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SUMMARY

This paper proposes a new heuristic approach for solving optimal discrete-valued control problems. We
itlustrate the approach with an existing hybrid power system model. The problem of choosing an operating
schedule to minimize gencrator, battery, and switching costs is first posed as a mixed discrete dynamic opti-
mization problem. Then, 4 discrete filled function method is employed in conjunction with 4 computational
optimal control technique to solve this problem. Computational results indicate that this approach is robust,
cfficient, and can successfully identify a near-global solution for this complex applied optimization problem
despite the presence of multiple local optima. Copyright © 2011 John Wiley & Sons, Lid.
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1. INTRODUCTION

The aim of this paper is to develop a new algorithm for finding global solutions of optimal discrete-
valued control problems. We demonstrate the applicability of the proposed algorithm in the context
of a nonlinear constrained optimal discrete-valued control problem that is known to readily yield
locally optimal solutions. The problem is to determine an optimal operating schedule for a hybrid
power system.

A hybrid power system is a stand-alone electrical power system incorporating conventional (i.e.,
hydrocarbon powered) generators, renewable energy sources, and energy storage devices. Such sys-
tems are vital for electrification in remote areas, where grid-connected infrastructure is not available
and fuel is expensive. Renewable energy sources, such as photovoltaic (PV) arrays and wind tur-
bines are used to supplement the energy produced by the generators, thereby reducing fuel demand
and maintenance costs. However, the contribution of the renewable sources to the total energy out-
put varies considerably throughout the day. For this reason, battery banks are typically used to store
excess energy generated from both conventional and renewable resources [1].

Apart from the start-up costs, the dominant running costs of a hybrid power system are asso-
ciated with diesel generators and battery banks. The operating cost of a diesel generator depends
on fuel consumption, maintenance costs, and loading. Frequent starts of the diesel generator from
cold and running the generator for long hours at a low load increase engine wear and reduce fuel
efficiency. On the other hand, incomplete charging and prolonged operation of a battery bank at a
low charge state are two of the major factors limiting the battery bank life span. In fact, studies have
shown that diesel generators and battery banks are likely to have significantly shortened lifetimes

*Correspondence 1o: Volker Rehbock, Department of Mathematics and Statistics, Curtin University, GPO Box U1987,
Perth, WA 6845, Australia.
“E-mail: rehbock @ maths.curtin.edu.au

Copyright © 2011 John Wiley & Sons, Ltd.



OPTIMAL DISCRETE-VALUED CONTROL 5717

when operated under non-ideal conditions [1-3]. Hence, an cfficient generator operating schedule
is required to ensure a continuous electricity supply at the load, while at the same time keeping
operating costs to a minimum. We adopt the model developed in [3], which is based on a hybrid
power system consisting of a diesel generator as the main component, with a PV array providing
additional energy and a battery bank for storage. The work in [3] concentrated on developing a
mathematical model for hybrid power system operation and the application of a specialized optimal
control technique to optimize the operation of the model. Further investigation has revealed that this
optimization problem has many local minimizers.

In this paper, we propose a modified time scaling transformation that results in a new problem
with less decision variables than the problem formed by the approach in [3]. Therefore, we expect
that it has fewer local minimizers and that a global solution can be obtained with less computational
effort. We then develop a new algorithm that is able to bypass locally optimal solutions and thus
yield a solution closer to the global one. This algorithm is partly based on the concept of a discrete
filled function, which has recently been proposed for the global optimization of a broad class of dis-
crete optirization problems. Note that similar algorithms for nonlinear mixed discrete optimization
problems have been suggested in [4, 5]. However, [5] deals with an entirely different application
problem and [4] only presents a very simple numerical example. Both of these papers also employ
different, less effective, filled functions. For other global methods [or optimal control problems, see
reference [6].

Our proposed approach is based on a time scaling transformation initially developed in [7]. The
earlier transformation, which aims to capture a large variety of possible switching sequences, is
discussed in [3]. However, this approach introduces a large number of artificial switches, many of
which are not utilized in the optimal solution. Consequently, the resulting optimization problem has
many local minima and some of these local minima have high objective values. Our proposed trans-
formation, like the one in [7], results in known and fixed switching instants that allow more accurate
numerical integration [7, 8].

The remainder of this paper is organized as follows. We first review the hybrid power system
model and problem formulation reported in [3). We then propose a new transformation, which con-
verts the original problem into an equivalent mixed discrete optimization problem. In Section 3,
we outline a discrete filled function method and, based on this, develop a new heuristic algorithm
to solve the problem at hand. Numerical results from the implementation of this algorithm are
presented in Section 4. Conclusions and some suggestions for future work are made in Section 5.

2. PROBLEM FORMULATION

2.1. Hybrid power system

In this section, we briefly review the dynamic model of a hybrid power system discussed in |3].
Figure 1 illustrates the configuration of the hybrid power system under consideration. It consists
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Figure 1. Schematic diagram of a hybrid power system.
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of an alternating current (AC) diesel generator, a bi-directional inverter, a PV array, and a battery
bank for energy storage. The inverter is used to convert the direct current (DC) voltage used by
the PV array and the battery bank into AC, and vice versa. It also acts as the battery charger. The
diesel generator is connected directly to the load to avoid conversion losses and thus increase the
efficiency of the power system. Other configurations involving multiple generators and/or renewable
energy sources can be readily modeled with an approach similar to that used below. The assumed
load demand profile (Figure 2) is based on data provided by the Centre for Renewable Energy and
Sustainable Technologies Australia (CRESTA) [3]. The total daily load demand is approximately
340 kWh.

We model the hybrid power system over the time horizon [0, #], where f; is the given terminal
time. Ateach r € [0, t4], there are three possible scenarios:

(i) The diesel generator is producing sufficient energy to meet the load demand, and any excess
power from the generator or PV array is directed to the battery bank.
(ii) The power from the generator is insufficient to meet the load demand, so energy produced
from the PV array is also used to supply the load. Any excess is directed to the battery bank.
(iii) The combined power output from the diesel generator and PV array is insufficient to meet
the load demand, so energy from the battery bank is required to make up the shortfall.

Let C(r) denote the charge state of the battery bank at time ¢ € [0,f]. Then, on the basis of
the above operating principles, the rate of change of the charge state is governed by the following
dynamic system:

K\ Ks[PRS? : ic(f? POl it poo) = L),
1
Cir) = KI[K3PR(,I<) :Zc(ft)) “POL S po) + KaPr@ 2 PO > Po(), (D)
1
X I:PR(t_) B %ﬂ] if PG(1) + K3 Pr(1) < PL(t),
3

and
C(0) = Cy, (2)

where Cy is the given initial charge state, Pg(t) is the power generated by the PV array at time
t, Pg(t) is the power produced by the diesel generator at time t, and Py (t) is the load demand
at time 1. K, and K, are constants of the battery model related to the charging and discharging
efficiency, respectively. For example, assuming that the maximum capacity of the battery bank 1s

Load Demand (kW)

Time (hours)

Figure 2. A typical load demand profile [3].
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100 kWh, a value of K; = 250 means that the charging efficiency near full battery charge is just
over 70% of the corresponding charging efficiency at a near empty battery state. For realistic oper-
ation, K, = 1.4, that is, only about 70% of power stored in the battery can be converted for load
use. These values of K; and K, assume the use of deep cycle lead acid batteries. The constant K3
reflects the inverter efficiency, typically about 90% (K3 == 0.9). Both P and Py, are given functions
derived from actual data supplied by CRESTA. On the other hand, Pg is the control function that is
chosen by the system operator in practice.
Because the charge state must operate within a certain range, we have the following constraints:

Cmin < C(l) < Cmax, vVt e [07 tf] (3)
and
C(t) = Cy, €]

where C; is the desired final charge state, and Cy;, and Cp,x are given constants.

Because it is difficult to continuously modify the power produced by the generator, we assume
that the generator can only operate at certain fixed fractions of its capacity. Suppose that there are
M such levels. Then we require

Pg(t)ye S ={s1,...,5m}» vt €[0,4],

where, foreachi =1,..., M, 5; denotes the power produced by the generator in mode i . According
to [3], the operating cost of the diesel generator is given by

It 100 P (¢
f Po(t)gy (—G”) dr,
0 PG,max

where Pg max is the maximum power produced by the generator and
g1(x) =2((0.2x + 0.5)°* —0.5°%) e™*1* + 0.15(1 — 7 *1¥)

is a function that reflects the fuel efficiency of a typical diesel generator. Its shape (Figure 3) is
based on data from [9], which itself is illustrated in Figure 4. Note that g; was chosen to satisfy
the requirement g, (0) = 0 and with tail behavior similar to that of the etficiency curve in Figure 4.
Note also that g; (x) values for x between 0% and 40% are not utilized because the generator is not
assumed to operate in this range.

The model in [3] also proposes the following cost term for the usage of the battery bank:
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Figure 3. Profile of function g (x).
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Figure 4. Typical [uvel elficiency of diesel generator.

where K, is a constant that represents a desired battery charge level. A desired charge level of about
80%, for example, would significantly penalize deep cycle discharges (defined as those where the
charge state of a battery drops to below 20% of its nominal capacity) that are the most damaging in
terms of battery longevity. Note that a desired charge level near 100% is not reasonable as it would
discourage the actual use of the battery bank altogether.

With these cost terms in mind, we can state the following optimal control problem.

Problem (A). Choose a discrete-valued control Pg : [0, f]] — S such that the cost function

Ot/ rPo(t)gl (IOI?P—G([)) dr +ﬁ/ r(C(t)— K4)* dr
4} 4}

G,max

is minimized subject to the dynamics (1)-(2) and the constraints (3)—(4), where « and 8 are
non-negative weights.

Problem (A) is a discrete-valued optimal control problem in which the control is restricted to
take values in a discrete set. To determine the optimal discrete-valued control, we need to determine
the order in which the different power levels are implemented (the switching sequence) and the
times at which the power levels are changed (the switching times). However, conventional compu-
tational optimal control techniques are designed for problems in which the control takes values in
a connected set, such as an interval, and hence they cannot solve Problem (A) directly. Moreover,
variable switching times are known to cause problems in the implementation of any numerical algo-
rithm [7,8]. In the next subsection, we propose a new transformation to overcome thesc difficulties.
This transformation introduces a new discrete variable to represent the switching sequence and a
new continuous variable to represent the switching times. Using this transformation, we derive a
new problem that is equivalent to Problem (A).

2.2. A modified time scaling transformation

Suppose that we allow the control to switch N times over the time horizon. Define a new time
variable r € [0, N+ 1] with the partition Py = 1{0,1,2,...,N,N+1}.Foreachi =1,...,N+1,let

vie{l,...,M}

be a discrete variable representing the mode of the generator during the i-th subinterval. Let

T
V= [Ul,,. -.~UN+1]
and V be the set of all such vectors. For each7 = 1,...,N + 1, we define a new control function
'IG (T, V) by
Us(t,Vv) = $y;» Teli —1,1).
Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2012: 33:576-594

DOI: 10.1002/0ca



OPTIMAL DISCRETE-VALUED CONTROL 581

Hence, Ug(z, V) represents Pg(1) in the new time scale. Next, u(r), the time scaling control, is
defined as a piecewise constant function with possible discontinuities at 1,2, ..., N and satisfying

0 <u(r) <ty te[0,N +1]. 5)

Let U denote the class of all valid time scaling controls satisfying (5). The original time horizon
[0, 7] is transformed into the new time horizon [0, N + 1] through the differential equation

1(t) = u(r) ©)
and
1(0) =0, )
and with the additional constraint
N+ 1) =1t (8)

Therefore, the original dynamics (1)—(2) are transformed into

K1 K3[P ) Usg(t,v)— P ) .
1 K3[ R(I(T)K)’ltr g((i)v) L(f(7))] w(r), ifUs(t, v) = PL((D)),
& K\ [K3Pr(t(7)) + Ug(z,v) — PL(t(x))] if Ug(t, v) + K3 Pr(t(7))
(r) = = u(t)
K; + C(t) z P (7)) > Us(z, v),
Ka | Prte(e = T ) iU ) + Kae0(6) < P,
©)
and
C(0) = Cy. (10)
Similarly, constraints (3) and (4) are transformed into
Cain SC (1) € Cpax, YT €[O,N +1], (11)
and
C(N +1)=Cy. (12)

After the transformation, the terms measuring the fuel cost and the operating cost of the battery are
N+l 100Ug(t, v
/ Us(t,v)g (—G(J) u(r)dr
0 PG,max

and
N+1
/ (C(v)— K4)2u(r)dr,
0

respectively. On the basis of the above discussion, we have the following problem, which is
equivalent to Problem (A).
Problem (B). Choose v € V' and u € U such that the cost function

N+1 N+1

100UG(t, v - 5

a/ Us(t, v)g1 (ﬁ) u(r)dr + B / (C(1) — Kq)~u(r)dr
0 PG,max 0

is minimized subject to the dynamics (6)—(10) and the constraints (11)—(12), where « and 8 are

non-negative weights.
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2.3. Penalizing frequent switching

Frequent switching is undesirable in practice because it significantly increascs mechanical wear.
However, there is no mechanism in Problem (B) to discourage a control schedule that frequently
switches between generator modes. Hence, we would also like to minimize the term

N+1
/0 &2(u(r))dr, (13)

where
22(x) = ((x +0.01)%2° —0.0192%) 5%,

The function g is illustrated in Figure 5. Note that its shape is chosen so that the objective
term (13) severely penalizes an operating schedule that runs any generator mode for a nonzero dura-
tion of less than 15 min, while not penalizing a zero mode duration and only lightly penalizing a
duration of 1 h or greater. Our new problem is stated below.

Problem (C). Choose v € V and u € U such that the cost function

N+1 / _ ‘
/ {(xUG(r,v)gl (M) u(t) + B(C(x) — Ka)u(r) + ygz(u(r))} dr
0

PG,max

is minimized subject to dynamics (6)—(10) and the constraints (11)-—-(12), where «, 8, and y are non-
negative weights. Calibration of the model with a real hybrid power system would allow appropriate
values for these weights to be chosen, but the means for doing so were not available to the authors
of [3] at the time. Instead, values for «, 8, and y were chosen so that each respective objective term
had a significant influence on the final solution.

Note that the hybrid power system model developed in [3] and presented here attempts to capture
most of the significant cost issues present in real hybrid power systems with the aim of identifying
the best possible operating policies that may be achieved in an idealized deterministic environment.
These optimal policies can then be used as guidance for the design and control of actual systems. In
contrast, most other hybrid power system models in the literature focus mainly on the control of the
system with little emphasis on optimization (see, for example, [10] and the references cited therein).

In summary, Problem (C) is a mixed discrete dynamic optimization problem. To facilitate the
application of a global optimization technique, we decompose it into a bi-level optimization problem
in the next subsection.
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Figurc 5. Protile of function g2 (x).
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2.4. Decomposition of Problem (C)

In our numerical experiments, we have observed that multiple locally optimal solutions are found
when different initial switching times are used to solve the model developed in {3] using the
transformation and solution technique suggested there. Many practical discrete-valued optimal con-
trol problems exhibit similar behavior. Thus, with the transformation leading to Problem (C), we
intend to apply a global optimization technique, known as the discrete filled function method, in
an attempt to determine a global optimal solution. For this purpose, we restructure Problem (C) by
decomposing it into a bi-level optimization problem as follows.
Problem C;. Given v e V, choose a u € U such that the cost function

N+t 100U5(z, _ ‘
go(ulv) = /0 {aUc(f, v)g1 (TGG(T—V—)) u(t) + B(C (t) — KpA) u(r) + ygz(u(r))} dr
o (14)

is minimized subject to the dynamics (6)-(10) and the constraints (11)—(12), where ¢z, 8, and y are
non-negative weights.

Problem (Cy) is known as the lower level problem or the subproblem. It is simply a standard
optimal control problem where the optimal value of gg in (14) can be determined using an optimal
control software. There are many suitable softwares available for this purpose. We choose to use
MISER3.3 [11] because it is based on the concept of control parametrization and caters directly for
the piecewise constant control formulation that we employ here. It also allows the user to readily
incorporate a wide range of constraints. The second problem in the decomposition is defined as
follows.

Problem C,. Choose v € V such that the cost function

Jv) = mlll} go(u|v) (15)

is minimized.

Problem (C;) is the upper level of Problem (C). Clearly, Problem (C,) is a purely discrete opti-
mization problem. To compute the value of the objective function at v € V', we need to solve the
subproblem (C;) corresponding to v € V. Next, we propose a combined algorithm in which Prob-
lem (C;) will be solved using a discrete filled function method to determine a global solution and
subproblem (C;) is solved with MISER3.3. For our numerical computations, we have been able
to incorporate the discrete filled function method into the MISER3.3 software. The details of the
discrete filled function approach are discussed in the next section.

3. DISCRETE FILLED FUNCTION METHOD

Complex nonlinear discrete optimization problems are typically NP-hard problems. This means that
there are no efficient algorithms with polynomial-time complexity for determining an optimal solu-
tion. Thus, an intensive heuristic approach is often employed to solve them. Below, we recall some
basic definitions from the field of discrete optimization, which are given in [12,13].

3.1. Preliminaries

Let e; denote the i -th standard unit basis vector of a Euclidean vector space with its i-th component
equal to one and all other components equal to zero.

(i) For any v € V, the neighborhood of v is defined by
NW)y={weV:w=vte,i=12,...,N+1}.
(11) The set of all feasible directions at v € V' is defined by
DWV) ={deR ! vy de Nv)) Clter, ..., texi)
(i1t) d € D(v) is a descent direction of J at v if J(v + d) < J(v).

Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2012; 33:576-594
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(iv) d* € D(v) is a steepest descent direction of J at v if it is a descent direction and
J(v+d*) < J(v+d) foreach d € D(v).
(v) v* € Vis alocal minimizer of V if J(v*) < J(v) for all ve N(v*). If J(v*) < J(v) for all
v € N(v*), then v* is a strict local minimizer of J .
(vi) v* is a global minimizer of J if J(v*) < J(v) for all v € V. If J(v*) < J(v) for all
v e V\ {v*}, then v* is a strict global minimizer of J .
(vii) visavertex of V if for eachd € D(v),v+de Vandv—d ¢ V. Let V denote the set of
vertices of V.
(viii) A sequence {v(")}f.‘:ol between two distinct points v* and v** in V is a discrete path in V if
v = v¥ e — v v@ e ¥ forall i, v £ vU) fori £ j,and || v+ — v | =1
for all i. If such a discrete path exists, then v* and v** are pathwise connected in V.

Algorithm 1
Discrete Steepest Descent Method

1. Choose an initial switching sequencev e V.

2. If v is a local minimizer of J, then stop. Otherwise, find the discrete steepest descent direction
d* € D(v)of J.

3. Letv:=v+d*. Goto Step 2.

3.2. Discrete filled function

The filled function approach is a global optimization method that was introduced in the late 1980s
{14]. The filled function concept initially focused on solving continuous global optimization prob-
lems. Various filled functions with improved theorctical propertics have been developed to enhance
computational efficiency [12-21]. Refercnce [14] appears to be the first publication to adapt the
continuous filled function approach to solving discrete optimization problems. However, the filled
function proposed in [14] contains an exponential term, which makes it difficult to determine an
improved local minimizer [13]. Several improved discrete filled functions have been proposed in
[12,13,19-21] since then.

In this paper, we employ a discrete filled function method, recently developed in [13], as part of
our proposed algorithm. The basic idea of this method is as follows. We choose an initial point and
then perform a local search (Algorithm 1) to find an initial local minimizer. Then, we construct an
auxiliary function, called a filled function, at this local minimizer. By minimizing the filled function,
either an improved local minimizer is found or one of the vertices is reached; otherwise, the parame-
ters of the filled function are adjusted. This process is repeated until no better local minimizer of the
corresponding filled function is found. The final local minimizer is then taken as an approximation
of the global minimizer.

Definition 1
Let V(v*) = {ve V:v#£v*J(¥) = J(v")}. A function Gy : V i~ R is called a discrete filled
function of J at v* if it satisfies the following conditions:

(a) v* is a strict local maximizer of Gy« over V;

{(b) Gy has no local minimizer in the set V(v*}\ V;

(¢) v** € V \ V is a local minimizer of J over V if and only if v** is a local minimizer of
Gy over V.

Define
Gupa () =AW =T =plv—-v"1, (16)
where
fl—=c —yfe
Ap(¥) =y [(1—(:)(—#) +c|.
L O
Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2012: 33:576-594
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The parameter w > 0 is a sufficiently small number and O <¢ €1 is a constant. The func-
tion G, pv+(v) is a discrete filled function when certain conditions on the parameters p and p
are satisfied. Hence, as long as the conditions on p and p are satisfied, G, ,v+(V) possesses
properties (a)—(c) in Definition 1.

Definition 2
Let K be a constant satisfying
1< maxV |vi—v2 S K <00,

v],V2€

vIF#V2
where || - || is the Euclidean norm. Let 0 < £ < oo be the Lipschitz constant such that
[J(v) —J(v2) | < L vi—v2 |

for any distinct vy,v, € V.

Theorem 1
If p > 0and 0 < p < min{l, &}, then v* is a strict local maximizer of G ,«. If v* is a global
minimizer of J, then G, ,v+(v) <O forall ve V' \ {v*}.

Theorem 2
Let v** be a strict local minimizer of J with J(v**) < J(v*). If p > O is sufficiently small and
0 < p < 1, then v** is a strict local minimizer of G, 5 v~

Theorem 3 _
Let v be a strict local minimizer of G, , v and suppose that there exists a d € D(¥) such that

[ v4ad—v*||>]|v—v*|.

If p > 0 is sufficiently small and 0 < & < min{l, ﬁ}, then v is a local minimizer of J.
Corollary 1
Assume that every local minimizer of J is strict. Suppose that p > 0 is sufficiently small and
0 < < min{l, ﬁ} Then, v** € V \ V is a local minimizer of J with J(v**) < J(v*) if and
only if v** is a local minimizer of G, ,,++.

Note that a detailed convergence analysis for this method and extensive numerical tests on dis-
crete optimization problems have been given in [13]. Based on the work in [13], we propose the
following modified discrete filled function algorithm to solve our optimal control problem.

Algorithm 2
Discrete Filled Function Method

1. Choose an initial sequence vo € V', pg, to, o > 0,0 < p<1,and0 < i < 1.
Let p:= pg and p 1= po.
2. Starting from vp, minimize J(v) using Algorithm 1 to obtain a local minimizer v* of J.
3. (a) List the neighboring sequences of v* as N(v*) = {w, w,,...,w,}. Set{ :=1.
(b) Set the current switching sequence, v, := wy.
4. (a) If there exists a direction d € D(v,.) such that J(v. + d) < J(v*), then set vg ;= v, + d
and go to Step 2. Otherwise, go to (b) below.
(D) Let Dy ={d € D(vc) : J(ve +d) < J(vc) and Gy oo (Ve + d) < Gy pam (Vo))
If Dy # 0, set d* := arg mingep, {J(Vc +d) + Gppv* (Ve + d)}.
Then, set v, := v, 4+ d* and go to Step 4(a). Otherwise, go to (c) below.
© LetDy ={deD(ve): Gupv (Ve +d) <Gy pve(Ve))
If D; # 0, set d* := arg mingep, {Gp v (Vo + d)}.
Then, set v. := v; 4+ d* and go to Step 4(a). Otherwise, go to Step 5.

Copyright © 2011 John Wiley & Sons, Ltd. Optim, Control Appl. Meth. 2012; 33:576-594
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5. Let v be the obtained local minimizer of G, , v+
@TIfveV, setl:=¢+1.1f£> g, go to Step 6. Otherwise, go to Step 3(b).
(b) If ¥ ¢ V, reduce u by setting p := fij¢ and go to Step 4(b).

6. Reduce p by setting p := pp. If p < pr, terminate the algorithm. The current v* is taken as a
global minimizer of the problem. Otherwise, reset £ := 1 and go to Step 3(b).

The mechanism of this algorithm is described as follows. Firstly, the parameters of the discrete
filled function G, , .+ in (16) are initialized to suitable values in Step 1. Thesc parameters will be
reduced gradually in Steps 5 and 6 to ensure that G, , v+ eventually satisfies properties (a)—(c). The
reduction factors for cach of these parameters are also specified at Step 1.

Secondly, we choose an initial sequence vq in the feasible region and minimize the original
function J. Recall that the value of J for each switching sequence is computed using MISER3.3
according to the discussion in the previous section. The objective function value at each sequence
in the neighborhood of vq is calculated. The search direction leading to the most improved objec-
tive function value in this neighborhood is chosen in accordance with Algorithm 1. The process is
repeated until a local minimizer of J, namely v*, is found. Next, we identify the neighborhood of
v* in Step 3. One of the neighboring points of v*, denoted by v, is set to be an initial point from
which we minimize the discrete filled function G, ,+ in the following step. Note that v* is a local
maximizer of G, ,,~ here.

In Step 4, we first check to see if there exists a neighboring sequence of v, that is an improvement
over the current minimizer. If such a sequence can be found, then we use it as a starting point to
minimize the function J using Algorithm 1. Otherwise, if we can find a direction that results in an
improvement in both J and G compared with the values at v,., then we choose the direction which
gives the greatest such improvement. If such a direction does not exist, then we try to find a steepest
descent direction such that G, , v+ (Ve + d*) < G,y (Vc). If none of these directions exists, then
v, must be a local minimizer of G, , v+, so we go to Step 5.

If the local minimizer of G, , .+ is found to be a vertex of the feasible region, then we choose
the next point in N(v*) as a starting point to minimize G,, ,+ in Step 5(a). Note that the minimizer
of G, ,++ must be either an improved point or a vertex provided that the parameters are chosen
correctly. Thus, u is adjusted suitably to satisfy this criteria in Step 5(b).

If no improved sequence is found and the minimization process starting from each neighboring
sequence ends up at the vertices, then we reduce p, reset £ = 1, and minimize G, , v+ again with the
new value of p. The algorithm is repeated until the termination criterion is reached, where p reaches
its lower bound, pr . In this case, we have minimized the discrete filled function tfrom every search
direction from v* and failed to find an improved point with a range of parameter settings. v* is then
taken to be the global solution of J.

To increase the efficiency, we construct a look-up table to store each value of the objective func-
tion J computed so far. Thus, we avoid repeated application of the subproblem solution algorithm
at the same point. This is vital to the computational efficiency because computing /(v) involves
solving a complex optimal control problem, which takes considerable computational time.

Note that for some sequences, the subproblem solution algorithm may report that Problem (C;)
is infeasible. This may be because the subproblem solver (MISER3.3) does not converge or it may
actually indicate that the subproblem is infeasible at the current sequence v. In an effort to distin-
guish between these two possibilities, we re-initialize the optimization of the subproblem several
times. When five such attempts fail to yicld a fcasible solution, it is assumed that no feasible solu-
tion of the subproblem exists for this switching sequence v. An artificially high cost is assigned to
such a sequence and the algorithm is allowed to continue.

Remark 1

Note that the discrete filled function algorithm we adopted from [13] is designed for a box con-
strained (or linear inequality constrained) problem where the feasible search region is pathwise
connected and has easily identifiable vertices. These propertics are not necessarily met in the appli-
cation of the algorithm to Problem (C,) because the feasibility of a point is not known until an
attempt has been made to solve the corresponding subproblem. Although we do not remove such

Copyright © 2011 John Wiley & Sons. Ltd. Optim. Control Appl. Meth. 2012; 33:576-594
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a point from the search region directly, we assign an artificially high cost to it. It may well be the
case that the effective feasible region of Problem (C;) becomes non-convex and non-connected.
However, it is difficult to ascertain this behavior beforchand and our application of the algorithm to
Problem (C,) must hence be viewed as a heuristic approach. Nevertheless, numerical results sug-
gest that the proposed approach is capable of determining significantly improved solutions when
compared with local methods.

4. NUMERICAL RESULTS

In this section, our algorithm is applied to solve Problem (C) with four, seven, and nine switches.
A comparison between our method and the method in [3] is discussed at the end of this section.
The results were computed using a modified version of MISER3.3 in which the filled function
method repeatedly calls on the standard MISER3.3 algorithm. The experiments were conducted
on a Windows-based PC, with a CPU speed of 2.4GHz and 2GB RAM.

4.1. Results for four switches

By setting N =4, K; =250, K; =14, K3 =09, K4 =80, Co =80 kWh, Cy;, = 20 kWh,
Crax = 100 kWh, a =1, =001, y=10, ty=24, ¢ =05, po=0.1, po=01, w=1,
pL = 0.001, p=0.1, 1 =0.1, we solved the resulting Problem (C). There are 3125 potential
switching sequences for four switches with Ug € {0,8,12,16,20}.

We tested the problem with 10 random initial sequences, namely, [2, 3.4, 5,4]T, [4,5, 3,5,2]T,
[5,1,5,1,5]7,[4,3,1,5,2)7,[3,4,4,3,5]7,[2,4,5,4,4,]7,[2,4,5,4, 117, [5,4,3,2,3], [2,3,2,4,5]%,
and [4,5,3,4,5]7. We found 13 local minimizers during the application of the algorithm on these
ten starting points. For each starting sequence, the algorithm successfully identified the assumed
discrete global minimizer, [2, 3,4, 5,47, for which the cost function value is J = 58.7216005, and
the time scaling control is

7.50650, 0 < ¢ < 1,
1.42257, 1 €t < 2,
u(r) = ¢5.05190, 2 <t <3,
8.70635, 3< 1 < 4,
1.31267, 4 <t < 5.

Table I illustrates the computational results of 10 experiments using the same initial time scaling
control set at

1,0<1t<«1,
6, 1<1t<2,
u(r) =98, 2<1 <3,
6,

3<T <4,

3,4<t <5,

The number of original function evaluations and filled function evaluations are denoted by Ey and
Eg, respectively. Note that Ey does not include function evaluations that were obtained from the
look-up table.

The algorithm terminates when 1 = 1 x 107 and p = 1 x 1073, at which point no further
improvement can be made. Therefore, [2,3,4, 5, 4]T is assumed to be the globally optimal sequence
for Problem (C) with N = 4. At most, 571 switching sequences are computed during the ten appli-
cations of the algorithm, which is 18.3% of the total possible sequences. Further experiments with a
range of refined parameter values of the discrete filled function were carried out and the results also
confirmed [2,3,4,5,4]T as the best solution.

Copyright © 2011 John Wiley & Sons, Ltd. Optim. Control Appl. Meth. 2012; 33:576-594
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Table I. Numerical results for Problem (C) with four switches.

Yo V* J E_l EG
[4,5,3,5,2]7 (5,5,2,5,47 6.35559358 x 101

13.5,2,5,4]T 6.35559357 x 10!

[5, 2,4 5,47 5.88517382 x 10!

[3,2,4,5,4]T 5.87626319 x 10!

[2,3.4,5,4T 5.87216005 x 10! 350 1443
[5.1,5,1,5]T [5.2,4,3, >]T 6.03626516 x 10!

[3,2,4,3,5]T 6.02617585 % 10!

[2.3,4,3,5]T 6.01837944 x 10!

[2.4,3,2,51T 6.01491200 x 10!

[2,4,5, 3,4}£ 5.88517553 x 101

[2,4,5,4,2] 5.88517431 x 10!

[2.3,4,5,4]7 5.87216005 x 10! 571 2636
[4,3,1,5,2]T 3,2,4,5,4T 5.87626319 x 10!

(2,3,4,5,47 5.87216005 x 10! 336 1318
[3,4,4,3,5]7 [2,3,4,3,5]F 6.01837944 x 10!

[2.4,3,2,5F 6.01491200 x 10!

[2,4,5,3,4]; 5.88517553 x 10!

[2,4,5,4,2] 5.88517431 x 10!

[2.3,4,5,4T 5.87216005 x 101 420 1830
[2,4,5,4,4)7 [2,4,5,4,2]T 5.88517431 x 10!

[2,3,4,5,4]7 5.87216005 x 10! 362 1543
[2,4,5,4, 11T [2,4,5,4,2]T 5.88517431 x 10!

[2.3,4,5,4]T 5.87216005 x 10! 362 1543
[5.4,3,2,3)7 [2,4,5,4,2]T 5.88517431 x 10!

[2,3,4,5,4T 5.87216005 x 10! 363 1614
[2,3,2,4,5]7 [2,4,3,5,5]; 6.01491301 x 10!

[2,4,5,4,2] 5.88517431 x 10!

[2,3,4,5,47 5.87216005 x 10! 406 1750
[4,5,3,4,5]T [4,5,2,4,5]7 6.03626306 x 10!

(2,3,4,5,47 5.87216005 x 10! 386 1563
[2.3,4,5,4]7 [2.3,4,5,4T 5.87216005 x 10! 319 1220

24 -

—
[
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Figure 6. Optimal gencerator power profile for four switches.

From Table I, most of the local minimizers start with 8 kW, and the generator needs to run at
an average of 12 kW to achieve an optimal cost, based on the load demand and PV data. Figure 6
depicts the best operating strategy for the diesel generator: start at a lower load, which is 8 kW for
7.5 h, increase this to 12 kW for another 1.5 h until reaching maximum power at 20 kW, before

Copyright © 2011 John Wiley & Sons, Ltd. Optinm. Control Appl. Meth. 2012; 33:576-594
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Figure 7. Optimal battery charge profile for four switches.

Table II. Numerical results for Problem (C) with seven switches.

589

Yo

v*

J

[3.4,4,3,5,2,3,47T

(2,3,4,5,2,3,4,5]T

[3,4,5,2,3,4,5,2]7

[4.5,3,5,2,1,2,3)F

[2,1,4,1,5,5,1,3]T

2,3,4,3,5,2,3,47
[2.3,4,3,5,2,5,4T
[2,3.5,3,4,3,5,4]T
[3.4,2,3,4,5,5,4]T
[4,3,2,3,4,5,5,4]
[2.3,4,5,2,3,4,57
[2,4,4,5,2,5,4,5]7
[2.4,5,4,2,5,4,5T
[2,4,4,2,4,5,4,57
(3.4,3,2,4,5,4,57
[3,5,2,2,4,5,4,5T
[2.3,5,2,4,5,4,5]T
[4,2,2,3,4,5,4,5]T
[5,2,2,3,4,5,5,47
[4.3,2,3,4,5,5,4]7
[3,5,5,2,3,4,5,47
[5,4,2,3,4,3,5,4]T
[3.4,2,3,4,5,5,4T
14,3,2,3,4,5,5.4)T
[4,5,2,5,1,1,2,3]7
(5.5,2,5,2,2,3,3]7
[5,3.2,5,4,1,3,2]T
[3.4,2,5,4,5,4,3)T
[4,4,2,3,4,5,4,3]7
(5,3,2,3,4,5,4,2]T
(4,3,2,3,4,5,5,4]T
13,2,4,1,5,5.2,2]7
[3,2,4,3,1,5,4,5]7
2,3,4,3,1,5.4,5]7
[2,3,4,2,3,5,4,5T
[2,3,4,2,5,5.4,5]7
2,3,4,2,5,4,2,5]7
[3,2,5.1,4,5,5,3]7
[3,.2,4,3,4,4,5.47
[4,3,2,3,4,5,5,4 7

6.00318935 x 10!
5.87216219 x 101
5.87215981 x 10!
5.85886904 x 10!
5.85886863 x 10!
6.01837798 x 10!
5.88519036 x 10!
5.88518410 x 10!
5.88517428 x 10!
5.87628543 x 10!
5.87626332 x 101
5.87216048 x 101
5.87215986 x 101
5.87215886 x 10!
5.85886863 x 10!
5.87216035 x 101
5.87216030 x 10!
5.85886904 x 10!
5.85886863 x 10}
6.53276638 x 10'
6.38284739 x 10!
6.29162001 x 10!
5.92223690 x 10!
5.87216018 x 10!
5.87215951 x 101
5.85886863 x 101
6.01135927 x 10!
5.87626426 x 10!
5.87216039 x 10!
5.87216007 x 10!
5.87215952 x 10!
5.87215895 x 10!
5.87123116 x 10!
5.85888513 x 101
5.85886863 x 10!

Ey Eg
1733 3825
2550 5717
1659 3605
3115 5923
6233 11887

Copyright © 2011 John Wiley & Sons, Ltd.
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reducing it to 16 kW. Note that the generator is maintained at a minimum of 12 kW for almost two
thirds of the day (16.5 h) to achieve optimal performance. Figure 7 shows that the charge level of
the battery bank remains almost constant for the first 8 h, before fluctuating between 75 kWh and
85 kWh for the rest of the day.

4.2. Results for seven switches

We apply the same algorithm to find the optimal switching sequence of Problem (C) for
N =7 switches. By using u(r) =3, 7 €(0,8], for five experiments, Table II indicates that
[4,3,2,3,4,5,5,4]7 is likely to be the global minimizer as it was obtained by using five dilfer-
ent initial sequences. Thirty local minimizers were found with the proposed algorithm. Indeed,
[3,2,3,4,5,4]7 is actually the optimal switching sequence for seven switches when we take into
account the optimal u is zero over one interval of its defining partition. The optimal solution is
58.5886863, an improvement of 0.23% compared with the N = 4 case. The algorithm terminates
when t =1x 1073 and p =1 x 1072

The plots of the generator output and battery charge level are shown in Figures 8 and 9, respcc-
tively. Figure 8 shows that the generator should run at 12 kW for the first 42 min before following the
profile of the solution in Figure 6. No significant differences are observed for the battery bank pro-
files between four switches and seven switches. The computational results indicate that the filled
function algorithm is robust and efficient in solving a large scale problem with up to 390,625

Generator Power (kW)
h

0 L ¢ . : L
0 4 8 12 16 20 24

Time (hours)

Figure 8. Optimal generator power profile for seven switches.
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Figure 9. Optimal battery charge profile for seven switches.
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potential switching sequences, given that the objective was evaluated at less than 1.6% of these

potential sequences.

4.3. Results for nine switches

Table 1 depicts the numerical results of solving Problem (C) with N = 9 switches, which leads to
9,765,625 possible sequences. Five experiments were carried out using u(7) = 2.4, v € [0,10], as
the initial guess. Only 0.11% of all potential switching sequences are computed, and the algorithm
identifies 40 local minimizers. However, the algorithm fails to identify a unique global mini-
mizer of Problem (C) in this case, and objective function values in the range from 58.2438575
to 58.55886706 are generated. The best solution from Table NI is 58.2438575, which is an

Table III. Numerical results for Problem (C) with nine switches.

vo

v*

J

Ey

Eg

[5.1,5.1,5,1,5,1,5, 117

[3.4,3,4,3,4,3,4,3,4T

[5,4.3,2.5,4,3,2,5,2]T

[2,3,4,5,2,3,4,5,2,3]T

w
|3

[2,3,4,5,1,2,3,4,52]T

[5.1,4,1,5,1,5,1,5. 117
[5.2,4,2,5,1,4,1,5,1]T
[5.4,4,2,5,1,4,1,52]7
[4.4,4,2,5,1,4,3,5,3]T
[4,5,4,2,4,2,4,3,5,4]T
[5.4,5,2,4,2,4,3,5,4]T
[4,5,3,2,4,3,4,3,5,4]T
[5.4,3,2,4,3,4,3,5, 4T
[2,5,3,2,4,3,4,5,5,4]T
[3,4,3,2,4,3,4,5,5,4]T
[4,4,3,2,3,4,5,4,5 4T
[4,3,4,2,3,4,5,4,5,4]T
[5.3,5,2,1,4,5,5,4,3]T
[2,4,5,4,3,4,3,3,2, 4T
[2,4,5,4,3,4,3,3,4,3]T
[2.3,5,4,5,4,1,3,4, 117
[2,5.3,4,5,4,2,3,3,1]T
[5.2,3,4,5,4,4,2,2,3]T
[5.2,3,4,5,4,4,2,2,5]T
[5,2,3.4,5,4,4,2,4,41T
[2,3,1,4,5,4,4,1,4,4]T
[5,3,3,2,3,4,3,2,5,4]T
[5,5,2,2,3,4,3,2,5,47

(3.4.4,2,3,4,5,2,5,4]7

[4.3.5,2,3,4,5,2,5,4]T
[4,3,4,2,3,4,5,4,5,4]T
[2,.3,4,5,3,4,4,5,2,3]7
[2,3,4,5.3,5,5,4,2,3]T
[2,3.4,4,3,5,5,4,2,2]T
[3,5,4,2,3,4,5,4,3,5]T
[4,4,3,2,3,4,5,4,3,5|T
[4,4,3,2,3,4,5,4,3.21T
[5.5,3,2,1,4,5,4,3,2]7
[5,4,3,2,1,4,5,4,2,3]T
[2,3,4,3,2,3,2,4,5,3]7
[3,2,4,4,3,2,1,4,5,4]T
[2,3,4,4,3,2,1,4,5,47
[2,3,4,4,3,4,1,4,5,4]T
[2,3,4,4,2,3,1,4.5, 4T
[3,2,3,4,2,3,1,5,5,4]T

7.41514672 x 10!
6.03626730 x 10!
6.01994522 x 101
5.92987984 x 10!
5.88517493 x 10!
5.88517395 x 10!
5.87626361 x 10!
5.87626283 x 101
5.87284007 x 10!
5.85886872 x 10!
5.85886768 x 10!
5.85886703 x 10!
5.82438612 x 101
5.88517547 x 10!
5.88517367 x 10!
5.87216011 x 10!
5.87216006 x 10!
5.87215994 x 10!
5.87215930 x 10!
5.87215911 x 101
5.82784943 x 10!
5.87215987 x 10!
5.87215868 x 10!
5.85886835 x 10!
5.85886720 x 10!
5.85886703 x 10!
5.91803219 x 10!
5.87225217 x 10!
5.87216606 x 10!
5.85886787 x 10!
5.85886734 x 10!
5.85886723 % 10!
5.82438626 x 10!
5.82438575 x 10!
5.91801836 x 10!
5.87626301 x 10!
5.87216014 x 10!
5.87216012 x 10!
5.87215963 x 101
5.85886706 x 10!

9380

6674

11047

5784

16548

16177

11592

18844

9685
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improvement over the solutions with four and seven switches, by 0.81% and 0.59%, respectively.
Clearly, as expected, better solutions are obtained when the number of switches is increased. How-
ever. the algorithm appears unable to consistently yield a global solution. This is probably because
it cannot guarantee a globally optimal solution of the subproblems.

The characteristics of the generator and battery charge level for the best solution found are plot-
ted in Figures 10 and 11, respectively. In contrast with Figures 6 and 8, where the generator is
left running non-stop for 24 h, Figure 10 shows that it is favorable to turn off the generator for
48 min early in the morning to avoid excess energy waste, before re-starting it at 16 kW near 8AM,
and increasing the generator output to maximum capacity at ZPM. The suggested operating strat-
egy here is [3,2,1,4,5, 4]T (once again, the optimal u was zero over several subintervals of its
defining partition).

The findings from Tables I to III support the findings of [2] that diesel gencrators are inefficient
when they operate at a low load factor (around 40% — 50%;) of their rated capacity. The findings
also indicate that half of the operating time of the generator is spent on generating power during
late afternoon and at night when the power source from the PV is not available. In addition, no
significant difference is observed for the battery bank profiles among four, seven. and nine switches,
where the charge level varies between 75 kWh and 85 kWh. A sharp fall in the battery charge level
is also observed when the generator is turned off for a short period, as demonstrated in Figure 11.

Table IV shows the numerical results obtained by solving the transformied problem in [3] starting
from 10 random initial guesses. The findings in Table IV, when compared with our algorithm for

A R |
A — |

Generator Power (kW)
o

Time (hours)

Figure 10. Optimal generator power profile for nine switches.
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Figure 11. Optimal battery charge profile for ninc switches.
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Table IV. Results for solving the model in [3].

Test Minimum cost function value
1 8.87975339 x 10!
2 6.01837893 x 10!
3 6.51091281 x 10?
4 6.06252775 x 101
5 6.01837944 x 10!
6 6.03626756 x 101
7 6.03188550 x 10!
8 6.33365059 x 101
9 6.01837982 x 10!
10 8.87946446 x 10!

four to nine switches, show that our algorithm yields a better result compared with the approach
in [3]. Thc best solution identified by our algorithm is 58.7216005 for four switchcs, comparcd
with the best local minimum value of 60.1837893 identified from Table IV. Clearly, the method in
[3] gets stuck in local minima and cannot determine a globally optimal solution. Note that we are
using exactly the same objective function as the one used in [3], including the term penalizing short
durations in a particular operating mode.

5. CONCLUSIONS AND FUTURE WORK

A new heuristic approach for solving optimal discrete-valued control problems is proposed. It is
based on an efficient time scaling transformation and the incorporation of a discrete filled func-
tion algorithm into a standard optimal control software. The computational results for a complex
application problem demonstrate that the method is capable of determining a significantly improved
solution when compared with earlier results in [3]. Application of the proposed method to other
complex discrete-valued optimal control problems is currently being considered.
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