑡
𝑡𝑡−1 + ∫ 𝜎𝜎𝑠𝑠𝑑𝑑𝑊𝑊𝑠𝑠

𝑡𝑡
𝑡𝑡−1 +∑ 𝐽𝐽𝑠𝑠𝑡𝑡−1<𝑠𝑠≤𝑡𝑡     ; 0 ≤ 𝑡𝑡 ≤ 𝑇𝑇        (3) 

 
where  only in the presence of a jump in the process. Again, using the theory of the quadratic 
variation, the daily realized variance converges in probability as the sampling frequency increases as 
such 𝑅𝑅𝑉𝑉𝑡𝑡   

�⎯�∫ 𝜎𝜎𝑠𝑠2𝑑𝑑𝑠𝑠𝑠𝑠
𝑡𝑡
𝑡𝑡−1 + ∑ 𝐽𝐽𝑠𝑠2𝑡𝑡−1<𝑠𝑠≤𝑡𝑡 . Hence, the 𝑅𝑅𝑉𝑉𝑡𝑡 for day 𝑡𝑡 incorporates two components as the 

total variation of price process which are the integrated variance, 𝐼𝐼𝑉𝑉𝑡𝑡 = ∫ 𝜎𝜎𝑠𝑠2𝑑𝑑𝑊𝑊𝑠𝑠
𝑡𝑡
𝑡𝑡−1  and the cumulative 

jumps component,𝐽𝐽𝑉𝑉𝑡𝑡 = ∑ 𝐽𝐽𝑠𝑠2𝑡𝑡−1<𝑠𝑠≤𝑡𝑡 .   
 
As a result, the RV is no longer a consistent estimator of integrated variance as it captures not only the 
return volatility at time 𝑡𝑡 but also includes the jump variation (JV). To disentangle the continuous 
variation from the jump components, Barndorff-Nielsen and Shephard (2004b) have proposed the 
realized bi-power volatility (RBV) defined as 
 

𝑅𝑅𝑅𝑅𝑉𝑉𝑡𝑡 = �𝜉𝜉−2 ∑ �𝑟𝑟𝑡𝑡,𝑖𝑖��𝑟𝑟𝑡𝑡,𝑖𝑖−1�𝑀𝑀
𝑖𝑖=2                                                        (4) 

 

where 𝜉𝜉 = Γ(1)√2
Γ�12�

= �2
𝜋𝜋
   and Γ(. )  is the gamma function.  Equation (4) is interpreted as the cumulative 

sum of products of the adjacent absolute returns. The RBV estimator ensures the jumps (under 𝑀𝑀 → ∞) 
will not impact the consistency of the volatility estimates. This is due to the return characterizing the 
jump being diminished by the multiplication of the adjacent diffusive (non-jump) intraday return.  
Asymptotically, as the sampling frequency increases, the jump impact becomes negligible. In other 
words, RBV purely measures the continuous component under the condition of the presence of jumps, 
hence, RBV is a consistent estimate of integrated variance (𝑅𝑅𝑅𝑅𝑉𝑉𝑡𝑡   

�⎯� 𝐼𝐼𝑉𝑉𝑡𝑡).  The RV can be 
decomposed into its continuous (diffusive) and discontinuous jump (non-diffusive) components by the 
RBV (𝑅𝑅𝑉𝑉𝑡𝑡 − 𝑅𝑅𝑅𝑅𝑉𝑉𝑡𝑡  𝑀𝑀→∞ 

�⎯⎯⎯⎯⎯�𝑄𝑄𝑉𝑉𝑡𝑡 − 𝐼𝐼𝑉𝑉𝑡𝑡 = 𝐽𝐽𝑉𝑉𝑡𝑡).         
 
The advantage of using RBV to estimate integrated variance is that it is robust to the finite and small 
magnitude of jumps. However, the RBV has some drawbacks in empirical applications. In practice, if 
the sampling frequency is not sufficiently high (finite sample), instead of having an adjacent diffusive 
intraday return, it might have an adjacent (large) jump intraday return that could lead to an upward bias 
in the RBV. Another drawback of RBV is that the presence of zero returns that are multiplied twice 
(with the previous and the following intraday return) will have caused a downward bias in the RBV.  

tW

0tJ ≠
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To address the aforementioned issues, Andersen et al. (2012) proposed two estimators of integrated 
variance that are more robust to jumps in finite samples as the alternative to RBV. These two new jump-
robust estimators are the median realized volatility,  
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑡𝑡 = � 𝜋𝜋
6−4√3+𝜋𝜋

� 𝑀𝑀
𝑀𝑀−2

�∑ 𝑚𝑚𝑚𝑚𝑚𝑚��𝑟𝑟𝑡𝑡,𝑖𝑖−1�, �𝑟𝑟𝑡𝑡,𝑖𝑖�, �𝑟𝑟𝑡𝑡,𝑖𝑖+1��𝑀𝑀−1
𝑖𝑖=2

2               (5) 
 
and minimum realized volatility, 
 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑡𝑡 = � 𝜋𝜋

𝜋𝜋−2
� 𝑀𝑀

𝑀𝑀−1
�∑ 𝑚𝑚𝑚𝑚𝑚𝑚��𝑟𝑟𝑡𝑡,𝑖𝑖�, �𝑟𝑟𝑡𝑡,𝑖𝑖+1��𝑀𝑀−1

𝑖𝑖=1
2                                   (6) 

 
By applying scaling factors and manipulating short overlapping blocks, both estimators demonstrate 
better efficiency properties compared to RBV. Under the presence of a jump, minRV automatically 
discards a (large) jump return using the square of the minimum of a given block with two consecutive 
intraday absolute returns, and the computation will fully consider the adjacent non-jump (diffusive) 
return while medRV uses the square of the median of the block with three consecutive intraday absolute 
returns. This approach is referred to as one-sided and two-sided truncation neighboring returns for 
minRV and medRV, respectively. The nearest neighbor truncation approach serves as an endogenous 
control for the local level of volatility, improving the robustness of the estimators with the assumption 
that the returns within each block are I.I.D. Gaussian. Besides, it allows for the asymptotic distribution 
theory, which can shrink the effect of jumps at a quicker asymptotic rate than RBV. In the effort to 
obtain reliable results, all three jump-robust realized volatilities that consist of the RBV, medRV, and 
minRV are considered in this study.    
 
Vector Heterogeneous Autoregressive (VHAR) Model 
 
To analyze the potential volatility transmission patterns among the Islamic equities, the univariate HAR 
(Corsi, 2009) approach is extended to a multivariate version to model the joint behavior of the series as 
used by Bubák et al. (2011) and Soucek and Todorova (2013). In the multivariate version of the HAR 
(also known as vector HAR, VHAR), the volatility forecasts are of linear functions containing the daily, 
weekly, and monthly realized volatilities.   
 
The general form of the VHAR specification, which models the vector of Cholesky factors using 
realized volatility, VHAR (RV) model, is given as follows 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) = 𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚) 𝜀𝜀𝑘𝑘,𝑡𝑡; 

  𝜀𝜀𝑡𝑡|𝛺𝛺𝑡𝑡−1~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,1)                                                                        (7) 
 
where the subscript 𝑘𝑘 = 1, 2  represent the first and second markets respectively, 𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) , 𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  and 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  are the one day lagged daily, weekly (5 days) and monthly (22 days) realized volatility vectors 

respectively, and  are assumed to be Gaussian white noise 𝛼𝛼0 is an 𝑛𝑛 × 1 vector of constants, 𝛼𝛼𝑘𝑘
(⋅)is 

an 𝑛𝑛 × 1 vector of parameters. The weekly and monthly realized volatility estimators are computed as 
𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) = 1
5
∑ 𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)5
𝑖𝑖=1  and𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) = 1
22
∑ 𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)22
𝑖𝑖=1 , respectively.   

 
 
 

tε
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VHAR-JR Model 
 
The VHAR (RV) model in equation (7) using the realized volatility as the volatility proxy can be 
replaced with the jump-robust (JR) realized measures such as the realized bi-power volatility, median 
realized volatility, and minimum realized volatility estimators as follows.  
 
VHAR-JR (RBV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) = 𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚) + 𝜀𝜀𝑘𝑘,𝑡𝑡   (8) 

 
VHAR-JR (medRV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) = 𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑) 𝑚𝑚𝑒𝑒 𝑑𝑑𝑑𝑑𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑚𝑚𝑒𝑒 𝑑𝑑𝑑𝑑𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  

      + 𝛼𝛼𝑘𝑘
(𝑚𝑚) 𝑚𝑚𝑒𝑒 𝑑𝑑𝑑𝑑𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                                            (9) 

 
VHAR-JR (minRV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =   𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  

     + 𝛼𝛼𝑘𝑘
(𝑚𝑚) 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                                                      (10) 
 
where the weekly 𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) , 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  and 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑤𝑤)  and monthly 𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚) , 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚)  and 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  of the realized measures are computed as 𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) = 1
5
∑ 𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)5
𝑖𝑖=1 ,  𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) =
1
5
∑ 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)5
𝑖𝑖=1 , 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) = 1

5
∑ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)5
𝑖𝑖=1 , 𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) = 1
22
∑ 𝑅𝑅𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)22
𝑖𝑖=1 , 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) =
1
22
∑ 𝑚𝑚𝑚𝑚𝑑𝑑𝑑𝑑𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)22
𝑖𝑖=1  and 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅 𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) = 1

22
∑ 𝑚𝑚𝑚𝑚𝑚𝑚 𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)22
𝑖𝑖=1 , respectively.   

 
VHAR-CJ Model  
 
Andersen et al. (2007) take the extension of the HAR-RV-J model a step further. They developed the 
HAR-CJ model by decomposing the realized volatility of the HAR-RV model into its continuous and 
discontinuous jump variation at different time horizons. In other words, the explanatory variables of the 
HAR-RV model, such as the daily, weekly, and monthly realized volatilities, are replaced by the daily, 
weekly, and monthly continuous and discontinuous jump components. Likewise, the HAR-CJ model is 
extended into the multivariate version. The general form of the extended model Vector HAR-CJ 
(VHAR-CJ) takes the following form.  
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) = 𝛼𝛼0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  

     +  𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) + 𝛽𝛽𝑘𝑘
(𝑤𝑤)𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) + 𝛽𝛽𝑘𝑘
(𝑚𝑚)𝐽𝐽 𝜀𝜀𝑘𝑘,𝑡𝑡                                     (11) 

 
where 𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) , 𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) and 𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑤𝑤𝑤𝑤)  are the daily, weekly, and monthly continuous realized 

variation, respectively; 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) , 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) and 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  are the daily, weekly, and monthly discontinuous 
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jump variation, respectively with 𝑖𝑖 =RBV, medRV or minRV.  The weekly and monthly components 
of both continuous and discontinuous components are computed as follows 𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) = 1
5
∑ 𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)5
𝑖𝑖=1 ,  

𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1
(𝑚𝑚) = 1

22
∑ 𝐶𝐶𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)22
𝑖𝑖=1 , 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑤𝑤) = 1
5
∑ 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)5
𝑖𝑖=1  and 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) = 1
22
∑ 𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−𝑖𝑖

(𝑑𝑑)22
𝑖𝑖=1 .   

 
Similarly, the equation (11) can be written specifically as follows:  
 
VHAR-CJ (RBV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =     𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝐶𝐶𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝐶𝐶𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝐶𝐶𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  

 
    + 𝛽𝛽𝑘𝑘

(𝑑𝑑)𝐽𝐽𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛽𝛽𝑘𝑘

(𝑤𝑤)𝐽𝐽𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛽𝛽𝑘𝑘

(𝑚𝑚)𝐽𝐽𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1
(𝑚𝑚) + 𝜀𝜀𝑘𝑘,𝑡𝑡  (12)           

 
VHAR-CJ (medRV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =     𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  

  +  𝛼𝛼𝑘𝑘
(𝑚𝑚)𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) + 𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) + 𝛽𝛽𝑘𝑘
(𝑤𝑤)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1

(𝑤𝑤)  

     +  𝛽𝛽𝑘𝑘
(𝑚𝑚)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                                            (13)           
 
 VHAR-CJ (minRV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =     𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  

  +   𝛼𝛼𝑘𝑘
(𝑚𝑚)𝐶𝐶𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) + 𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑)  
     +   𝛽𝛽𝑘𝑘

(𝑤𝑤)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  +  𝛽𝛽𝑘𝑘

(𝑚𝑚)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1
(𝑚𝑚) + 𝜀𝜀𝑘𝑘,𝑡𝑡                  (14)                        

 
VHAR-RV-J Model  
 
The benchmark model (Equation (7)) assumes that the price process belongs to a continuous sample 
path variation. However, the actual price process consists of both continuous and discontinuous jump 
components. Therefore, both the continuous and discontinuous jump components contribute to the 
volatility of the price process. It has been shown earlier (in Section 3.2) that the realized variation 
estimators can be decomposed into their continuous and discontinuous jump parts. Knowing this, to 
evaluate whether the jump component can improve the forecast volatility, Andersen et al. (2007) 
proposed the HAR-RV-J by adding an explanatory variable, which is the daily discontinuous jump 
variation, into the HAR model (Equation (7)) of Corsi (2009).  Motivated by Andersen et al. (2007), 
this study generalizes the HAR-RV-J model into the multivariate version as VHAR-RV-J presented. 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =    𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤)  

     +  𝛼𝛼𝑘𝑘
(𝑚𝑚)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1

(𝑚𝑚) + 𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑖𝑖,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                            (15)           
 
where ( )

, , 1
d

i k tJV −  is the daily discontinuous jump variation with i =RBV, medRV, or minRV.  Therefore, 

another three new multivariate HAR models are proposed in this study and can be written as  
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VHAR-RV-J (RBV):   
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑  =    𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  

     +  𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑅𝑅𝑅𝑅𝑅𝑅,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                                                              (16)           
 
VHAR-RV-J (medRV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =    𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  

     +  𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                                                  (17)           

 
VHAR-RV-J (minRV): 
 

𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡
(𝑑𝑑) =   𝛼𝛼𝑘𝑘,0 + 𝛼𝛼𝑘𝑘

(𝑑𝑑)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑑𝑑) + 𝛼𝛼𝑘𝑘

(𝑤𝑤)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑤𝑤) + 𝛼𝛼𝑘𝑘

(𝑚𝑚)𝑅𝑅𝑉𝑉𝑘𝑘,𝑡𝑡−1
(𝑚𝑚)  

     + 𝛽𝛽𝑘𝑘
(𝑑𝑑)𝐽𝐽𝑉𝑉𝑚𝑚𝑚𝑚𝑚𝑚𝑅𝑅𝑉𝑉,𝑘𝑘,𝑡𝑡−1

(𝑑𝑑) + 𝜀𝜀𝑘𝑘,𝑡𝑡                                                                    (18)           

 
 

RESULT AND DISCUSSION 
 

Preliminary Analysis 
 
Table 1 shows the summary of the descriptive statistics of the in-sample return and realized variation 
measures series. Most of the indices have a positive mean return, with values close to zero. The result 
shows DJIENE is the most volatile index relative to other indices because it has the largest standard 
deviation, 1.72, while the least volatile index is DJMY25 with a standard deviation of 0.744. The 
skewness of return in all markets is approximately symmetric, with the skewness value being less than 
0.6 in modulus. However, all the realized variation measures across all markets exhibit a high degree 
of positive skewness, suggesting that the lower tail of the distribution is significantly longer at the right 
tail. The kurtosis coefficients exceeded three in the daily return and realized measures series across all 
markets, illustrating the presence of heavy-tailed behavior and a higher peak. This implies the series 
violated the normality properties, which is also supported by the results of the Jarque-Bera normality 
test at the 5 percent significance level.  As a result, the estimation is based on the student's t-distribution.  
 
Ljung-Box Q-statistic in all the standardized and squared standardized residual series up to lag 12 are 
highly significant except for the 𝑄𝑄𝐿𝐿𝐿𝐿2 (12) statistic in DJITEC. The significant sign of the standardized 
residual series, 𝑄𝑄𝐿𝐿𝐿𝐿(12) indicates the evidence of serial correlation and dependency, implying the 
conditional mean is forecastable using historical data. Whereas, the significant sign of the squared 
standardized residual series, 𝑄𝑄𝐿𝐿𝐿𝐿2 (12) reveals the presence of time-varying volatility effects in the 
series. The Augmented Dickey-Fuller (ADF) and the Phillips-Perron (PP) tests reject the null hypothesis 
of a unit root in all series across markets at the 5 percent significance level. This implies that the return 
and realized measures series are stationary, suggesting the series could be modeled directly without any 
further transformation process. The Hurst exponent, H, measures the long-range dependence (LRD) 
behavior of a time series. It is observed that the realized measures show H values are between 0.641 
and 0.991. As a result, the realized measures series are consistent across markets and exhibit LRD.   
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The Granger causality test and the unconditional correlation coefficient are conducted to capture an 
initial understanding of the causality and strength of the relationship, respectively, before exploring into 
forecasting the time-varying volatility spillover within the Islamic stock markets. Table 2 displays the 
results of the F-statistics obtained from the Granger causality test of the bivariate markets. The findings 
of the Granger causality test can be classified into three different outcomes.  First, it is found that there 
is no significant Granger causality between DJMY25 and DJINCY, implying investors may gain 
potential benefits by diversifying in these stock markets. Second, the study uncovers a significant 
unidirectional Granger causality from DJMY25 to DJIFIN and DJITLS. This suggests that the price 
movement in DJMY25 may be useful in forecasting the future volatility of DJIFIN and DJITLS but not 
vice versa.  Third, there is a significant bidirectional Granger causality found in DJMY25-DJIBSC, 
DJMY25-DJICYC, DJMY25-DJIENE, DJMY25-DJIHCR, DJMY25-DJIIDU, DJMY25-DJITEC, and 
DJMY25-DJIUTI.  The significant causality reveals a correlation between the indices, suggesting that 
any changes in one stock market could potentially affect the other. On the other hand, Table 3 shows 
the unconditional correlation coefficient of the daily return and realized variation measures between 
DJMY25 and the DJIM sectoral stock markets.  The measures of the unconditional correlation range 
from -0.0016 to 0.3996. These preliminary findings demonstrate that information is transmitted between 
the DJMY25 and DJIM sectoral indices. Therefore, it is worth further investigating these equities 
markets in terms of their volatility spillover effects meticulously to enhance the estimation and 
forecasting of volatility. 
 
bivariate markets. The findings of the Granger causality test can be classified into three different 
outcomes.  First, it is found that there is no significant Granger causality between DJMY25 and 
DJINCY, implying investors may gain potential benefits by diversifying in these stock markets. Second, 
the study uncovers a significant unidirectional Granger causality from DJMY25 to DJIFIN and 
DJITLS. This suggests that the price movement in DJMY25 may be useful in forecasting the future 
volatility of DJIFIN and DJITLS but not vice versa.  Third, there is a significant bidirectional Granger 
causality found in DJMY25-DJIBSC, DJMY25-DJICYC, DJMY25-DJIENE, DJMY25-DJIHCR, 
DJMY25-DJIIDU, DJMY25-DJITEC, and DJMY25-DJIUTI.   
 
The significant causality reveals a correlation between the indices, suggesting that any changes in one 
stock market could potentially affect the other. On the other hand, Table 3 shows the unconditional 
correlation coefficient of the daily return and realized variation measures between DJMY25 and the 
DJIM sectoral stock markets.  The measures of the unconditional correlation range from -0.0016 to 
0.3996. These preliminary findings demonstrate that information is transmitted between the DJMY25 
and DJIM sectoral indices. Therefore, it is worth further investigating these equities markets in terms 
of their volatility spillover effects meticulously to enhance the estimation and forecasting of volatility. 
 
Empirical Analysis 
 
Table 4 presents the typology for ten models that consist of the benchmark model and nine proposed 
models derived from three main specifications estimated using the 5-minutely intraday data in this 
study.  The three main specifications are the VHAR-JR, VHAR-RV-J, and VHAR-CJ specifications.  
The benchmark model is the VHAR (RV) (model A01), which uses the standard realized volatility as 
the volatility proxy.   
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Table 1    
 
Summary of Descriptive Statistics of the Return and Realized Variation Measures 
 

  Mean S. D. Skew Kurt JB QLB QLB2 ADF PP Hurst  Mean S. D. Skew Kurt JB QLB QLB2 ADF PP Hurst 
Panel A: DJMY25  Panel B: DJIBSC 

Ret 0.01 0.74 -0.29 9.2 3451 21 811 -41 -41 0.61  -0.01 1.63 -0.39 10.9 5626 40 2145 -32 -37 0.60 
RVol 0.55 0.31 2.64 15.8 1.7×104 317 501 -4 -28 0.99  0.60 1.20 7.28 78.1 5.2×105 373 738 -12 -34 0.90 

RBVol 0.50 0.28 2.33 11.1 7824 356 422 -4 -26 0.99  0.50 1.15 8.80 111.2 1.1×106 314 683 -14 -30 0.87 
MedRVol 0.49 0.27 2.25 9.8 5898 387 425 -4 -25 0.99  0.52 1.27 8.14 96.5 8.0×105 334 710 -14 -32 0.87 
MinRVol 0.49 0.28 2.45 12.4 1.0×104 416 379 -4 -29 0.99  0.52 1.29 8.44 102.3 9.1×105 323 629 -14 -32 0.86 

ContRBVol 0.52 0.28 2.28 10.6 7003 364 395 -4 -27 0.99  0.51 1.16 8.09 93.9 7.6×105 328 754 -10 -31 0.88 
ContMedRVol 0.51 0.28 2.24 10.1 6287 398 384 -4 -27 0.99  0.52 1.24 8.19 99.5 8.6×105 316 816 -9 -31 0.88 
ContMinRVol 0.52 0.29 2.19 9.7 5696 415 383 -4 -28 0.99  0.52 1.25 8.41 104.1 9.4×105 305 657 -9 -31 0.87 

JumpRBVol 0.09 0.20 4.65 50.9 2.1×105 39 223 -18 -44 0.72  0.19 0.43 6.10 54.6 2.5×105 634 584 -5 -59 0.88 
JumpMedRVol 0.10 0.22 4.25 41.0 1.4×105 44 348 -17 -44 0.68  0.14 0.31 8.42 118.1 1.2×105 289 134 -12 -51 0.79 
JumpMinRVol 0.08 0.21 5.22 55.1 2.5×105 26 291 -43 -43 0.64  0.13 0.32 8.13 105.7 9.7×105 210 115 -14 -50 0.77 

Panel C: DJICYC  Panel D: DJIENE 
Ret 0.03 1.04 -0.44 8.1 2355 15 2430 -45 -45 0.54  -0.02 1.72 -0.57 12.0 7305 36 2449 -35 -46 0.55 

RVol 0.20 1.13 23.65 699.0 4.3×107 170 19 -17 -39 0.70  0.30 1.03 13.82 260.8 6.0×106 405 352 -15 -32 0.80 
RBVol 0.15 0.90 19.12 427.1 1.6×107 293 104 -15 -32 0.69  0.23 1.00 16.34 343.7 1.0×107 498 416 -15 -30 0.74 

MedRVol 0.14 0.89 18.68 413.1 1.5×107 349 170 -16 -30 0.68  0.22 1.05 16.60 357.1 1.1×107 496 398 -15 -31 0.72 
MinRVol 0.15 0.93 19.39 453.3 1.8×107 372 155 -16 -31 0.68  0.22 1.06 16.70 358.5 1.1×107 497 388 -15 -31 0.72 

ContRBVol 0.15 0.89 19.23 433.5 1.7×107 266 82 -15 -32 0.69  0.23 0.99 15.63 315.1 8.8×106 396 340 -15 -31 0.75 
ContMedRVol 0.15 0.88 18.94 425.0 1.6×107 346 170 -15 -30 0.69  0.23 1.02 15.45 305.1 8.2×106 412 456 -15 -31 0.73 
ContMinRVol 0.15 0.92 19.53 460.4 1.9×107 330 129 -15 -31 0.69  0.23 0.99 15.51 310.8 8.5×106 387 328 -15 -31 0.74 

JumpRBVol 0.08 0.74 39.91 1740.2 2.7×108 12 0.01 -45 -46 0.67  0.11 0.34 9.63 121.5 1.3×106 580 850 -7 -49 0.85 
JumpMedRVol 0.08 0.78 40.77 1794.2 2.9×108 8 0.01 -15 -30 0.66  0.10 0.33 10.11 135.2 1.6×106 610 1023 -7 -48 0.84 
JumpMinRVol 0.07 0.78 41.15 1817.7 3.0×108 6 0.01 -15 -31 0.64  0.10 0.34 10.07 130.5 1.5×106 533 78 -7 -48 0.86 

Panel E: DJIFIN  Panel F: DJIHCR 
Ret 0.01 1.68 -0.48 26.3 4.9×104 55 2105 -32 -55 0.53  0.03 0.95 -0.32 12.2 7541 30 1167 -34 -43 0.55 

RVol 0.39 0.91 11.11 161.3 2.3×106 372 414 -8 -36 0.90  0.25 0.97 24.04 715.1 4.5×107 134 20 -18 -38 0.74 
RBVol 0.29 0.75 16.49 329.2 9.6×106 456 575 -13 -23 0.88  0.18 0.70 19.06 420.9 1.6×107 208 82 -16 -27 0.72 

MedRVol 0.29 0.81 15.46 282.4 7.1×106 272 414 -12 -26 0.87  0.18 0.74 19.19 423.7 1.6×107 223 103 -16 -27 0.72 
MinRVol 0.28 0.81 16.74 332.5 9.8×106 419 483 -15 -23 0.87  0.17 0.71 18.99 422.1 1.6×107 205 79 -16 -26 0.72 

ContRBVol 0.30 0.79 15.40 279.5 6.9×106 292 356 -12 -28 0.88  0.19 0.70 19.03 417.2 1.5×107 202 94 -16 -27 0.72 
ContMedRVol 0.30 0.79 15.00 265.1 6.2×106 251 327 -12 -27 0.88  0.18 0.71 18.80 406.7 1.5×107 210 103 -16 -28 0.72 
ContMinRVol 0.30 0.79 15.83 301.6 8.1×106 384 386 -13 -24 0.87  0.18 0.69 18.84 413.1 1.5×107 201 101 -16 -26 0.72 

JumpRBVol 0.15 0.52 11.36 214.2 4.0×106 353 17 -6 -51 0.89  0.11 0.69 39.01 1692.0 2.6×108 51 0.06 -23 -47 0.70 
JumpMedRVol 0.14 0.52 11.34 210.0 3.9×106 321 17 -7 -50 0.87  0.11 0.68 38.97 1689.0 2.5×108 35 0.04 -31 -46 0.68 
JumpMinRVol 0.14 0.59 13.76 275.3 6.7×106 441 485 -7 -51 0.90  0.11 0.70 39.31 1710.0 2.6×108 32 0.04 -45 -46 0.69 

 
 
  

 
 
 

(continued) 
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  Mean S. D. Skew Kurt JB QLB QLB2 ADF PP Hurst  Mean S. D. Skew Kurt JB QLB QLB2 ADF PP Hurst 
Panel G: DJIIDU Panel H: DJINCY 

Ret 0.02 1.24 -0.47 9.7 4056 27 1879 -32 -39 0.59  0.02 0.92 -0.44 9.1 3436 41 2030 -34 -42 0.58 
RVol 0.34 0.91 11.65 192.9 3.3×106 399 1040 -14 -26 0.82  0.23 0.65 19.07 456.9 1.9×107 909 549 -12 -27 0.78 

RBVol 0.28 0.89 14.41 275.7 6.7×106 565 995 -12 -25 0.78  0.19 0.63 21.28 530.8 2.5×107 1135 676 -17 -26 0.76 
MedRVol 0.29 0.96 13.68 253.1 5.7×106 483 935 -11 -26 0.77  0.18 0.68 21.70 551.4 2.7×107 1157 554 -15 -26 0.75 
MinRVol 0.29 0.99 14.20 272.6 6.6×106 530 933 -12 -26 0.77  0.18 0.68 21.45 537.8 2.6×107 1163 681 -15 -26 0.75 

ContRBVol 0.28 0.88 13.91 259.5 5.9×106 496 1013 -12 -25 0.78  0.19 0.63 21.36 538.1 2.6×107 1078 549 -17 -26 0.76 
ContMedRVol 0.29 0.94 14.04 268.2 6.4×106 495 950 -12 -26 0.78  0.18 0.63 21.12 527.2 2.5×107 1096 555 -17 -26 0.76 
ContMinRVol 0.30 0.97 14.50 285.1 7.2×106 518 918 -12 -26 0.78  0.18 0.63 21.07 525.6 2.5×107 1084 553 -17 -26 0.76 

JumpRBVol 0.12 0.32 6.91 63.1 3.4×105 261 420 -5 -47 0.88  0.09 0.21 8.36 97.9 8.3×107 552 1332 -6 -48 0.83 
JumpMedRVol 0.09 0.27 9.22 110.1 1.1×106 241 598 -8 -45 0.75  0.09 0.21 8.20 95.2 7.8×105 550 1365 -7 -48 0.82 
JumpMinRVol 0.08 0.26 9.65 120.3 1.3×106 144 219 -11 -45 0.75  0.08 0.21 8.14 94.0 7.6×105 531 1357 -7 -48 0.82 

Panel I: DJITEC  Panel J: DJITLS 
Ret 0.03 1.26 -0.32 8.3 2540 13 2184 -44 -44 0.55  -0.01 1.07 0.26 17.3 1.8×104 46 1289 -35 -45 0.54 

RVol 0.17 0.60 24.75 812.6 5.9×107 137 0 -13 -49 0.75  0.44 0.62 12.19 194.0 3.3×106 209 623 -15 -24 0.83 
RBVol 0.12 0.21 25.36 861.6 6.6×107 224 17 -11 -50 0.81  0.38 0.60 14.51 249.0 5.5×106 281 469 -15 -22 0.78 

MedRVol 0.11 0.29 32.30 1263.0 1.4×108 107 3 -13 -47 0.78  0.37 0.62 14.80 258.0 5.9×106 292 529 -15 -21 0.76 
MinRVol 0.12 0.27 25.72 864.7 6.7×107 162 19 -12 -48 0.78  0.37 0.64 14.73 255.2 5.8×106 255 445 -15 -22 0.77 

ContRBVol 0.12 0.21 25.12 850.3 6.4×107 235 17 -11 -50 0.81  0.39 0.59 14.58 253.5 5.7×106 280 455 -15 -22 0.78 
ContMedRVol 0.12 0.29 32.21 1259.0 1.4×108 132 5 -12 -47 0.78  0.38 0.59 14.39 247.1 5.4×106 288 552 -11 -21 0.78 
ContMinRVol 0.12 0.49 40.75 1793.0 2.9×108 49 0 -45 -46 0.70  0.39 0.62 13.85 225.8 4.5×106 250 392 -11 -23 0.78 

JumpRBVol 0.08 0.57 24.46 782.8 5.5×107 102 0 -17 -48 0.72  0.12 0.29 6.66 73.6 4.6×106 418 167 -6 -50 0.96 
JumpMedRVol 0.07 0.53 22.71 679.8 4.1×107 122 0 -16 -48 0.71  0.12 0.29 6.51 70.9 4.3×105 397 193 -7 -52 0.96 
JumpMinRVol 0.06 0.36 14.60 307.0 8.3×106 392 28 -8 -53 0.767  0.10 0.29 6.66 75.6 4.9×105 440 195 -8 -50 0.97 

Panel K: DJIUTI            
Ret -0.03 1.26 0.22 21.6 3.1×104 139 1682 -11 -42 0.59  

 
 
 
 
 
 

RVol 0.47 0.80 13.46 256.0 5.8×106 425 357 -15 -33 0.85  
RBVol 0.40 0.73 18.19 427.5 1.6×107 665 432 -15 -28 0.80  

MedRVol 0.39 0.76 18.63 448.8 1.8×107 629 321 -15 -27 0.80  
MinRVol 0.39 0.78 18.72 446.4 1.8×107 689 424 -15 -29 0.79  

ContRBVol 0.40 0.70 17.79 413.6 1.5×107 614 403 -15 -28 0.81  
ContMedRVol 0.40 0.75 18.53 452.3 1.8×107 544 241 -15 -27 0.80  
ContMinRVol 0.41 0.75 16.77 365.6 1.2×107 560 567 -15 -29 0.80  

JumpRBVol 0.13 0.43 10.41 158.9 2.2×106 663 87 -7 -53 0.88  
JumpMedRVol 0.13 0.43 10.73 169.6 2.5×106 648 81 -7 -55 0.89  
JumpMinRVol 0.11 0.40 11.50 198.7 3.5×106 421 29 -9 -50 0.89  

Notes: 
(1). Figures in bold denote the rejection of relevant Ho at 5% significance level. (2. S.D., Skew, Kurt, JB, QLB, QLB2, ADF and PP denote the standard deviation, skewness, kurtosis, Jarque Bera 
normality test, Ljung-Box Q statistics, Ljung-Box Q2 statistics, Augmented Dickey-Fuller test and Phillips-Perron test, respectively.  QLB and QLB2 tests are set at lag 12 which commonly the 
selection of number of lags is between 10 and 20. (2). The null hypothesis for the following tests is as: JB test, Ho: The series has a normal distribution; QLB, Ho: The series has no serial correlation; 
QLB2, Ho: The series has no volatility clustering effect; ADF and PP tests, Ho:  The series has no unit root (unit root is also known as non-stationary). (3).  Hurst exponent, H is to measure the long-
range dependency with H<0.5, H=0.5 and H>0.5 indicate the series is anti-persistent, follows a random walk and persistent, respectively.  Skewness equals to zero indicates the series is normal 
distributed and symmetric, negative value indicates skewed left and positive value indicates skewed right.  Kurtosis equals to three indicates standard normal distributed, more than three indicates 
heavy-tailed and less than three indicates light-tailed. 
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Table 2  
 
Results of the Bivariate Granger Causality Test 
 

Lag Ret RVol RBVol 
Med 
RVol 

Min 
RVol 

Cont 
RBVol 

Cont 
Med 
RVol 

Cont 
Min 

RVol 

Jump 
RBVol 

Jump 
Med 
RVol 

JumpMin 
RVol 

 Panel A: DJMY25 - DJIBSC 
1 49.41 87.35 61.79 82.33 67.36 74.60 79.70 66.25 4.079 2.611 3.430 

 272.6 34.69 37.46 49.10 50.92 43.37 48.59 46.22 8.494 5.182 5.030 
5 7.934 7.619 6.455 7.541 5.903 7.505 7.671 6.376 5.091 10.76 9.105 

 59.84 7.364 4.213 4.470 4.697 4.179 2.990 3.461 3.175 1.615 1.465 
22 3.641 3.168 2.964 3.248 2.856 3.319 3.305 2.893 2.537 6.132 5.811 

 15.33 3.001 2.623 3.235 3.142 2.449 2.203 2.315 4.443 2.465 1.215 
 Panel B: DJMY25 - DJICYC 

1 7.147 69.65 23.52 18.19 13.51 23.12 15.94 13.12 116.9 102.5 124.7 
 221.9 3.352 4.865 4.079 3.626 6.064 3.217 5.743 0.027 25.41 0.012 

5 1.390 25.07 12.43 9.836 6.610 11.32 7.522 6.520 35.87 34.90 45.62 
 47.92 13.75 3.537 4.038 3.384 4.037 2.999 4.250 52.25 52.27 54.87 
22 1.729 6.939 4.008 3.313 2.464 3.722 2.656 2.754 11.40 11.38 12.98 

 12.54 3.806 1.184 1.425 1.325 1.241 1.108 1.293 12.80 12.38 12.46 
 Panel C: DJMY25 - DJIENE 

1 15.45 25.29 14.91 15.79 11.21 20.79 19.71 13.60 0.005 0.064 1.745 
 267.9 2.267 4.953 6.414 4.495 6.902 7.260 6.845 6.450 4.465 3.318 

5 2.743 8.500 8.009 6.737 5.212 9.520 6.626 5.602 0.479 0.448 0.792 
 58.75 2.667 1.184 1.760 1.349 1.821 1.592 2.632 3.801 3.311 4.231 
22 2.827 2.251 2.221 2.335 1.829 2.462 2.186 2.051 1.451 1.132 0.982 

 14.45 1.821 1.057 1.080 0.970 1.207 1.010 1.215 2.562 2.306 1.949 
 Panel D: DJMY25 - DJIFIN 

1 2.213 34.70 2.507 10.25 0.763 14.44 12.65 1.207 1.437 1.325 41.77 
 202.7 2.458 1.157 3.520 1.567 4.239 2.795 1.414 6.137 5.919 3.996 

5 0.979 10.24 5.961 7.165 3.544 10.22 8.001 4.446 3.144 5.672 9.251 
 47.99 5.517 1.167 3.728 1.319 3.189 3.417 1.649 1.115 2.546 14.78 
22 4.703 3.390 3.063 3.358 2.943 3.784 3.122 2.419 2.602 3.017 4.295 

 13.48 4.395 0.876 1.502 0.864 1.195 1.320 0.951 7.514 6.908 8.680 
 Panel E: DJMY25 - DJIHCR 

1 10.96 70.22 15.41 15.96 9.6203 15.23 15.70 10.81 119.8 105.7 133.5 
 159.0 5.156 2.565 2.366 1.616 3.314 2.288 4.011 0.142 26.58 0.198 

5 1.695 23.19 9.489 8.693 5.608 8.880 7.146 6.077 37.93 35.28 46.07 
 33.75 13.88 3.527 5.455 4.349 3.687 4.063 4.919 52.78 54.62 54.74 
22 1.715 6.853 3.035 2.897 2.097 2.847 2.321 2.385 12.03 11.17 13.66 

 8.900 3.790 1.094 1.646 1.487 1.095 1.286 1.383 12.94 12.70 12.49 
 Panel F: DJMY25 - DJIIDU 

1 23.74 34.79 17.69 24.15 16.00 21.61 21.39 15.94 2.963 1.897 0.329 
 273.6 6.189 5.579 8.521 6.678 7.138 7.462 5.690 13.61 3.804 19.74 

5 4.607 6.813 3.824 4.192 2.862 4.757 3.631 2.721 0.988 1.325 1.061 
 58.30 3.564 1.647 1.231 1.106 1.550 0.584 0.476 8.917 6.813 7.737 
22 2.301 2.335 1.310 1.486 1.123 1.549 1.662 1.390 2.063 2.326 3.023 

 15.24 1.807 1.852 2.132 1.788 1.779 1.885 1.462 3.759 2.539 4.429 

 
 
 (continued) 
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Lag Ret RVol RBVol 
Med 
RVol 

Min 
RVol 

Cont 
RBVol 

Cont 
Med 
RVol 

Cont 
Min 

RVol 

Jump 
RBVol 

Jump 
Med 
RVol 

JumpMin 
RVol 

Panel G: DJMY25 - DJINCY 
1 14.45 1.491 1.397 1.597 0.987 1.802 2.115 1.404 0.389 0.100 0.011 

 175.4 0.005 0.257 0.494 0.393 0.286 0.684 0.370 4.501 3.431 7.726 
5 1.805 2.689 2.012 1.542 1.523 2.121 1.273 1.937 0.197 0.507 0.295 

 37.89 0.086 0.393 0.673 0.570 0.279 0.518 0.304 5.095 5.402 4.150 
22 1.429 1.040 0.959 0.921 0.915 0.928 0.725 0.951 1.065 1.553 0.705 

 10.56 0.638 0.613 0.704 0.695 0.567 0.642 0.514 1.956 2.340 0.002 
 Panel H: DJMY25 - DJITEC 

1 11.10 181.0 144.2 119.8 175.1 136.9 95.15 42.14 82.70 71.59 0.592 
 241.5 22.31 8.810 10.47 26.83 7.063 18.15 0.022 0.288 22.84 1.430 

5 2.080 32.04 30.44 22.47 29.80 27.47 21.14 7.830 19.08 13.50 0.748 
 51.91 3.168 5.948 4.628 4.441 5.064 9.872 81.38 36.50 31.08 1.360 
22 2.211 6.265 7.176 4.653 5.613 6.043 5.719 4.491 7.666 6.379 1.203 

 14.20 1.364 2.196 1.678 1.649 2.104 3.159 20.16 9.815 8.570 1.279 
 Panel I: DJMY25 - DJITLS 

1 29.03 150.6 2.071 1.954 1.819 2.158 2.122 1.738 0.583 3.081 1.030 
 93.81 15.58 1.618 3.000 2.619 1.109 3.066 2.421 0.000 0.291 0.352 

5 4.395 27.51 4.765 3.467 4.910 4.377 3.063 4.591 1.871 1.303 0.797 
 24.16 16.38 0.693 1.845 1.307 0.696 1.437 0.658 1.700 1.691 0.210 
22 2.186 7.659 2.626 2.387 2.463 2.100 1.792 2.374 1.118 1.489 1.507 

 7.563 5.211 2.274 2.610 2.106 1.936 2.005 1.477 2.062 2.002 1.621 
 Panel J: DJMY25 - DJIUTI 

1 16.23 33.09 11.84 11.71 7.134 14.76 13.02 14.28 38.63 32.06 0.590 
 160.9 9.826 7.277 8.724 6.486 8.412 9.453 10.29 0.672 7.258 0.409 

5 2.752 6.584 5.971 4.859 3.971 6.608 4.439 0.000 6.192 6.660 1.084 
 35.78 1.511 2.304 2.509 1.901 1.999 2.173 0.012 7.745 8.462 0.722 
22 1.532 2.387 2.124 2.090 1.775 2.095 1.748 0.001 2.929 3.073 1.677 

 10.27 2.803 1.347 1.322 1.175 1.357 1.431 0.044 5.019 4.500 4.627 
Notes:  
1. The Granger analysis is performed on series that display stationarity such as the daily return and the realized measures 

series through estimation of bivariate vector autoregressive (VAR) model at the lag lengths of 1, 5 and 22.  The selection 
of lags at 1, 5 and 22 days is to correspond to the daily, weekly and monthly volatilities proxies used in the model 
specifications under the empirical analysis of this study.    
 

2. Figures in bold denote the rejection of relevant Ho at 5% significance level. 
 

3. The reported F-statistics are the Wald statistics for the joint null hypothesis of a given lag (1, 5 and 22) on the first column.  
The null hypothesis of the F-statistics reported on the first row of each lag is Ho:  DJMY25 does not Granger Cause 
Market-i (the respective sectoral market), while the second row is Ho:  Market-i (the respective sectoral market) does not 
Granger Cause DJMY25. 
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Table 3  
 
Unconditional Correlation Coefficient of Daily Return and Realised Variation Measures Series 
 

 DJMY25 
-DJIBSC 

DJMY25 
-DJICYC 

DJMY25 
-DJIENE 

DJMY25 
-DJIFIN 

DJMY25 
-DJIHCR 

DJMY25 
-DJIIDU 

DJMY25 
-DJINCY 

DJMY25 
-DJITEC 

DJMY25 
-DJITLS 

DJMY25 
-DJIUTI 

Ret 0.3996 0.1914 0.2646 0.1389 0.2002 0.3574 0.3114 0.2418 0.3637 0.3922 
RVol 0.3679 0.1092 0.1521 0.1454 0.1181 0.2201 0.102 0.1665 0.1652 0.2077 
RBVol 0.2977 0.0539 0.069 0.0051 0.0545 0.1616 0.0409 0.2247 0.0472 0.0938 
MedRVol 0.3268 0.044 0.0654 0.0192 0.0527 0.1798 0.0359 0.1808 0.0354 0.0797 
MinRVol 0.1846 0.0231 0.0346 -0.0016 0.0262 0.1008 0.0202 0.1115 0.0139 0.0348 
ContRBVol 0.3199 0.055 0.0788 0.0345 0.056 0.1688 0.0437 0.2298 0.0515 0.1012 
ContMedRVol 0.3219 0.0468 0.0756 0.0282 0.0593 0.1805 0.0394 0.1859 0.0455 0.093 
ContMinRVol 0.3132 0.0429 0.0779 -0.0001 0.052 0.175 0.038 0.1449 0.0441 0.1035 
JumpRBVol 0.1264 0.0097 0.0484 0.0391 0.0278 0.0674 0.0482 0.0128 0.0866 0.0172 
JumpMedRVol 0.0322 0.0051 0.0606 0.0508 0.0095 0.0449 0.0649 0.0301 0.0871 0.0208 
JumpMinRVol 0.033 0.007 0.0865 0.0077 0.011 0.0409 0.0556 0.041 0.0885 0.0133 

 Note: The Pearson correlation coefficients range from −1 to +1 where +1 implies a strong positive relationship, -1 implies a strong negative relationship and 0 implies there is 
no relationship between the two markets. 

 
Table 4  
 
Typology of Model Specifications  
 

Main Specification Model Name Model Code 
Benchmark model VHAR (RV) A01 

VHAR-JR 
VHAR-JR (RBV) A02 

VHAR-JR (medRV) A03 
VHAR-JR (minRV) A04 

VHAR-RV-J 
VHAR-RV-J (RBV) A05 

VHAR-RV-J (medRV) A06 
VHAR-RV-J (minRV) A07 

VHAR-CJ 
VHAR-CJ (RBV) A08 

VHAR-CJ (medRV) A09 
VHAR-CJ (minRV) A10 
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For the VHAR-JR specification, it consists of three models which are the VHAR-JR (RBV) (model 
A02), VHAR-JR (medRV) (model A03), and VHAR-JR (minRV) (model A04).  The model A02, A03 
and A04 are extended from the benchmark model by replacing the standard realized volatility using 
alternative jump-robust realized measures which are the realized bi-power volatility (RBV), median 
(medRV) and minimum (minRV) realized volatility, respectively.   
 
For the VHAR-RV-J specification, it consists of three models, which are the VHAR-RV-J (RBV) 
(model A05), VHAR-RV-J (medRV) (model A06) and VHAR-RV-J (minRV) (model A07). The model 
A05, A06 and A07 are extended from the benchmark model by inclusion of a daily jump component 
into the benchmark model which are the daily RBV, medRV and minRV, respectively.   
 
For the VHAR-CJ specification, it consists of three models, which are the VHAR-CJ (RBV) (model 
A08), VHAR-CJ (medRV) (model A09) and VHAR-CJ (minRV) (model A10). The models A08, A09 
and A10 are extended from the benchmark model by decomposing the realized volatility into its 
continuous and discontinuous jump components. These models enable readers to comprehend 
additional information about the continuous and discontinuous jump components in capturing the return 
volatility dynamic of the stock markets.  
 
Next, this study discusses the comparison of the relative performance of the various VHAR-type models 
for the in-sample estimation based on the goodness-of-fit (𝑅𝑅2 values) shown in Table 5. The results 
show that the DJMY25 values are greater than 64 percent across all the VHAR-type models. This 
signifies the overall goodness-of-fit of all models can capture well the volatility dynamic of the 
DJMY25 market across all pairwise. However, the 𝑅𝑅2 for the sectoral indices exhibit lower 𝑅𝑅2 values 
with a range within 30 percent to 50 percent (except DJICYC, DJIHCR, and DJITEC).   
 
Table 6 shows the final ranking of the ten competing models. It is found that VHAR-CJ (medRV) 
(model A09) is the best performing model, followed by VHAR-JR (medRV) (model A03) and VHAR-
JR (RBV) (model A02). On the other hand, the benchmark model (model A01) exhibits the worst 
performance, followed by VHAR-RV-J (medRV) (model A06) and VHAR-RV-J (minRV) (model 
A07). It is observed that the jump-robust realized volatilities in the VHAR-JR specification appear to 
enhance the explanatory power in the volatility dynamic relative to the benchmark model. This result 
is in line with the findings in Chin et al. (2016) and Andersen et al. (2012) in their univariate analysis 
on the conventional stock market, namely the DAX and Dow Jones 30, respectively. As for the VHAR-
RV-J specification, the inclusion of daily lagged realized jump regressors is seen to have marginally 
higher 𝑅𝑅2 values compared to the benchmark model, indicating the daily realized jump component has 
an added value to improve the predictive regression. Also, the VHAR-CJ specification seems to exhibit 
higher explanatory power of regression compared to the benchmark model and the VHAR-RV-J 
specification, but it is only closely as good as the models of the VHAR-JR specification. 
 
Out-of-Sample Forecast Evaluation 
 
Compared with the in-sample forecasting performance, this study concerns more about the out-of-
sample forecasting performance of the models for the out-of-sample predictive power, which delivers 
more significant and practical values for investors. This is due to the market players being more 
apprehensive towards the ability of a model to enhance future performance than its ability to analyse 
the past patterns. In order to make an effective evaluation of the out-of-sample forecasting   
performance, this study employs six loss functions, which are the mean squared error (MSE), mean 
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absolute error (MAE), quasi-likelihood (QLIKE), LE, heterogeneous mean squared error (HMSE), and 
heterogeneous mean absolute error (HMAE). The loss functions are used to assess the significant 
difference in the predictive performance of each volatility model as well as a post-forecasting diagnostic 
regression.  The best model produces the lowest loss value among the competing models.   
 
Table 7 shows all the six loss functions with the corresponding ranking for all volatility models across 
the pairwise, whereas Table 8 summarizes the overall ranking of all competing models across the 
pairwise based on the final score summing from the total score of all the six loss functions from Table 
7. Based on Table 8, it is observed that the benchmark model (model A01) has the lowest loss values 
in the DJMY25-DJIBSC, DJMY25-DJIHCR, DJMY25-DJIIDU, and DJMY25-DJINCY pairwise, 
indicating the benchmark model provides the best prediction on their future volatility. As for the 
DJMY25-DJIFIN and DJMY25-DJITEC pairwise, the VHAR-JR (RBV) (model A02) exhibits to be 
the superior model for forecasting its volatility. On the other hand, VHAR-CJV (medRV) (model A09) 
is found to be the best performing model in the DJMY25-DJITLS and DJMY25-DJIUTI pairwise.  
Whereas DJMY25-DJICYC and DJMY25-DJIENE pairwise are best captured by VHAR-CJVol 
(minRV) (model A10). The empirical results exhibit that there is no single superior methodology for 
the in-sample forecasting performance of each sectoral market. The finding is parallel to the work of 
Dudek et al. (2023), where different models may perform better depending on the specific market data, 
choice of the quantile estimations, and different distributional assumptions selected.  
 
As for the out-of-sample forecast evaluation, based on the overall ranking shown in the last column of 
Table 8, the benchmark model (model A01) is found to be the top-performing model, followed by the 
VHAR-CJ (RBV) model (model A08) and the VHAR-CJ (medRV) (model A09). It can be witnessed 
that the models using the standard realized volatility (model A01) and decomposition of the realized 
volatilities into its continuous and discontinuous components (models A08 and A09) as the volatility 
proxy are seen to be superior compared to the models using jump-robust realized volatilities and the 
addition of the daily jump component.  This suggests a simpler volatility model such as the VHAR (RV) 
using the standard realized volatility can capture the volatility forecast superiorly compared to those 
complex and sophisticated models that involve various regressors of realized measures. This result is 
in line with Sévi (2014), who claims that the simple yet innovative HAR model provides significantly 
better forecast evaluation compared to sophisticated models using the decomposition of realized 
variance into its positive and negative semivariances component. This can be explained by the principle 
of parsimony (Sharmaa & Vipulb, 2016), where the more parameters and more complex a model is, the 
larger the penalty factor; hence, a more parsimonious model is more rewarded than a complicated 
model.   
  
On the other hand, the VHAR-CJ specification, which decomposes the realized volatility into its 
continuous and discontinuous components, seems to exhibit higher explanatory power of regression 
compared to the VHAR-JR and VHAR-RV-J specifications. The empirical literature (Bollerslev et al, 
2016) suggests that the continuous and discontinuous jump variation sample paths of returns exhibit 
distinct information about volatility dynamics. This is due to the two components displaying different 
time series properties where the long memory of volatility is largely coming from the continuous 
component while the jumps have short-lived effects that are only useful for short-term forecasting.  
Thus, incorporating the continuous sample path and jump component measures in the volatility 
forecasting model ensures that the continuous part has a relevant predictive power to improve financial 
risk measuring, asset pricing, and financial derivatives pricing. As a result, how to separately model the 
continuous and discontinuous jump of the price process turns to be indispensable in volatility 
forecasting. 
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Table 5   
 
Model Ranking Based on R2 Values for the In-sample Estimation of VHAR-type Models across the Pairwise Models 
 

Model 

DJMY25-DJIBSC DJMY25-DJICYC DJMY25-DJIENE DJMY25-DJIFIN DJMY25-DJIHCR 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 
(Rank) 

A01 64.26 (10) 41.87 (9) 19 (10) 64.11 (10) 17.45 (10) 20 (10) 64.09 (10) 31.93 (7) 17 (10) 64.07 (10) 30.63 (10) 20 (10) 64.12 (10) 15.79 (10) 20 (10) 
A02 68.35 (4) 42.54 (3) 7 (4) 68.28 (3) 28.98 (6) 9 (5) 68.27 (3) 32.4 (1) 4 (1) 68.24 (3) 45.12 (1) 4 (1) 68.26 (3) 33.51 (5) 8 (5) 
A03 70.3 (1) 42.3 (5) 6 (3) 70.18 (1) 33 (4) 5 (2) 70.21 (1) 31.62 (8) 9 (2) 70.2 (1) 39.6 (4) 5 (2) 70.16 (1) 32.99 (6) 7 (4) 
A04 66.36 (6) 40.52 (10) 16 (9) 66.21 (6) 31.38 (5) 11 (6) 66.21 (6) 31.22 (9) 15 (8) 66.21 (6) 44.28 (2) 8 (4) 66.19 (6) 35.98 (4) 10 (6) 
A05 64.43 (7) 42.34 (4) 11 (5) 64.39 (7) 23.29 (8) 15 (7) 64.3 (7) 32.07 (2) 9 (2) 64.24 (8) 31.67 (8) 16 (8) 64.37 (7) 24.87 (7) 14 (7) 
A06 64.37 (9) 42.13 (6) 15 (7) 64.32 (9) 22.93 (9) 18 (9) 64.21 (9) 31.95 (6) 15 (8) 64.16 (9) 31.59 (9) 18 (9) 64.31 (9) 23.69 (9) 18 (9) 
A07 64.41 (8) 42.12 (7) 15 (7) 64.33 (8) 23.47 (7) 15 (7) 64.23 (8) 32.05 (3) 11 (6) 64.26 (7) 33.18 (7) 14 (7) 64.34 (8) 24.25 (8) 16 (8) 
A08 68.44 (3) 42.89 (2) 5 (2) 68.17 (4) 33.03 (3) 7 (3) 68.2 (4) 31.99 (5) 9 (2) 68.13 (4) 37.42 (6) 10 (6) 68.18 (4) 39.3 (2) 6 (2) 
A09 68.74 (2) 44.03 (1) 3 (1) 68.62 (2) 34.64 (1) 3 (1) 68.68 (2) 31.13 (10) 12 (7) 68.65 (2) 39.08 (5) 7 (3) 68.62 (2) 37.54 (3) 5 (1) 
A10 67.95 (5) 41.9 (8) 13 (6) 67.89 (5) 34.3 (2) 7 (3) 67.85 (5) 32.04 (4) 9 (2) 67.79 (5) 43.4 (3) 8 (4) 67.9 (5) 39.32 (1) 6 (2)                 

Model 

DJMY25-DJIIDU DJMY25-DJINCY DJMY25-DJITEC DJMY25-DJITLS DJMY25-DJIUTI 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 

(Rank) 

Market 1 
(Score) 

Market 2 
(Score) 

Total 
Score 
(Rank) 

A01 64.09 (10) 40.52 (6) 16 (9) 64.08 (10) 36.83 (10) 20 (10) 64.42 (10) 8.86 (8) 18 (10) 64.1 (10) 43.15 (10) 20 (10) 64.13 (10) 33.6 (10) 20 (10) 
A02 68.23 (3) 40.71 (3) 6 (1) 68.21 (3) 37.67 (1) 4 (1) 68.32 (3) 10.36 (5) 8 (4) 68.24 (3) 47.13 (4) 7 (3) 68.29 (4) 35.92 (5) 9 (4) 
A03 70.16 (1) 39.31 (8) 9 (4) 70.14 (1) 37.44 (3) 4 (1) 70.15 (1) 8.01 (9) 10 (5) 70.2 (1) 47.77 (2) 3 (1) 70.24 (1) 36.57 (3) 4 (2) 
A04 66.2 (6) 38.02 (10) 16 (9) 66.16 (6) 37.58 (2) 8 (4) 66.2 (6) 6.86 (10) 16 (8) 66.22 (6) 47.22 (3) 9 (4) 66.26 (6) 34.14 (7) 13 (6) 
A05 64.38 (7) 41.62 (1) 8 (3) 64.25 (7) 36.96 (7) 14 (7) 64.82 (7) 9.85 (6) 13 (7) 64.27 (7) 44.59 (7) 14 (7) 64.43 (7) 34.38 (6) 13 (6) 
A06 64.2 (9) 40.54 (5) 14 (7) 64.17 (9) 36.93 (8) 17 (8) 64.68 (9) 9.48 (7) 16 (8) 64.19 (9) 44.17 (8) 17 (8) 64.32 (8) 34.11 (8) 16 (8) 
A07 64.37 (8) 40.61 (4) 12 (6) 64.21 (8) 36.91 (9) 17 (8) 64.69 (8) 10.48 (4) 12 (6) 64.22 (8) 43.89 (9) 17 (8) 64.27 (9) 34.08 (9) 18 (9) 
A08 68.22 (4) 40.73 (2) 6 (1) 68.17 (4) 36.99 (6) 10 (6) 68.19 (4) 13.81 (1) 5 (1) 68.1 (4) 47 (5) 9 (4) 68.36 (3) 36.93 (2) 5 (3) 
A09 68.59 (2) 40.13 (7) 9 (4) 68.65 (2) 37.27 (5) 7 (3) 68.6 (2) 12.52 (3) 5 (1) 68.65 (2) 48.77 (1) 3 (1) 68.77 (2) 36.94 (1) 3 (1) 
A10 67.94 (5) 39.3 (9) 14 (7) 67.86 (5) 37.31 (4) 9 (5) 67.97 (5) 12.99 (2) 7 (3) 67.84 (5) 45.55 (6) 11 (6) 67.98 (5) 36.37 (4) 9 (4) 

 Note: Each volatility model is given a score number with 1 up to 10 based on the R2 values in ascending order for each market across the pairwise.  The score number 1 denotes the volatility 
model with the highest R2 value while the score number 10 denotes the volatility model with the lowest R2 value. 
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Table 6  
 
In-sample Final Ranking Across VHAR-type Models 
 

Model 

DJMY25- 
DJIBSC 

DJMY25- 
DJICYC 

DJMY25- 
DJIENE 

DJMY25- 
DJIFIN 

DJMY25- 
DJIHCR 

DJMY25- 
DJIIDU 

DJMY25- 
DJINCY 

DJMY25- 
DJITEC 

DJMY25- 
DJITLS 

DJMY25- 
DJIUTI Final 

Score 
(Final 

Ranking) 
Total Score 

(Rank) 

Total 
Score 

(Rank) 

Total 
Score 

(Rank) 

Total 
Score 

(Rank) 

Total Score 
(Rank) 

Total Score 
(Rank) 

Total Score 
(Rank) 

Total Score 
(Rank) 

Total Score 
(Rank) 

Total Score 
(Rank) 

A01 19 (10) 20 (10) 17 (10) 20 (10) 20 (10) 16 (9) 20 (10) 18 (10) 20 (10) 20 (10) 190 (10) 
A02 7 (4) 9 (5) 4 (1) 4 (1) 8 (5) 6 (1) 4 (1) 8 (4) 7 (3) 9 (4) 66 (3) 
A03 6 (3) 5 (2) 9 (2) 5 (2) 7 (4) 9 (4) 4 (1) 10 (5) 3 (1) 4 (2) 62 (2) 
A04 16 (9) 11 (6) 15 (8) 8 (4) 10 (6) 16 (9) 8 (4) 16 (8) 9 (4) 13 (6) 122 (6) 
A05 11 (5) 15 (7) 9 (2) 16 (8) 14 (7) 8 (3) 14 (7) 13 (7) 14 (7) 13 (6) 127 (7) 
A06 15 (7) 18 (9) 15 (8) 18 (9) 18 (9) 14 (7) 17 (8) 16 (8) 17 (8) 16 (8) 164 (9) 
A07 15 (7) 15 (7) 11 (6) 14 (7) 16 (8) 12 (6) 17 (8) 12 (6) 17 (8) 18 (9) 147 (8) 
A08 5 (2) 7 (3) 9 (2) 10 (6) 6 (2) 6 (1) 10 (6) 5 (1) 9 (4) 5 (3) 72 (4) 
A09 3 (1) 3 (1) 12 (7) 7 (3) 5 (1) 9 (4) 7 (3) 5 (1) 3 (1) 3 (1) 57 (1) 
A10 13 (6) 7 (3) 9 (2) 8 (4) 6 (2) 14 (7) 9 (5) 7 (3) 11 (6) 9 (4) 93 (5) 

 Note: The final ranking of the competing models is determined by summing up the Total Score columns (from Table 3) across all pairwise models.  The lowest the sum of the final score, the 
highest the final ranking of the models.  
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Table 7    
 
Out-of-Sample Forecast Evaluation Results where RVt  is the Volatility Proxy 
 
Loss 
Function MSE MAE QLIKE LE HSME HMAE 

Model Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Panel A: DJMY25-DJIBSC 
A01 0.0026  (1) 0.0051 (1) 0.0338 (1) 0.0296 (1) -0.9301 (1) -2.2058 (1) 0.0708 (1) 0.5194 (1) 0.0846 (6) 2.1567 (7) 0.2284 (5) 0.9312 (7) 
A02 0.0041 (8) 0.011 (7) 0.0383 (8) 0.0337 (2) -0.9115 (8) -2.0255 (6) 0.0926 (8) 0.5415 (2) 0.0748 (2) 0.9052 (1) 0.2227 (3) 0.6092 (3) 
A03 0.0045 (9) 0.0114 (8) 0.0408 (9) 0.0355 (6) -0.9004 (9) -1.8631 (9) 0.108 (9) 0.6835 (6) 0.0795 (5) 0.9184 (3) 0.2317 (6) 0.6033 (2) 
A04 0.0046 (10) 0.0116 (9) 0.0412 (10) 0.0351 (5) -0.8987 (10) -1.8829 (8) 0.1116 (10) 0.6511 (5) 0.0846 (7) 0.9113 (2) 0.2371 (10) 0.5927 (1) 
A05 0.0028  (3) 0.0096 (5) 0.0343 (3) 0.0399 (9) -0.9278 (4) -2.0551 (5) 0.0748 (4) 0.8059 (9) 0.0894 (10) 4.4442 (9) 0.2337 (9) 1.2279 (9) 
A06 0.0028  (4) 0.0081 (2) 0.0344 (4) 0.0402 (10) -0.9278 (3) -2.0811 (3) 0.0747 (3) 0.8222 (10) 0.089 (9) 4.9453 (10) 0.2334 (8) 1.3242 (10) 
A07 0.0028  (2) 0.0085 (3) 0.0343 (2) 0.0379 (7) -0.9284 (2) -2.0996 (2) 0.0738 (2) 0.7375 (7) 0.0881 (8) 3.6743 (8) 0.2328 (7) 1.1696 (8) 
A08 0.0037  (5) 0.0118 (10) 0.0366 (5) 0.0382 (8) -0.9182 (5) -1.7658 (10) 0.085 (5) 0.7753 (8) 0.0784 (4) 1.6203 (6) 0.2235 (4) 0.8512 (6) 
A09 0.0039  (7) 0.0095 (4) 0.0374 (7) 0.0343 (3) -0.9151 (7) -1.9911 (7) 0.0873 (7) 0.6247 (4) 0.071 (1) 1.1428 (5) 0.2175 (1) 0.7343 (5) 
A10 0.0038 (6) 0.01 (6) 0.037 (6) 0.0345 (4) -0.9168 (6) -2.0764 (4) 0.0865 (6) 0.5453 (3) 0.0769 (3) 1.0337 (4) 0.2224 (2) 0.7077 (4) 

Panel B: DJMY25-DJICYC 
A01 0.0026 (1) 0.0012 (7) 0.0338 (1) 0.011 (10) -0.93 (1) -3.385 (3) 0.0711 (1) 4.2509 (7) 0.0855 (7) 7.6714 (10) 0.2293 (5) 2.9058 (10) 
A02 0.0041 (8) 0.0012 (3) 0.0382 (8) 0.0077 (6) -0.9121 (8) -3.4891 (2) 0.0918 (8) 1.9599 (3) 0.0749 (2) 6.0806 (7) 0.2225 (4) 1.6743 (6) 
A03 0.0045 (9) 0.0012 (6) 0.0406 (9) 0.0073 (3) -0.901 (9) -3.6032 (1) 0.1072 (9) 1.8925 (2) 0.0794 (5) 4.9622 (5) 0.231 (6) 1.4333 (3) 
A04 0.0046 (10) 0.0012 (5) 0.041 (10) 0.007 (1) -0.8994 (10) -3.2039 (4) 0.1107 (10) 1.2681 (1) 0.0848 (6) 4.2119 (4) 0.2367 (10) 1.4122 (1) 
A05 0.0028 (3) 0.0014 (8) 0.0344 (3) 0.0098 (8) -0.9277 (3) -1.6903 (5) 0.0754 (3) 3.9431 (5) 0.0911 (10) 6.0956 (8) 0.2355 (9) 2.3767 (8) 
A06 0.0028 (4) 0.0014 (10) 0.0345 (4) 0.0103 (9) -0.9277 (4) -0.4565 (9) 0.0754 (4) 5.1273 (8) 0.0907 (9) 6.586 (9) 0.2353 (8) 2.6776 (9) 
A07 0.0028 (2) 0.0014 (9) 0.0343 (2) 0.0097 (7) -0.9283 (2) -1.6378 (7) 0.0741 (2) 3.9865 (6) 0.0891 (8) 5.5937 (6) 0.2338 (7) 2.2777 (7) 
A08 0.0036 (5) 0.0012 (4) 0.0363 (5) 0.0076 (5) -0.9194 (5) -1.4898 (8) 0.0829 (5) 5.8766 (10) 0.0768 (4) 3.7634 (1) 0.2216 (2) 1.5064 (4) 
A09 0.0038 (7) 0.0011 (2) 0.0371 (7) 0.0071 (2) -0.9163 (7) -0.3812 (10) 0.0856 (6) 5.3668 (9) 0.0703 (1) 3.7757 (2) 0.2157 (1) 1.4135 (2) 
A10 0.0038 (6) 0.0011 (1) 0.0369 (6) 0.0073 (4) -0.9173 (6) -1.6646 (6) 0.0857 (7) 3.5326 (4) 0.0766 (3) 4.1826 (3) 0.2221 (3) 1.5078 (5) 

 
 
 
 
 
 

(continued) 
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Loss 
Function 

MSE MAE QLIKE LE HSME HMAE 

Model 
Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Panel C: DJMY25-DJIENE 
A01 0.0026 (1) 0.0019 (8) 0.0337 (1) 0.0109 (7) -0.9303 (1) -4.3282 (2) 0.0703 (1) 2.6238 (6) 0.0834 (6) 18.916 (8) 0.2271 (5) 4.4676 (7) 
A02 0.0041 (8) 0.0018 (2) 0.0382 (8) 0.0094 (4) -0.9117 (8) 2.2378 (7) 0.0922 (8) 2.4073 (3) 0.0746 (2) 12.6721 (2) 0.2223 (4) 3.6661 (5) 
A03 0.0045 (9) 0.0018 (1) 0.0407 (9) 0.0093 (3) -0.9005 (9) 27.2917 (10) 0.1079 (9) 2.5434 (4) 0.0793 (5) 12.7872 (3) 0.2313 (8) 3.6635 (4) 
A04 0.0046 (10) 0.0019 (6) 0.0412 (10) 0.0091 (1) -0.899 (10) 4.3811 (8) 0.1112 (10) 2.3788 (2) 0.0845 (7) 13.1196 (4) 0.2368 (10) 3.5516 (2) 
A05 0.0028 (3) 0.0018 (3) 0.0343 (3) 0.0118 (10) -0.9281 (4) -4.2604 (4) 0.0741 (4) 2.9015 (10) 0.0876 (10) 21.5806 (10) 0.2318 (9) 4.9714 (10) 
A06 0.0028 (4) 0.0019 (7) 0.0343 (4) 0.0115 (9) -0.9281 (3) -4.289 (3) 0.0739 (3) 2.7914 (9) 0.0869 (9) 20.4057 (9) 0.2311 (7) 4.7649 (9) 
A07 0.0028 (2) 0.0019 (9) 0.0342 (2) 0.011 (8) -0.9286 (2) -4.3321 (1) 0.0729 (2) 2.6382 (7) 0.086 (8) 15.4561 (7) 0.2306 (6) 4.5967 (8) 
A08 0.0037 (5) 0.0018 (4) 0.0365 (5) 0.0095 (5) -0.9186 (5) -0.2839 (6) 0.0837 (5) 2.5555 (5) 0.0753 (3) 13.4756 (5) 0.2204 (2) 3.5526 (3) 
A09 0.0039 (7) 0.002 (10) 0.0375 (7) 0.0101 (6) -0.9148 (7) 9.3517 (9) 0.0875 (7) 2.7507 (8) 0.0697 (1) 14.1725 (6) 0.216 (1) 3.8959 (6) 
A10 0.0038 (6) 0.0019 (5) 0.0371 (6) 0.0092 (2) -0.9165 (6) -4.1813 (5) 0.0865 (6) 2.204 (1) 0.0756 (4) 11.3855 (1) 0.2215 (3) 3.5059 (1) 

Panel D: DJMY25-DJIFIN 
A01 0.0026 (1) 0.0013 (1) 0.0338 (1) 0.0133 (10) -0.9301 (1) -3.7834 (4) 0.0708 (1) 1.5012 (10) 0.0845 (6) 12.1327 (9) 0.2281 (5) 2.4955 (10) 
A02 0.0041 (8) 0.0016 (4) 0.0382 (8) 0.0105 (1) -0.9119 (8) -3.806 (1) 0.0922 (8) 1.1263 (1) 0.075 (2) 6.443 (1) 0.2225 (4) 1.8657 (1) 
A03 0.0045 (9) 0.0017 (8) 0.0406 (9) 0.0115 (4) -0.9008 (9) -3.6661 (10) 0.1075 (9) 1.275 (6) 0.0795 (5) 7.8935 (4) 0.2309 (6) 2.0311 (5) 
A04 0.0046 (10) 0.0016 (7) 0.0411 (10) 0.0108 (2) -0.899 (10) -3.7207 (8) 0.1113 (10) 1.1983 (2) 0.0848 (7) 7.119 (2) 0.2368 (10) 1.9518 (2) 
A05 0.0028 (3) 0.0016 (3) 0.0344 (3) 0.0127 (9) -0.9278 (3) -3.7807 (5) 0.0748 (4) 1.4479 (9) 0.0893 (10) 12.363 (10) 0.2337 (9) 2.3929 (9) 
A06 0.0028 (4) 0.0015 (2) 0.0344 (4) 0.0125 (8) -0.9278 (4) -3.7902 (3) 0.0747 (3) 1.4254 (8) 0.0888 (9) 12.0607 (8) 0.2333 (7) 2.3635 (8) 
A07 0.0028 (2) 0.0016 (5) 0.0343 (2) 0.0109 (3) -0.9282 (2) -3.8018 (2) 0.0741 (2) 1.2162 (4) 0.0888 (8) 9.2988 (5) 0.2336 (8) 1.9867 (4) 
A08 0.0036 (5) 0.0017 (9) 0.0363 (5) 0.0115 (5) -0.9194 (5) -3.7541 (7) 0.0827 (5) 1.2161 (3) 0.0764 (3) 9.6201 (6) 0.2208 (2) 1.9862 (3) 
A09 0.0038 (7) 0.0017 (10) 0.0373 (7) 0.0125 (7) -0.9159 (7) -3.6819 (9) 0.086 (6) 1.3246 (7) 0.07 (1) 10.1858 (7) 0.2161 (1) 2.134 (7) 
A10 0.0038 (6) 0.0016 (6) 0.037 (6) 0.0115 (6) -0.917 (6) -3.7617 (6) 0.0861 (7) 1.2446 (5) 0.0765 (4) 7.4381 (3) 0.2222 (3) 2.0401 (6) 

Panel E: DJMY25-DJIHCR 
A01 0.0026 (1) 0.0024 (1) 0.0338 (1) 0.0184 (7) -0.9301 (1) -2.862 (2) 0.0709 (1) 1.0932 (4) 0.085 (7) 4.2439 (8) 0.2287 (5) 1.472 (8) 
A02 0.0041 (8) 0.0046 (7) 0.0382 (8) 0.0147 (1) -0.9119 (8) -2.97 (1) 0.0921 (8) 0.5738 (1) 0.0749 (2) 0.9139 (3) 0.2225 (3) 0.6599 (3) 
A03 0.0045 (9) 0.0048 (10) 0.0406 (9) 0.0155 (3) -0.9008 (9) -2.7876 (4) 0.1075 (9) 0.7921 (3) 0.0795 (5) 0.8925 (2) 0.2311 (6) 0.6548 (2) 
A04 0.0046 (10) 0.0048 (9) 0.0411 (10) 0.0149 (2) -0.8992 (10) -2.8019 (3) 0.111 (10) 0.6223 (2) 0.0848 (6) 0.6393 (1) 0.2367 (10) 0.5804 (1) 
A05 0.0028 (3) 0.0043 (4) 0.0344 (4) 0.021 (9) -0.9278 (3) -0.5937 (10) 0.0752 (4) 2.8369 (9) 0.0906 (10) 4.2608 (9) 0.2351 (9) 1.4885 (9) 
A06 0.0028 (4) 0.0041 (3) 0.0344 (3) 0.0217 (10) -0.9278 (4) -1.1339 (9) 0.075 (3) 3.0759 (10) 0.0898 (9) 4.9935 (10) 0.2342 (8) 1.6394 (10) 
A07 0.0028 (2) 0.004 (2) 0.0343 (2) 0.0198 (8) -0.9283 (2) -1.8771 (6) 0.074 (2) 2.7478 (8) 0.0887 (8) 3.2515 (7) 0.2337 (7) 1.465 (7) 
A08 0.0036 (5) 0.0047 (8) 0.0364 (5) 0.016 (5) -0.9193 (5) -2.1411 (5) 0.0831 (5) 1.1952 (5) 0.0769 (3) 1.2233 (5) 0.2218 (2) 0.7274 (5) 
A09 0.0038 (7) 0.0045 (6) 0.0372 (7) 0.0165 (6) -0.9161 (7) -1.4556 (8) 0.0859 (6) 1.3509 (6) 0.0702 (1) 1.2725 (6) 0.2161 (1) 0.7513 (6) 
A10 0.0038 (6) 0.0044 (5) 0.0369 (6) 0.0156 (4) -0.9171 (6) -1.4689 (7) 0.0861 (7) 1.7224 (7) 0.077 (4) 1.1979 (4) 0.2225 (4) 0.7094 (4) 

(continued) 
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Loss 
Function 

MSE MAE QLIKE LE HSME HMAE 

Model 
Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Panel F: DJMY25-DJIIDU 
A01 0.0026 (1) 0.001 (1) 0.0337 (1) 0.0104 (1) -0.9303 (1) -3.1523 (2) 0.0704 (1) 0.3814 (3) 0.084 (6) 1.2668 (7) 0.2276 (5) 0.7494 (7) 
A02 0.0041 (8) 0.0022 (8) 0.0383 (8) 0.0122 (5) -0.9117 (8) -3.1093 (4) 0.0923 (8) 0.3548 (2) 0.0749 (2) 0.7666 (3) 0.2227 (3) 0.5842 (3) 
A03 0.0045 (9) 0.0022 (9) 0.0407 (9) 0.013 (8) -0.9006 (9) -3.0512 (9) 0.1079 (9) 0.4169 (6) 0.0795 (5) 0.784 (5) 0.2315 (7) 0.5886 (4) 
A04 0.0046 (10) 0.0024 (10) 0.0412 (10) 0.0128 (7) -0.8989 (10) -3.0613 (8) 0.1114 (10) 0.3953 (4) 0.0849 (7) 0.753 (1) 0.2371 (10) 0.5776 (2) 
A05 0.0028 (3) 0.0015 (6) 0.0343 (4) 0.014 (10) -0.9281 (3) -3.0698 (6) 0.0743 (4) 0.5522 (10) 0.0886 (10) 2.2249 (10) 0.2329 (9) 0.9393 (10) 
A06 0.0028 (4) 0.0011 (3) 0.0343 (3) 0.0127 (6) -0.9281 (4) -3.0876 (5) 0.0741 (3) 0.5178 (9) 0.0878 (9) 2.0438 (9) 0.232 (8) 0.9124 (9) 
A07 0.0028 (2) 0.0011 (2) 0.0342 (2) 0.0116 (4) -0.9287 (2) -3.1364 (3) 0.0728 (2) 0.4171 (7) 0.0861 (8) 1.47 (8) 0.2308 (6) 0.7855 (8) 
A08 0.0037 (5) 0.0021 (7) 0.0366 (5) 0.0137 (9) -0.9186 (5) -2.9972 (10) 0.0842 (5) 0.5061 (8) 0.0773 (4) 1.1949 (6) 0.2227 (2) 0.7085 (6) 
A09 0.0038 (7) 0.0014 (5) 0.0373 (7) 0.0111 (3) -0.9153 (7) -3.0648 (7) 0.0869 (6) 0.4038 (5) 0.0705 (1) 0.7688 (4) 0.2166 (1) 0.6051 (5) 
A10 0.0038 (6) 0.0013 (4) 0.0372 (6) 0.0106 (2) -0.9162 (6) -3.1622 (1) 0.0873 (7) 0.2949 (1) 0.077 (3) 0.7617 (2) 0.2231 (4) 0.537 (1) 

Panel G: DJMY25-DJINCY 
A01 0.0026 (1) 0.002 (1) 0.0338 (1) 0.0115 (1) -0.9302 (1) -3.0258 (1) 0.0706 (1) 0.3292 (2) 0.0846 (6) 1.0143 (7) 0.2282 (5) 0.6857 (7) 
A02 0.0041 (8) 0.0044 (8) 0.0382 (8) 0.0137 (7) -0.912 (8) -2.8721 (8) 0.0919 (8) 0.3624 (4) 0.0749 (2) 0.4833 (6) 0.2224 (4) 0.4718 (6) 
A03 0.0045 (9) 0.0045 (9) 0.0406 (9) 0.0142 (9) -0.9009 (9) -2.789 (9) 0.1074 (9) 0.4265 (9) 0.0795 (5) 0.431 (2) 0.2311 (6) 0.4521 (4) 
A04 0.0046 (10) 0.0045 (10) 0.0411 (10) 0.0143 (10) -0.8993 (10) -2.7724 (10) 0.1108 (10) 0.4351 (10) 0.0848 (7) 0.4495 (3) 0.2367 (10) 0.4602 (5) 
A05 0.0028 (3) 0.0028 (4) 0.0344 (3) 0.0137 (8) -0.9279 (3) -2.9871 (4) 0.0749 (3) 0.4102 (8) 0.0897 (10) 1.3244 (9) 0.2342 (9) 0.7803 (10) 
A06 0.0028 (4) 0.0027 (2) 0.0345 (4) 0.0136 (6) -0.9278 (4) -2.9913 (3) 0.0749 (4) 0.4046 (7) 0.0894 (9) 1.3401 (10) 0.2341 (8) 0.7777 (9) 
A07 0.0028 (2) 0.0027 (3) 0.0344 (2) 0.0133 (4) -0.9283 (2) -2.9957 (2) 0.074 (2) 0.3932 (6) 0.0884 (8) 1.2692 (8) 0.2335 (7) 0.7589 (8) 
A08 0.0036 (5) 0.004 (5) 0.0365 (5) 0.0131 (2) -0.9191 (5) -2.9431 (5) 0.0834 (5) 0.3238 (1) 0.0773 (4) 0.4735 (4) 0.2222 (3) 0.4372 (2) 
A09 0.0038 (7) 0.0041 (6) 0.0372 (7) 0.0132 (3) -0.9159 (7) -2.9099 (6) 0.0862 (7) 0.3393 (3) 0.071 (1) 0.3309 (1) 0.2168 (1) 0.415 (1) 
A10 0.0038 (6) 0.0041 (7) 0.0368 (6) 0.0135 (5) -0.9174 (6) -2.9036 (7) 0.0856 (6) 0.3635 (5) 0.0765 (3) 0.4767 (5) 0.2214 (2) 0.4436 (3) 

Panel H: DJMY25-DJITEC 
A01 0.0027 (1) 0.0103 (4) 0.034 (1) 0.0125 (6) -0.9296 (1) 2.0928 (10) 0.072 (1) 1.8394 (6) 0.0868 (7) 2.377 (6) 0.2309 (5) 0.9128 (6) 
A02 0.0041 (8) 0.0102 (2) 0.0381 (8) 0.0108 (1) -0.912 (8) -2.3493 (1) 0.0921 (8) 0.5092 (1) 0.0753 (2) 0.4976 (1) 0.2228 (4) 0.5147 (1) 
A03 0.0045 (9) 0.0103 (6) 0.0405 (9) 0.0113 (4) -0.9011 (9) -0.937 (8) 0.1072 (9) 0.7279 (4) 0.0798 (5) 0.6576 (3) 0.2313 (6) 0.5798 (3) 
A04 0.0046 (10) 0.0103 (3) 0.0411 (10) 0.0109 (2) -0.8994 (10) -1.9471 (2) 0.1109 (10) 0.5501 (2) 0.0851 (6) 0.5647 (2) 0.2371 (10) 0.5406 (2) 
A05 0.0029 (3) 0.0103 (9) 0.0347 (3) 0.0128 (8) -0.9274 (3) -1.193 (5) 0.0758 (3) 4.7719 (9) 0.0908 (10) 2.926 (7) 0.2359 (8) 0.9492 (8) 
A06 0.0029 (4) 0.0103 (8) 0.0348 (4) 0.013 (9) -0.9272 (4) -1.856 (3) 0.076 (4) 2.9042 (7) 0.0905 (9) 3.9456 (9) 0.2362 (9) 1.0175 (9) 
A07 0.0028 (2) 0.0102 (1) 0.0346 (2) 0.0127 (7) -0.9279 (2) -1.1436 (6) 0.075 (2) 4.4105 (8) 0.0902 (8) 2.9998 (8) 0.2355 (7) 0.916 (7) 
A08 0.0036 (5) 0.0103 (5) 0.0362 (5) 0.0112 (3) -0.9197 (5) -1.0725 (7) 0.0825 (5) 0.6125 (3) 0.0767 (4) 0.7258 (4) 0.2212 (3) 0.5874 (4) 
A09 0.0038 (7) 0.0103 (7) 0.037 (7) 0.0118 (5) -0.9167 (7) 1.5591 (9) 0.0849 (6) 1.1781 (5) 0.0699 (1) 1.423 (5) 0.2152 (1) 0.7233 (5) 
A10 0.0037 (6) 0.0104 (10) 0.0368 (6) 0.0135 (10) -0.9176 (6) -1.2898 (4) 0.0851 (7) 5.1656 (10) 0.0759 (3) 4.5447 (10) 0.2207 (2) 1.0361 (10) 

(continued) 
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Loss 
Function 

MSE MAE QLIKE LE HSME HMAE 

Model 
Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Market 1 
(Score) 

Market 2 
(Score) 

Panel I: DJMY25-DJITLS 
A01 0.0026 (1) 0.0018 (1) 0.0338 (1) 0.0174 (6) -0.9302 (1) -1.368 (2) 0.0705 (1) 0.046 (5) 0.0843 (6) 0.0627 (7) 0.2278 (5) 0.1927 (7) 
A02 0.0041 (8) 0.0032 (6) 0.0382 (7) 0.0163 (3) -0.9119 (8) -1.3672 (3) 0.0921 (8) 0.0393 (2) 0.075 (4) 0.0401 (2) 0.2222 (4) 0.1538 (4) 
A03 0.0045 (9) 0.0038 (9) 0.0406 (9) 0.0168 (4) -0.9008 (9) -1.3594 (6) 0.1076 (9) 0.0469 (6) 0.0796 (5) 0.0428 (4) 0.2312 (6) 0.1531 (3) 
A04 0.0046 (10) 0.004 (10) 0.0411 (10) 0.0196 (7) -0.8993 (10) -1.3538 (7) 0.1109 (10) 0.0569 (7) 0.0849 (7) 0.0546 (6) 0.2367 (10) 0.1828 (6) 
A05 0.0028 (3) 0.0036 (8) 0.0343 (3) 0.0286 (10) -0.9281 (4) -1.3447 (10) 0.0744 (4) 0.0927 (10) 0.089 (10) 0.1271 (10) 0.2333 (9) 0.3044 (10) 
A06 0.0028 (4) 0.0034 (7) 0.0343 (4) 0.028 (9) -0.9281 (3) -1.3467 (9) 0.0741 (3) 0.0892 (9) 0.0878 (9) 0.1221 (9) 0.2323 (8) 0.2981 (9) 
A07 0.0028 (2) 0.0032 (4) 0.0342 (2) 0.0248 (8) -0.9287 (2) -1.3526 (8) 0.073 (2) 0.0762 (8) 0.0865 (8) 0.1016 (8) 0.2314 (7) 0.2657 (8) 
A08 0.0038 (5) 0.0032 (5) 0.0369 (5) 0.0161 (2) -0.9172 (5) -1.3671 (4) 0.085 (5) 0.04 (3) 0.0739 (2) 0.0416 (3) 0.2189 (2) 0.1524 (2) 
A09 0.0041 (7) 0.0031 (3) 0.0383 (8) 0.0155 (1) -0.9122 (7) -1.3695 (1) 0.0908 (7) 0.036 (1) 0.0696 (1) 0.0373 (1) 0.2169 (1) 0.1451 (1) 
A10 0.004 (6) 0.0031 (2) 0.0376 (6) 0.017 (5) -0.9143 (6) -1.3659 (5) 0.089 (6) 0.0448 (4) 0.0741 (3) 0.0529 (5) 0.2198 (3) 0.165 (5) 

Panel J: DJMY25-DJIUTI 
A01 0.0026 (1) 0.0009 (1) 0.0337 (1) 0.0236 (8) -0.9303 (1) -1.8598 (6) 0.0698 (1) 0.2177 (9) 0.0819 (6) 0.8343 (10) 0.2254 (5) 0.5309 (9) 
A02 0.0041 (8) 0.0012 (6) 0.0383 (8) 0.0209 (4) -0.9115 (8) -1.8644 (3) 0.0925 (8) 0.186 (4) 0.0741 (2) 0.6019 (4) 0.2214 (2) 0.4407 (4) 
A03 0.0045 (9) 0.0013 (9) 0.0407 (9) 0.0195 (1) -0.9002 (9) -1.8613 (4) 0.1082 (9) 0.1739 (2) 0.0791 (5) 0.4962 (1) 0.2308 (8) 0.3931 (1) 
A04 0.0046 (10) 0.0014 (10) 0.0412 (10) 0.0218 (6) -0.8987 (10) -1.851 (10) 0.1115 (10) 0.2042 (6) 0.0841 (7) 0.6587 (6) 0.2362 (10) 0.4568 (5) 
A05 0.0028 (3) 0.0012 (5) 0.0342 (4) 0.0236 (7) -0.9282 (4) -1.8571 (8) 0.0739 (4) 0.2152 (7) 0.0873 (10) 0.7264 (7) 0.2311 (9) 0.5061 (7) 
A06 0.0028 (4) 0.0011 (3) 0.0341 (2) 0.0238 (9) -0.9283 (3) -1.8581 (7) 0.0735 (3) 0.216 (8) 0.0861 (9) 0.7657 (8) 0.2297 (7) 0.518 (8) 
A07 0.0028 (2) 0.0012 (8) 0.0341 (3) 0.0244 (10) -0.9287 (2) -1.8539 (9) 0.0725 (2) 0.2274 (10) 0.0846 (8) 0.8174 (9) 0.229 (6) 0.533 (10) 
A08 0.0037 (5) 0.0011 (4) 0.0365 (5) 0.0207 (3) -0.9186 (5) -1.8657 (2) 0.0843 (5) 0.1831 (3) 0.0787 (4) 0.5952 (3) 0.223 (4) 0.4365 (3) 
A09 0.0039 (7) 0.0011 (2) 0.0375 (7) 0.0197 (2) -0.9151 (7) -1.873 (1) 0.0873 (7) 0.1658 (1) 0.0715 (1) 0.5076 (2) 0.2177 (1) 0.4119 (2) 
A10 0.0038 (6) 0.0012 (7) 0.0372 (6) 0.0215 (5) -0.9162 (6) -1.8609 (5) 0.0872 (6) 0.1967 (5) 0.0773 (3) 0.6552 (5) 0.2227 (3) 0.4594 (6) 

 
Notes: 1. Each volatility model is given a score number of 1 up to 10 based on the average loss value in ascending order for each market across the pairwise.  The score number 1 denotes the 

volatility model with the lowest average loss value while the score number 10 denotes the volatility model with the highest average loss.   
 
           2. Certain loss values within the market seem to have similar numerical value but given different rankings is due to the issue of accuracy of decimal places shown in this table.  In actual, 

their loss values are dissimilar with very small difference in magnitude, thus, they are given different ranking. 
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Table 8    
 
Final Ranking across Pairwise and Overall Ranking of the Out-of-Sample Forecast Evaluation 
 

Pairwise 
DJMY25- 
DJIBSC 

DJMY25- 
DJICYC 

DJMY25- 
DJIENE 

DJMY25- 
DJIFIN 

DJMY25- 
DJIHCR 

DJMY25- 
DJIIDU 

DJMY25- 
DJINCY 

DJMY25- 
DJITEC 

DJMY25- 
DJITLS 

DJMY25- 
DJIUTI 

Overall 
Score  

(Overall 
Rank) Model 

Final Score  
(Final 
Rank) 

Final Score  
(Final 
Rank) 

Final Score  
(Final 
Rank) 

Final Score  
(Final 
Rank) 

Final Score  
(Final 
Rank) 

Final Score  
(Final 
Rank) 

Final Score  
(Final Rank) 

Final Score  
(Final Rank) 

Final Score  
(Final Rank) 

Final Score  
(Final 
Rank) 

A01 33 (1) 63 (4) 53 (2) 59 (4) 46 (1) 36 (1) 34 (1) 54 (3) 43 (2) 58 (3) 479 (1) 
A02 58 (3) 65 (5) 61 (4) 47 (1) 53 (2) 62 (5) 77 (8) 45 (1) 59 (5) 61 (4) 588 (4) 
A03 81 (9) 67 (7) 74 (6) 84 (10) 71 (7) 89 (9) 89 (9) 75 (7) 79 (7) 67 (6) 776 (8) 
A04 87 (10) 72 (9) 80 (9) 80 (9) 74 (8) 89 (9) 105 (10) 69 (6) 100 (10) 100 (10) 856 (10) 
A05 79 (8) 73 (8) 80 (9) 77 (8) 83 (9) 85 (8) 74 (7) 76 (8) 91 (9) 75 (8) 793 (9) 
A06 76 (6) 87 (10) 76 (8) 68 (6) 83 (9) 72 (6) 70 (6) 79 (9) 83 (8) 71 (7) 765 (7) 
A07 58 (3) 65 (5) 62 (5) 47 (1) 61 (4) 54 (3) 54 (4) 60 (4) 67 (6) 79 (9) 607 (6) 
A08 76 (6) 58 (3) 53 (2) 58 (3) 58 (3) 72 (6) 46 (2) 53 (2) 43 (2) 46 (2) 563 (2) 
A09 58 (3) 56 (2) 75 (7) 76 (7) 67 (6) 58 (4) 50 (3) 65 (5) 39 (1) 40 (1) 584 (3) 
A10 54 (2) 54 (1) 46 (1) 64 (5) 64 (5) 43 (2) 61 (5) 84 (10) 56 (4) 63 (5) 589 (5) 

 Note: The scores for the 6 loss functions in Table 7 are summed and the final ranking of the models are based on these total scores. The model with the lowest total score is identified as the best 
model.
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CONCLUSION 
 
The main aim of this study is to investigate a methodology for improving the dynamic of stock return 
volatility based on the theory of realized volatility (RV) and the theoretical framework of heterogeneous 
market hypothesis (HMH). The RV is known to be a consistent, efficient, and unbiased proxy of the 
unobservable return volatility, while HMH captures the heterogeneity in the market and long memory 
in the time series. This study offers a comprehensive comparison of in-sample estimation and out-of-
sample volatility performance, utilizing ten multivariate RV-based models that effectively capture the 
long memory property, which significantly impacts market efficiency and predictability. The estimation 
of the parameters is performed through a simple ordinary least squares (OLS) regression, while the 
computation of the realized variation measures is computed from the 5-minutely data of the Malaysian 
Islamic stock index and global Islamic sectoral stock indices. The findings of this study exhibit that all 
nine proposed models have outperformed the benchmark model, VHAR (RV), in the in-sample 
estimation. On the other hand, for out-of-sample volatility forecasting, the benchmark model is found 
to be the best performing model. More than that, this study shows that using a volatility proxy of 
standard realized volatility and breaking down realized volatility into its continuous and discontinuous 
jump components gives us more information than just using jump-robust realized volatilities and adding 
the daily jump regressor to the benchmark model when predicting volatility in Islamic stock markets. 
Overall, the findings shows that a simple autoregressive specification mimicking long memory and 
using standard realized volatility as volatility proxy does not perform significantly worse than more 
complicated models in including the various realized variation measures. To provide a more generalized 
and reliable inferences of a superior volatility forecasting model, the methodology used in this study 
can be extended to account for different timespans of a more recent dataset, different distributional 
assumptions, different market data, different sampling frequencies and the incorporation of other 
possible methodologies, such as adding the multivariate conditional volatility modeling and its various 
extensions. The findings of this study may provide useful insights for policymakers, academic 
researchers, and market investors that have practical applications in market risk regulation, portfolio 
management, option strategy formulation, and pricing. 
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