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ABSTRACT

This study presents a Reinforcement Learning-based algorithm 
designed to optimise irrigation for Durio Zibethinus (i.e., durian) trees, 
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aiming to maximise tree growth and reduce water usage. Traditional 
irrigation methods, as well as current machine learning models, often 
focus only on soil moisture and weather data, neglecting critical 
factors like actual tree growth. This study proposed a reinforcement 
learning irrigation (RL-Irr) algorithm incorporating tree growth 
stages, soil moisture, and weather conditions to determine precise 
irrigation needs. The algorithm was developed by calibrating the 
AQUACROP model using data from actual durian plantations where 
rain-fed irrigation (rain-fed) was practised. Daily irrigation volumes 
were calculated based on real-time soil moisture, weather forecasts, 
and weekly tree growth measurements. The reinforcement learning 
method was used to optimise irrigation schedules, with rewards based 
on soil moisture, tree growth, rainfall, and weather conditions. The 
algorithm was tested using AQUACROP simulations and compared 
against soil moisture balance irrigation (SMB-Irr) and rain-fed. The 
results showed that the RL-Irr reduced water use by up to 75 percent 
while maintaining tree growth. These findings suggest the algorithm 
could significantly improve water efficiency in durian farming, though 
real-world applications should consider potential model limitations.

Keywords: Durian Farming, Durio Zibethinus, Machine Learning, 
Reinforcement Learning, Smart Irrigation.

INTRODUCTION

Durio Zibethinus, commonly known as durian and often referred 
to as the “king of fruits,” is a well-known tropical fruit from 
Southeast Asia, celebrated for its intense aroma and uniquely rich 
flavour. This fruit is harvested bi-annually and is of significant 
economic value, enjoying widespread local and global demand. 
In Malaysia, a significant number of smallholder farmers cultivate 
durian, contributing to its commercial significance. In fact, durian 
has the largest cultivation area in Malaysia compared to all other 
fruits (Syafiqah et al., 2019). The maturation period of durian trees 
varies based on the variety, generally taking between two to six years 
(Chung, 2020). As illustrated in Figure 1, the cultivation of the durian 
tree involves five key stages: planting, vegetative growth, flowering, 
fruiting/harvesting and hibernation.
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Figure 1

Durian Planting Stage from Seedling to Vegetation Stage

When cultivating durian trees, seedlings are first grown in polybags 
inside a shaded greenhouse. They are frequently provided with 
nutrient feedings and receive daily irrigation to ensure they stay 
properly hydrated. This controlled environment is essential for 
promoting healthy growth. Before being transferred to the open field, 
the trees undergo a hardening process, which includes exposing them 
to sunlight for at least a week to help them adapt to outdoor conditions. 
Once transplanted into open areas, the trees enter the vegetative stage, 
which is the longest and most critical phase, lasting up to four years, 
depending on the variety. If the trees fail to meet growth standards, 
farmers replace them and restart the vegetative process. Durian 
cultivation requires significant time, cost, resources and careful 
monitoring (Zakaria, 2020). Farmers watch for indicators such as 
leaf colour and quality, trunk diameter and overall height. Consistent 
irrigation and regular fertilisation are crucial during this stage. Water 
is more important than fertiliser for durian trees (Ketsa et al., 2020). 
Over-irrigation can saturate the soil, harming root growth, with excess 
water running off to lower areas. Under-irrigation can leave trees 
without enough water to survive. This emphasises the importance of 
precise water management in durian cultivation. Ensuring that each 
tree receives the right amount of water is crucial for optimal growth 
and hydration.

RELATED WORK

Adequate irrigation is essential for sustainable agriculture to meet 
the increasing food demands of the global population. Managing 
soil moisture is crucial for efficient water usage and boosting 
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When cultivating durian trees, seedlings are first grown in polybags 
inside a shaded greenhouse. They are frequently provided with nutrient 
feedings and receive daily irrigation to ensure they stay properly 
hydrated. This controlled environment is essential for promoting 
healthy growth. Before being transferred to the open field, the trees 
undergo a hardening process, which includes exposing them to 
sunlight for at least a week to help them adapt to outdoor conditions. 
Once transplanted into open areas, the trees enter the vegetative stage, 
which is the longest and most critical phase, lasting up to four years, 
depending on the variety. If the trees fail to meet growth standards, 
farmers replace them and restart the vegetative process. Durian 
cultivation requires significant time, cost, resources and careful 
monitoring (Zakaria, 2020). Farmers watch for indicators such as leaf 
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crop productivity. Soil moisture balance refers to the equilibrium 
between water added to the soil through rainfall or irrigation and 
water lost through evaporation and plant absorption (Ritchie, 1998). 
This equilibrium is vital for maintaining healthy soil and ensuring 
sufficient water for crops. Advancements in technology and a better 
understanding of the interactions of soil, water and plants have led to 
modern irrigation systems that utilise soil moisture data. These systems 
aim to align irrigation with the actual water needs of crops, conserving 
water and improving crop yields (Abioye et al., 2022). The use of soil 
moisture sensors and computerised controls demonstrates how modern 
technology has reformed traditional irrigation methods (Kumar et al., 
2016). While soil moisture balance is vital for irrigation, challenges 
in its use include high costs, the need for specialised knowledge and 
various environmental factors affecting soil moisture (Pereira et al., 
2020). This study explores the development, current technologies, 
benefits, challenges and valuable applications of irrigation systems 
based on soil moisture balance, drawing information from numerous 
academic and practical sources.

Integrating soil moisture balance into irrigation systems can bring 
about significant benefits and challenges for sustainable agriculture. 
One major advantage is the efficient use of water. Accurate 
measurement of soil moisture levels enables farmers to water crops 
effectively, ensuring responsible water usage, especially in areas with 
varying climates and soil types. Research in Nebraska shows that soil 
moisture and Vapour Pressure Deficit (VPD) affect plant water use, 
highlighting the importance of soil moisture in water management 
(Zhang et al., 2021). Proper irrigation reduces plant stress, promoting 
better growth and potentially higher crop yields. However, there 
are challenges involved. These include the time, labour and cost of 
installing and maintaining soil moisture sensors. Probes, particularly 
the advanced versions that collect data from multiple soil layers, are 
generally easier to install than point sensors but can be more expensive 
(Soothar et al., 2021). The precision of soil moisture sensors presents 
an additional challenge. Sensor accuracy can vary based on soil 
characteristics, such as clay content or salinity (Shakya et al., 2021). 
Electromagnetic sensors, for example, may be less accurate in soils 
with high clay or salinity. Therefore, choosing the correct sensor for 
the specific field conditions is crucial. 

Moreover, the data from these sensors require careful analysis. 
Understanding all aspects of soil moisture levels is essential for 
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accurate irrigation decisions. Some sensors provide easy-to-read 
graphical data, while others offer information in less intuitive formats, 
complicating the decision-making process for farmers (Jabro et al., 
2020). Soil moisture balance-based irrigation (SBM-Irr) systems 
offer significant benefits, like optimised water use and potential yield 
increases. However, challenges include sensor accuracy, data analysis 
and costs. Addressing these issues is essential to fully realise the 
potential of these systems for sustainable farming. When cultivating 
durian trees, seedlings are first grown in polybags inside a shaded 
greenhouse. They are frequently provided with nutrient feedings and 
receive daily irrigation to ensure they stay properly hydrated. This 
controlled environment is essential for promoting healthy growth. 
Before being transferred to the open field, the trees undergo a hardening 
process, which includes exposing them to sunlight for at least a week 
to help them adapt to outdoor conditions. Once transplanted into open 
areas, the trees enter the vegetative stage, which is the longest and 
most critical phase, lasting up to four years depending on the variety. 
If the trees fail to meet growth standards, farmers replace them and 
restart the vegetative process. Durian cultivation requires significant 
time, cost, resources and careful monitoring (Zakaria, 2020). Farmers 
watch for indicators such as leaf colour and quality, trunk diameter 
and overall height. Consistent irrigation and regular fertilisation are 
crucial during this stage. For durian trees, water is more important 
than fertiliser (Ketsa et al., 2020). Over-irrigation can saturate the soil, 
harming root growth, with excess water running off to lower areas. 
Under-irrigation can leave trees without enough water to survive. This 
emphasises the importance of precise water management in durian 
cultivation. Ensuring that each tree receives the right amount of water 
is crucial for optimal growth and hydration. 

The integration of Artificial Intelligence (AI) and machine learning 
(ML) into irrigation systems has transformed agriculture by 
optimising water usage, enhancing crop productivity, and reducing 
environmental impacts. These technologies have become vital in the 
face of global water shortages and increasing food demand due to 
population growth. AI-driven irrigation employs precision agriculture 
techniques, where irrigation schedules are tailored based on real-time 
data inputs, such as soil moisture levels, weather forecasts, and satellite 
imagery. By analysing these data streams, AI systems recommend 
precise irrigation schedules and automating water distribution to 
increase efficiency and reduce the need for manual labour.
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ML algorithms, including Artificial Neural Networks (ANN), Support 
Vector Machines (SVM), and Convolutional Neural Networks 
(CNN), are integral to this process, analysing complex data patterns to 
predict ideal watering schedules, as well as potential disease and pest 
outbreaks. These algorithms also enable adaptive irrigation strategies 
to respond dynamically to climate shifts. Recent advancements in 
IoT and cloud computing have further strengthened data collection 
and processing capabilities, creating highly responsive irrigation 
systems. Despite these advancements, challenges such as high initial 
setup costs, data reliability issues, and the learning curve for new 
technologies still pose barriers to widespread adoption. However, 
AI-driven irrigation remains essential for fostering sustainability and 
efficiency in agriculture (Talaviya et al., 2020). AI has significantly 
impacted agricultural irrigation systems. The MIT GEAR Lab has 
proposed an Automatic Scheduling-Manual Operation (AS-MO) 
irrigation tool to bring precision irrigation benefits to farmers in 
resource-limited regions. This tool integrates automatic scheduling 
to optimise water usage with manual operation of irrigation valves, 
allowing farmers to maintain control while benefiting from precision 
irrigation’s efficiency. Designed specifically for East Africa and 
MENA regions, the AS-MO tool uses cloud-based algorithms to 
generate optimal irrigation schedules without the need for costly and 
complex soil moisture sensors. Instead, it uses soil water balance 
calculations based on affordable sensors for weather, solar power, and 
crop details. This design addresses the high cost and complexity of 
fully automated systems, which are often prohibitive for small and 
medium-sized farms. The AS-MO tool sends schedule updates via 
SMS to farmers’ mobile phones, guiding them on when to manually 
open or close irrigation valves. This approach bridges the gap between 
existing expensive systems and traditional manual methods, making 
efficient irrigation more accessible to cost-constrained farms while 
minimising water and energy use (Van de Zande et al., 2023). 

AI also plays a vital role in agricultural management. ML algorithms 
such as Random Forest (RF), SVM, ANN and CNN are used to analyse 
soil and crop health, helping to detect and predict crop diseases. 
These algorithms optimise irrigation by calculating the best watering 
schedules and timings (Awais et al., 2023). Combining the Internet 
of Things (IoT) and ML in smart agriculture is a major advancement. 
These systems are designed to reduce human involvement and improve 
water management efficiency. Unmanned Aerial Vehicles (UAVs) 
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equipped with AI technology are increasingly used in agriculture. 
These UAVs help identify and monitor crops, providing vital data 
for improving irrigation techniques through detailed analysis of crop 
health and soil conditions. ML algorithms such as object-based image 
analysis (OBIA) were applied to process the images and identify areas 
of crops that required attention, such as herbicide spray for diseased 
crops (Yousaf et al., 2023).

Irrigation using real-time environment data is required to integrate 
various sensors, controllers, and communication networks to monitor 
and manage water delivery to crops based on real-time data such as 
soil moisture, weather conditions, and crop water requirements. AI 
techniques like ML and deep learning (DL) are used to analyse large 
datasets, including soil, water content, and environmental factors, 
enabling precise irrigation schedules. The system’s ability to adapt 
to changing conditions helps improve water efficiency, reduce waste, 
and maintain crop health. Furthermore, the AI model leverages 
predictive tools to forecast future irrigation needs and adjusts the 
irrigation schedule dynamically, optimising water use while ensuring 
crop growth. This approach is particularly valuable for addressing 
challenges such as water scarcity and the unpredictable nature of 
climate change in agriculture (Obaideen et al., 2022). ML predicts 
irrigation needs, enabling proactive water management strategies that 
reduce consumption and increase productivity. Technologies such 
as ANN, fuzzy logic and expert systems enable adaptive decision-
making and real-time monitoring, leading to higher yields and 
optimised water use. ANN-based controllers are particularly effective 
due to their learning and adaptability, making irrigation more efficient 
and sustainable (Bwambale et al., 2022). The algorithm can analyse 
large amounts of data to identify patterns and predict future water 
needs, helping farmers in planning and managing their irrigation 
systems more effectively. Other than that, in-situ AI sensors monitor 
soil moisture levels and provide alerts when irrigation is needed, 
reducing manual labour and improving overall efficiency (Tomar et 
al., 2023). 

Smart irrigation systems offer numerous benefits for both urban and 
rural agriculture. These systems enhance agricultural productivity 
by minimising water waste and ensuring crops receive the precise 
amount of water needed for optimal growth and yield. Additionally, 
they contribute to reducing agriculture’s environmental impact by 
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promoting efficient water use, decreasing runoff, and supporting 
sustainable farming practices. These systems can be tailored to various 
agricultural environments, including urban areas with varying access 
to space, water, and electricity, although they may involve higher 
costs or operational limitations in some cases. Overall, AI-driven 
smart irrigation systems offer improved sustainability, efficiency and 
adaptability in various farming environments (Vallejo-Gómez et al., 
2023). 

However, implementing AI-based irrigation systems faces several 
key challenges. First, data availability is a significant issue as ML 
algorithms require large volumes of data to construct accurate 
predictions. In many regions, there is limited reliable data on soil 
moisture, weather patterns and crop growth, which impacts the 
accuracy of data predictions. Second, sensor reliability is a concern 
due to the high cost of installation and maintenance, as well as 
susceptibility to environmental factors such as temperature, humidity 
and electromagnetic interference, which can affect their accuracy. 
Third, a stable and reliable power supply is required in areas with 
limited electricity, especially in remote agricultural areas. The 
high cost of implementing intelligent irrigation systems is another 
significant obstacle, particularly for small-scale farmers (Ghareeb et 
al., 2023). Finally, farmers may lack the technical expertise to operate 
and maintain these systems, which hinders widespread adoption 
(Mohan et al., 2021). Apart from that, the concerns about privacy 
and security related to storing, processing and sharing sensitive data 
collected by the system, alongside the potential for cyber-attacks, 
further complicate the implementation of AI in irrigation (Tzachor et 
al., 2022).

Integrating AI into irrigation systems has revolutionised agriculture 
by optimising water use, boosting crop productivity and reducing 
environmental impacts. This is especially important given global water 
shortages and the rising demand for food due to population growth. 
AI in irrigation uses ML algorithms to provide precise agriculture 
techniques, tailoring irrigation based on data inputs like soil moisture, 
weather forecasts and satellite images. The ML algorithms analyse 
this data to recommend optimal irrigation schedules. Apart from that, 
the systems can also automate watering, improving efficiency and 
reducing the need for manual labour.

Reinforcement learning (RL) irrigation is considered a superior 
approach compared to conventional irrigation techniques and other AI 
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irrigation models due to its adaptive decision-making ability (Saikai et 
al., 2023). While traditional methods rely on fixed schedules or basic 
rules, RL-based irrigation systems continuously learn and evolve 
by interacting with the environment. This allows them to optimise 
water use based on real-time conditions and weather forecasts. The 
flexibility of RL irrigation enables it to effectively manage water 
resources, minimise wastage and maintain crop productivity, even in 
the face of uncertain weather patterns. Moreover, RL irrigation has the 
potential to surpass other AI-driven methods by refining its strategies 
over time, balancing both immediate and future considerations for 
water efficiency and crop yield. Consequently, RL irrigation offers a 
more robust, efficient and viable solution for sustainable agricultural 
practices, especially in areas where water is a limiting factor. The 
Deep Reinforcement Learning for Irrigation Control (DRLIC) system 
is practical for irrigation because it seamlessly integrates with existing 
agricultural infrastructure, such as micro-sprinklers and soil moisture 
sensors and leverages real-time data to optimise water use efficiently. 
By employing a data-driven approach, DRLIC dynamically adapts to 
varying soil and weather conditions, reducing the need for manual 
adjustments and ensuring optimal irrigation levels to maintain crop 
health. The inclusion of a safety mechanism further enhances its 
practicality by preventing potential crop damage from unforeseen 
conditions, while its training methodology using a soil-water simulator 
accelerates deployment without lengthy field trials.

Moreover, the system has demonstrated significant water savings in 
real-world tests, making it a cost-effective and sustainable solution 
for irrigation in water-scarce regions. Overall, DRLIC’s adaptability, 
compatibility, safety, and efficiency make it a highly practical choice 
for modern irrigation management (Ding & Du, 2024). The Deep 
Q-Learning Network Reinforcement Learning Irrigation (DQN RL-
Irr) strategy leverages short-term weather forecasts to make optimal 
irrigation decisions, conserving water by reducing unnecessary 
irrigation and improving rainfall utilisation. This strategy effectively 
balances the risks of water waste and potential yield loss due to 
uncertainties in weather forecasts, making it a practical and efficient 
solution for managing irrigation in paddy rice cultivation (Chen et 
al., 2021). The proposed Semi-centralised Multi-agent Reinforcement 
Learning (SCMARL) framework combines both centralised and 
decentralised RL agents to handle spatial variability in large-scale 
agricultural fields, optimising water use across different management 
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zones. The SCMARL approach achieved better water savings and 
improvement in Irrigation Water Use Efficiency (IWUE) compared 
to a learning-based multi-agent model predictive control (MPC) 
approach (Agyeman et al., 2024). This demonstrates RL’s ability 
to efficiently coordinate irrigation decisions while addressing non-
stationarity and scalability issues, making it a robust solution for 
precise irrigation management.

This work aims to propose an irrigation algorithm that minimises 
water usage while maintaining tree growth based on typical irrigation 
practices at the farm. Reinforcement Learning Irrigation (RL-Irr), an 
approach that relies heavily on weather conditions, current tree growth, 
and soil conditions, was introduced to attain this objective. RL-Irr 
is a non-model AI approach that adapts and learns dynamically as it 
uses real-time data and continuous interaction with the environment 
to optimise water usage efficiently and does not require any pre-built 
models to plan irrigation. In this study, the irrigation performance was 
compared with the rain-fed irrigation (rain-fed) and SMB-Irr models, 
and the results were evaluated based on the amount of water used and 
the simulated tree growth by AQUACROP. The Related Work section 
explains that SMB-Irr is the farmers’ most used tool to identify the 
best daily irrigation volume. Therefore, it is crucial to recognise that 
the results obtained from the simulation rely on replicating real-world 
processes, interactivity, models, algorithms, and randomness, and 
thus, the findings provide insights for further empirical investigations 
to imitate real-world processes of durian farming and adaptive 
irrigations over time.

METHODOLOGY

Research Design

This work approach consists of four distinct steps, each with an 
intended output.

1)	 Soil sensor and weather station installation at the site and data 
collection 

	 Soil sensors were installed at specific locations to collect daily 
soil moisture readings. A weather station was positioned at the 
site’s highest point to record daily weather data. Data from 
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both the soil sensors and the weather station were utilised to 
calculate rewards in the proposed algorithm.

2)	 AQUACROP parameters calibration
	 Rain-fed was the system practised on the farm, where irrigation 

was carried out based on rainfall data. The growth of selected 
durian trees was measured weekly, and the irrigation volume 
was measured daily, starting in November 2020. In this study, 
a custom crop was created in the AQUACROP model, as 
durian or biologically similar species (e.g., apple) were not 
available in the AQUACROP library. The model parameters 
were calibrated using the tree growth data collected on-site as 
the target output, with adjustments made to reflect the rain-fed 
model applied on the farm.

3)	 Development of Irrigation Model
	 Soil moisture and weather data will be incorporated into the 

proposed irrigation model. This model will analyse all relevant 
factors for initiating the irrigation system, including current 
and forecasted weather conditions, soil characteristics, and 
historical irrigation records. The model’s performance will be 
evaluated by comparing the irrigation volume used, ensuring 
that water efficiency is achieved without compromising tree 
growth.

4)	 Testing and evaluation for the proposed irrigation model
	 The proposed model aims to reduce irrigation volume without 

compromising tree growth. The model was validated using 
independent tree growth data from the farm, which was not used 
during the tuning the AQUACROP parameters. The irrigation 
model’s performance was evaluated by comparing the total 
irrigation volume with other existing irrigation models.

Farm Irrigation Setup

The work was conducted at MIE Agro Durian Farm in Selangor, 
Malaysia, located at coordinates 1°33’30.3336” N 103°37’33.4596” 
E. Each sub-block of the farm has a 2200-litre water reservoir with a 
pump for irrigation. Water was applied to each tree using a 180-microjet 
spray, which dispersed water at a flow rate of 0.5 litres per minute. 
Water was sprayed within the tree’s canopy during irrigation to ensure 
optimal root absorption (Zakaria, 2020), as shown in Figure 2. The 
microjet spray flow rate was 0.5 litres per minute. Figure 3 shows the 
setup overview of the system implemented at the site.
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Figure 2

Microjet Irrigation Spray

Figure 3

Setup Overview of the System at MIE Agro Farm

On the farm, 5,000 durian trees were planted in four blocks, each 
containing multiple sub-blocks. The trees in each sub-durian block 
are planted on terraces. The number of terraces varies between 
subblocks, and each terrace’s slope gradient depends on the subblock’s 14 
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characteristics. Each sub-block is equipped with a 2200-litre water 
tank for irrigation purposes. In this work, sub- block D13, A1 and 
A3 were selected where the trees were planted between five and 
eight trees on each terrace. Each tree had a soil moisture sensor and 
a microjet irrigation sprinkler. A controller was connected to the 
water pump to control its operation, such as turning it on and off. A 
weather station was installed at the site’s highest point, and a server 
was located in the site control room. The sensors, weather station and 
water pump controller were powered by batteries and solar panels and 
connected to the site server using wireless connectivity to facilitate 
future implementation scaling. The data were transmitted by the soil 
sensors and weather station to the server at the frequency of 5-minute 
intervals and were processed daily by the server using the proposed 
algorithm to control the irrigation system.

AQUACROP Simulation Software

AQUACROP is a simulation software that models how crop yield 
responds to water. It models based on user input data, considering 
factors like soil type, climate, crop type and management practices 
to predict how changes in water availability affect crop yield. It 
simulates water movement within the soil-plant-atmosphere system 
and the impact of different irrigation strategies on crop yield. This 
helps optimise water use in agriculture and promotes sustainable 
water management.

In the present work, the AQUACROP model is utilised to simulate 
the efficacy of the suggested irrigation strategy. AQUACROP 
employs above-ground biomass as an indicator of tree growth, which 
is determined through calculations involving the height of the trees 
for the forest-type trees, as shown in Equation 1.

    (1)

where Y is the above-ground tree biomass in kilogram (kg), and the 
tree height is in metres (m). Data about the trees were systematically 
gathered weekly at the farm, and information from the trees 
exhibiting optimal growth was aggregated and established as the 
growth benchmark for this research. Consequently, the recommended 
irrigation strategy was modified daily to align with the attainment of 
this growth objective.

16

𝑌𝑌 = 10 +  6.4 𝑥𝑥 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

where Y is the above-ground tree biomass in kilogram (kg), and the 
tree height is in metres (m). Data about the trees were systematically 
gathered weekly at the farm, and information from the trees exhibiting 
optimal growth was aggregated and established as the growth 
benchmark for this research. Consequently, the recommended 
irrigation strategy was modified daily to align with the attainment of 
this growth objective.

Standard parameters were configured in a custom crop setup in 
AQUACROP. As shown in Table 1, some parameters are standard for 
the trees, which refer to the crop-dependent parameters based on the 
crop’s biological characteristics, while others are site-dependent 
parameters, which are based on the site setup and conditions that 
significantly affect tree growth.

Table 1

AQUACROP Custom Crop Input Parameters

Parameters Definition Remarks
Maximum 
temperature 
(°C)

Maximum temperature 
at site

Site dependent

Minimum 
temperature 
(°C)

Minimum temperature 
at the site

Site dependent

Canopy growth 
coefficient, 
CGC

Rate canopy cover (CC) 
increase at the initial 
planting state

Crop dependent

Canopy decline 
coefficient, 
CDC

Rate canopy cover (CC) 
decreases due to ageing 
or dying

Crop dependent
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Standard parameters were configured in a custom crop setup in 
AQUACROP. As shown in Table 1, some parameters are standard 
for the trees, which refer to the crop-dependent parameters based on 
the crop’s biological characteristics, while others are site-dependent 
parameters, which are based on the site setup and conditions that 
significantly affect tree growth.

Table 1

AQUACROP Custom Crop Input Parameters

Parameters Definition Remarks

Maximum temperature (°C) Maximum temperature 
at site

Site dependent

Minimum temperature (°C) Minimum temperature 
at the site

Site dependent

Canopy growth coefficient, CGC
Rate canopy cover 
(CC) increase at the 
initial planting state

Crop dependent

Canopy decline coefficient, CDC
Rate canopy cover 
(CC) decreases due to 
ageing or dying

Crop dependent

Crop coefficient, Kct Ratio crop evapo-
transpiration over site 
evapotranspiration 

Crop & site dependent

Maximum canopy cover, CCx (%) Maximum coverage of 
the canopy

Crop & site dependent

Maximum rooting depth, Zx (m) Maximum depth of the 
tree root

Crop & site dependent

Initial root depth, Zo (m) Initial depth of the tree 
root after transplant

Crop & site dependent

Irrigation efficiency (%) Percentage efficiency 
of the irrigation setup

Site dependent

Soil surface wetted Percentage of wetted 
area during irrigation

Site dependent

Tree spacing (m2) Distance between trees Site dependent

Reference harvest index (HIo) Standard ratio of total 
biomass in ideal condi-
tion

Crop dependent

Rain-fed Irrigation (Rain-fed)

This work focused on three (3) sub-blocks on the farm: D13, A1 and 
A3. The sub-blocks used rain-fed irrigation, an agricultural irrigation 
technique that relies solely on rainfall as the water source. This 
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method is the primary way of farming, though its success depends 
greatly on the amount and distribution of rainfall. A weather station 
was set up on-site to measure daily rainfall and help decide when to 
irrigate. The irrigation was done manually, providing each tree with 
30 litres of water for one (1) hour. The pseudo-code of the rain-fed 
irrigation practised on the farm is shown in Algorithm 1.

Algorithm 1: Algorithm for Irrigation Control Based on Rain-fed
Input: Rain volume: rain volume measured from 10:00 AM the previous 
day until 7:00 AM on the current day. 
Output: Irrigation control decision.

Procedure:

1. Check rain status at 8:00 AM daily:
2.  If rain occurred between 10:00 AM the previous day and 7:00 AM 

today:
3.   If rain volume < 5 mm
4.   Irrigate 30 litres.
5.   Else If rain volume > 10 mm
6.   No irrigation for the next 2 days.
7.   Else
8.   No irrigation for the current day.
9.   Else (If No Rain Occurred):
10. Irrigate 30 litres.
End Procedure

Soil Moisture Balance Irrigation (SMB- Irr)

The SMB-Irr system determines the optimal timing and the optimal 
amount of crop irrigation by considering soil moisture levels. It 
balances water inputs such as rain and irrigation with outputs, such 
as evapotranspiration, drainage and runoff relative to the soil’s water-
holding capacity. The SMB-Irr system used in this work was based 
on the Field Capacity (θfc) and Wilting Point (θwp) of the soil, the 
variables which are specific to the soil type and were chosen according 
to the Malaysia Soil Standard (Ashraf, 2017) and the USDA Soil 
Standard (Jabro et al., 2008). The following steps outline how to 
calculate irrigation volume using SMB-Irr:

Step 1: Calculate the soil threshold value, θx, by using the formulation 
in Equation 2.

(2)
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𝜃𝜃𝑥𝑥  =  𝜃𝜃𝑓𝑓𝑓𝑓  −  (𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 𝑥𝑥 (𝜃𝜃𝑓𝑓𝑓𝑓  −  𝜃𝜃𝑤𝑤𝑤𝑤)

where ASMD stands for Available Soil Moisture Deficit, which 
represents the allowable deficit for the trees before they experience a 
deficit state of a moisture shortage, assuming the ASMD durian tree is 
0.2, which is 20%.

Step 2: Calculate the weighted average soil moisture, θa at the root zone 
level by using Equation 3.

𝜃𝜃𝑎𝑎  =  (𝜃𝜃𝑆𝑆𝑆𝑆 𝑥𝑥 𝐷𝐷𝑠𝑠)/𝑅𝑅𝑅𝑅𝑅𝑅

where θSM is the soil moisture value from the sensor, Ds is the Sensor 
Depth and RZD is the Root Zone Depth, where RZD is 0.1-metre for 
the trees between one (1) to three (3) years of age.

Step 3: Compare θx and θa values. If θa is lower than θx, calculate the 
irrigation volume as in Step 4. If higher, no irrigation is required.

Step 4: Calculate the irrigation volume, Virr by using Equation 4.

𝑉𝑉𝑖𝑖𝑖𝑖𝑖𝑖 =  (𝜃𝜃𝑓𝑓𝑓𝑓  −  𝜃𝜃𝑎𝑎)  ×  𝑅𝑅𝑅𝑅𝑅𝑅 ×  1000
where the Virr is in litre

Reinforcement Learning Irrigation (RL- Irr)

RL is a non-model type of AI that involves an agent learning to make 
decisions by interacting with its environment. In reinforcement 
learning (RL), the agent is not given explicit instructions on which 
actions to take. Instead, it must autonomously explore and experiment 
with different actions to determine which ones yield the highest 
rewards. This approach is inspired by behavioural psychology and is 
particularly effective in complex contexts where explicit programming 
is impractical. The agent tries different actions to see which ones 
produce the best rewards (Devraj et al., 2021). The process involves an 



682        

Journal of ICT, 23, No. 4 (October) 2024, pp: 667-707

where ASMD stands for Available Soil Moisture Deficit, which 
represents the allowable deficit for the trees before they experience a 
deficit state of a moisture shortage, assuming the ASMD durian tree 
is 0.2, which is 20%.

Step 2: Calculate the weighted average soil moisture, θa at the root 
zone level by using Equation 3.

(3)

where θSM is the soil moisture value from the sensor, Ds is the Sensor 
Depth and RZD is the Root Zone Depth, where RZD is 0.1-metre for 
the trees between one (1) to three (3) years of age.

Step 3: Compare θx and θa values. If θa is lower than θx, calculate the 
irrigation volume as in Step 4. If higher, no irrigation is required.

Step 4: Calculate the irrigation volume, Virr by using Equation 4.

(4)

where the Virr is in litre

Reinforcement Learning Irrigation (RL- Irr)

RL is a non-model type of AI that involves an agent learning to 
make decisions by interacting with its environment. In reinforcement 
learning (RL), the agent is not given explicit instructions on which 
actions to take. Instead, it must autonomously explore and experiment 
with different actions to determine which ones yield the highest 
rewards. This approach is inspired by behavioural psychology and is 
particularly effective in complex contexts where explicit programming 
is impractical. The agent tries different actions to see which ones 
produce the best rewards (Devraj et al., 2021). The process involves 
an agent, a set of states representing the environment and the actions 
taken by the agent. The agent receives feedback in the form of rewards 
or penalties and develops a policy, which is a systematic approach 
for selecting actions based on the current state of the environment. 
RL uses this feedback to reinforce effective strategies and diminish 
ineffective ones. The fundamentals of RL are shown in Figure 4.
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Reinforcement Learning Irrigation (RL- Irr)

RL is a non-model type of AI that involves an agent learning to make 
decisions by interacting with its environment. In reinforcement 
learning (RL), the agent is not given explicit instructions on which 
actions to take. Instead, it must autonomously explore and experiment 
with different actions to determine which ones yield the highest 
rewards. This approach is inspired by behavioural psychology and is 
particularly effective in complex contexts where explicit programming 
is impractical. The agent tries different actions to see which ones 
produce the best rewards (Devraj et al., 2021). The process involves an 
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Figure 4

Fundamental Architecture of RL (Sutton & Barto, 1999)

In RL, it is crucial to strike a balance between exploring and attempting 
new approaches and exploitations by using familiar knowledge 
(Ladosz et al., 2022). The agent interacts with the environment in 
discrete time steps. At each time step, t, the agent receives some 
representation of the state of the environment S(t) and selects an action 
A(t) based on that state to perform in the environment. The action then 
changes the state of the environment, and the agent receives a reward 
R(t+1) and a new state S(t+1) as feedback from the environment. If 
the action leads to an undesired outcome, the agent receives a penalty 
(a negative reward) instead of a reward. This process continues, and 
the agent’s objective is to learn a policy by mapping from states to 
actions in order to maximise the cumulative reward over time. RL 
is utilised in various fields, including robotics, transportation, energy 
and computer systems (Aradi, 2022; Jayaramireddy et al., 2023; 
Polydoros & Nalpantidis, 2017; Yu et al., 2021). 

The implementation of RL in this work is as follows:

1)	 Agent (i) is the entity that performs actions in the problem. In 
this work, the agent represents the system’s core elements that 
interact with the environment, formulate decisions based on 
information and acquire knowledge from the consequences of 
those decisions.

2)	 Environment (ε) is the space in which the agent performs 
actions. In this work, the environment encompasses all the 
elements that influence the actions, which are soil conditions, 
weather conditions and tree growth.

3)	 Action (A) is the potential moves that can be performed by the 
agent. In this context, the action refers to the absolute irrigation 
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volume set in the system. These volumes ranged from 0 to 30 
litres, with increments of 2 litres.

4)	 State (S) is the specific condition of the environment at a 
specific time. In this work, state refers to the specific condition 
of the soil at a given time. The soil condition is categorised 
as dry (soil moisture is less than 25%), good (soil moisture is 
between 25% to 35%) or wet (soil moisture is more than 35%).

5)	 Policy     is the guideline employed by the agent to determine 
the next step of action to take based on the current state. In this 
work, Policy refers to the sequence of irrigation actions that the 
agent takes to solve the problem.

6)	 Rewards and Penalties (R) are the outcomes the agent receives 
after taking an action. They are result-oriented and can be either 
positive (Reward) or negative (Penalty). The calculation of 
Rewards and Penalties must be in line with the environment to 
ensure that the agent receives them accurately. In this work, the 
Reward depends on soil tension, tree growth and water balance. 
A Penalty is incurred if the irrigation action causes the soil to 
become either Dry or Wet.

Figure 5 presents the RL states employed for tree irrigation in this study. 
YI and NI represent Yes Irrigation and No Irrigation, respectively.

Figure 5

RL State for RL-Irr

The diagram above illustrates the actions taken by the agent in 
response to varying soil conditions. In scenarios without irrigation, 
the soil retains its ‘Dry’ state. Its transition to an ‘OK’ state occurs 
only upon the commencement of irrigation. The soil maintains its 
condition without further irrigation in this ‘OK’ state. However, 

21 

computer systems (Aradi, 2022; Jayaramireddy et al., 2023; Polydoros 
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The diagram above illustrates the actions taken by the agent in 
response to varying soil conditions. In scenarios without irrigation, the 
soil retains its ‘Dry’ state. Its transition to an ‘OK’ state occurs only 
upon the commencement of irrigation. The soil maintains its condition 
without further irrigation in this ‘OK’ state. However, prolonged 
periods without irrigation will lead the soil back to a ‘Dry’ state. 
Conversely, initiating irrigation while the soil is in an ‘OK’ state 
causes it to become ‘Wet’. Typically, irrigation is withheld in the ‘Wet’ 
state to prevent soil saturation. Nonetheless, rainfall might occur when 
the soil is already ‘Wet’, thereby maintaining its ‘Wet’ state. The soil 
eventually reverts to the ‘OK’ state after a certain period without 
irrigation and gradually becomes drier. This dynamic reflects the 
agent’s adaptive responses to the evolving moisture levels in the soil, 
corresponding to the root water uptake from the trees. 
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prolonged periods without irrigation will lead the soil back to a ‘Dry’ 
state. Conversely, initiating irrigation while the soil is in an ‘OK’ 
state causes it to become ‘Wet’. Typically, irrigation is withheld in 
the ‘Wet’ state to prevent soil saturation. Nonetheless, rainfall might 
occur when the soil is already ‘Wet’, thereby maintaining its ‘Wet’ 
state. The soil eventually reverts to the ‘OK’ state after a certain period 
without irrigation and gradually becomes drier. This dynamic reflects 
the agent’s adaptive responses to the evolving moisture levels in the 
soil, corresponding to the root water uptake from the trees.

This work has several target goals, such as enhancing water efficiency, 
conserving soil fertility and maximising crop vitality. An effectively 
designed reward function can skilfully balance these objectives by 
providing suitable incentives for actions that contribute to each goal. 
Moreover, the reward function can account for the inherent trade-
offs within the application. For instance, in irrigation management, 
higher water consumption may initially promote crop growth but 
could negatively impact long-term water conservation. The reward 
function is crucial in reconciling these conflicting requirements. It 
will ensure that the RL agent’s learning path is theoretically rigorous 
and practically applicable, bridging the gap between mathematical 
modelling and the complexity of real-world implementation. Equation 
5 shows the Rewards function used in this work.

(5)

The variable w represents the weight assigned to different elements, 
determined by the proportion of each element relative to the overall 
weight distribution. These weights were set according to the specific 
objectives of irrigation and the prevailing conditions during that 
period. For example, wsoil_tension​ was assigned a higher value in instances 
of arid soil and a lower value in other cases. Conversely, wtree_growth​ was 
high when irrigation occurred on the first day of the week, as per the 
standard operating procedure of the farm, which involved collecting 
data on tree growth exclusively on this day. This approach ensures 
that the weighting aligns with the immediate environmental needs and 
the operational procedures of the farm. Similarly, the variables wrain 
and wEt​ were assigned high values, respectively, if the actual value 
was lower than the calculated value, and a lower value if it was higher.
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that the RL agent’s learning path is theoretically rigorous and 
practically applicable, bridging the gap between mathematical 
modelling and the complexity of real-world implementation. Equation 
5 shows the Rewards function used in this work.

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = (𝑤𝑤𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡  ×  𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)  
+  (𝑤𝑤𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ  ×  𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ)  
+  (𝑤𝑤𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  × 𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) + (𝑤𝑤𝐸𝐸𝐸𝐸  ×  𝑅𝑅𝐸𝐸𝐸𝐸)

The variable w represents the weight assigned to different elements, 
determined by the proportion of each element relative to the overall 
weight distribution. These weights were set according to the specific 
objectives of irrigation and the prevailing conditions during that 
period. For example, wsoil_tension was assigned a higher value in 
instances of arid soil and a lower value in other cases. 
Conversely, wtree_growth was high when irrigation occurred on the first 
day of the week, as per the standard operating procedure of the farm, 
which involved collecting data on tree growth exclusively on this day. 
This approach ensures that the weighting aligns with the immediate 
environmental needs and the operational procedures of the farm. 
Similarly, the variables wrain and wEt were assigned high values, 
respectively, if the actual value was lower than the calculated value, 
and a lower value if it was higher.

In Equation 6, the term ‘Rewards’ (R) encapsulates the rewards 
attributed to each critical element: soil tension, tree growth and water 
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In Equation 6, the term ‘Rewards’ (R) encapsulates the rewards 
attributed to each critical element: soil tension, tree growth and water 
efficiency. These rewards are intricately linked to the prevailing 
conditions of the respective period, ensuring that the rewards allocated 
to the agent are optimised based on the actual environmental and 
operational circumstances. Equations 6 to 9 outline the formulas for 
calculating the rewards for the elements.

(6)

(7)

(8)

(9)

The target for tree growth was calculated using a model crafted and 
simulated with the AQUACROP software. The study suggests that 
using a deseasonalised fuzzy time series model for rainfall forecasting 
yields higher accuracy than traditional methods, as shown by lower 
MSE and RMSE values (Othman & Azhari, 2016). However, the use 
of actual rainfall data at a specific location is preferred for real-time 
predictions since it reflects the real-world environmental conditions 
and variability. Rainfall predictions are based on forecasts from the 
Malaysian Meteorological Department (MET). Additionally, the 
forecast for evapotranspiration (Et) is computed utilising the Penman-
Monteith (PM) Equation, which incorporates meteorological forecast 
data from the MET. This integrated approach ensures a comprehensive 
and accurate assessment of precipitation and evapotranspiration, 
which is crucial for effective irrigation planning and management.

The flowchart in Figure 6 above illustrates the proposed RL-Irr 
system. On the first day (d=1), the system assessed the soil tension 
using the current soil moisture value, tree growth, previous irrigation 
volume, rain prediction from the MET website and calculated 
evapotranspiration based on forecasted weather data from the MET 
website. The system then calculated the Rewards using the formula 
from Equations 6 to 9. Q-Learning for all possible actions (irrigation 
volume) was calculated and updated in the Q-table. Then, the system 
simulated irrigation using AQUACROP and observed the simulated 
tree growth from the simulation output. The variance between the 
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efficiency. These rewards are intricately linked to the prevailing 
conditions of the respective period, ensuring that the rewards allocated 
to the agent are optimised based on the actual environmental and 
operational circumstances. Equations 6 to 9 outline the formulas for
calculating the rewards for the elements.

𝑅𝑅𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
= −(𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 – 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

𝑅𝑅𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ
= −(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 – 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

𝑅𝑅𝐸𝐸𝐸𝐸 = −(𝐸𝐸𝐸𝐸𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 – 𝐸𝐸𝐸𝐸𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

𝑅𝑅𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 = −(𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 – 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)

The target for tree growth was calculated using a model crafted and 
simulated with the AQUACROP software. The study suggests that 
using a deseasonalised fuzzy time series model for rainfall forecasting 
yields higher accuracy than traditional methods, as shown by lower 
MSE and RMSE values (Othman & Azhari, 2016). However, the use 
of actual rainfall data at a specific location is preferred for real-time 
predictions since it reflects the real-world environmental conditions 
and variability. Rainfall predictions are based on forecasts from the 
Malaysian Meteorological Department (MET). Additionally, the 
forecast for evapotranspiration (Et) is computed utilising the Penman-
Monteith (PM) Equation, which incorporates meteorological forecast 
data from the MET. This integrated approach ensures a comprehensive 
and accurate assessment of precipitation and evapotranspiration, which 
is crucial for effective irrigation planning and management.
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The target for tree growth was calculated using a model crafted and 
simulated with the AQUACROP software. The study suggests that 
using a deseasonalised fuzzy time series model for rainfall forecasting 
yields higher accuracy than traditional methods, as shown by lower 
MSE and RMSE values (Othman & Azhari, 2016). However, the use 
of actual rainfall data at a specific location is preferred for real-time 
predictions since it reflects the real-world environmental conditions 
and variability. Rainfall predictions are based on forecasts from the 
Malaysian Meteorological Department (MET). Additionally, the 
forecast for evapotranspiration (Et) is computed utilising the Penman-
Monteith (PM) Equation, which incorporates meteorological forecast 
data from the MET. This integrated approach ensures a comprehensive 
and accurate assessment of precipitation and evapotranspiration, which 
is crucial for effective irrigation planning and management.
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simulated and expected tree growth, based on actual growth data 
collected at the site, was calculated and input into the system for the 
next day’s irrigation (d=n+1).

Figure 6

System Flow for the Proposed RL-Irr

RESULTS AND DISCUSSION

This section compares the irrigation volume between SMB-Irr, rain-
fed, and RL-Irr. In this study, the actual tree growth data were gathered 
on-site using the SMB technique for irrigation. The soil type was 
sandy clay loam, and the soil moisture threshold for the SMB was set 
to 35 percent based on the soil field capacity standard for sandy clay 
loam soil (RainMachine, 2018). If the current soil moisture fell below 
the threshold value, irrigation would be initiated for a few minutes 
until the moisture reaches the set threshold.

Tree Growth

AQUACROP evaluates irrigation efficiency using biomass values 
proportional to tree height, as shown in Equation (1). Weekly 
tree growth data were collected for trees at D13, A1 and A3. The 
AQUACROP model was calibrated to match tree growth using the 
rain-fed irrigation method practiced on-site. Since the AQUACROP 
model is unavailable for durian, calibration was necessary to ensure 
the model accurately reflected tree growth (Ismail et al., 2015). The 
study then simulated the suggested irrigation methods using the 
calibrated AQUACROP model to assess their effectiveness. Figures 6 
to 9 show the tree growth pattern from November 2020 to December 
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The flowchart in Figure 6 above illustrates the proposed RL-Irr system. 
On the first day (d=1), the system assessed the soil tension using the 
current soil moisture value, tree growth, previous irrigation volume, 
rain prediction from the MET website and calculated 
evapotranspiration based on forecasted weather data from the MET 
website. The system then calculated the Rewards using the formula 
from Equations 6 to 9. Q-Learning for all possible actions (irrigation 
volume) was calculated and updated in the Q-table. Then, the system 
simulated irrigation using AQUACROP and observed the simulated 
tree growth from the simulation output. The variance between the 
simulated and expected tree growth, based on actual growth data 
collected at the site, was calculated and input into the system for the 
next day’s irrigation (d=n+1). 
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This section compares the irrigation volume between SMB-Irr, rain-
fed, and RL-Irr. In this study, the actual tree growth data were gathered 
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2023. Weekly measurements were taken at three farm sub-blocks: 
D13, A3, and A1. Sub-blocks D13 and A3 consisted of five terraces 
of different elevations, each with 10 to 20 trees, totalling 100 trees 
per sub-block. Sub-block A1 consisted of one terrace with 10 trees. 
Since tree growth was nearly identical on each terrace, the average 
growth per terrace was used in this study instead of individual tree 
measurements.

Figure 7

Tree Height from Week 1 (November 2020) to Week 113 (March 2023)

Figure 8

Tree Girth from Week 1 (November 2020) to Week 113 (March 2023)
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Figure 8 
 
Tree Girth from Week 1 (November 2020) to Week 113 (March 2023) 
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Figure 9

Tree Height Growth Rate from Week 1 (November 2020) to Week 113 
(March 2023)

Figure 10

Tree Girth Growth Rate from Week 1 (November 2020) to Week 113 
(March 2023)
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Figure 10 
 
Tree Girth Growth Rate from Week 1 (November 2020) to Week 113 
(March 2023) 
 
 

 

 
 
The trees were transplanted at heights of 1 to 1.5 meters in Week 1. 
Figures 7 and 8 display the growth metrics, specifically tree height and 
girth, for three sub-blocks (D13, A1, and A3) from Week 1 (November 
2020) to Week 113 (March 2023). Figure 7 illustrates tree height in 
centimetres on the y-axis and the week number on the x-axis. The trees 
exhibited a steady increase in height from the beginning, with the 
growth rate represented by the slope of the curve. The curve follows a 
sigmoidal pattern, typical of biological growth, with an initial slow 
phase, rapid growth and a slowdown as the trees matured. Sub-block 
D13 consistently exhibited the highest growth throughout the period, 
followed closely by A1, while A3 exhibited significantly lower 
growth. Figure 8 shows the trunk girth of the trees in millimetres (mm) 



690        

Journal of ICT, 23, No. 4 (October) 2024, pp: 667-707

The trees were transplanted at heights of 1 to 1.5 meters in Week 1. 
Figures 7 and 8 display the growth metrics, specifically tree height 
and girth, for three sub-blocks (D13, A1, and A3) from Week 1 
(November 2020) to Week 113 (March 2023). Figure 7 illustrates 
tree height in centimetres on the y-axis and the week number on 
the x-axis. The trees exhibited a steady increase in height from the 
beginning, with the growth rate represented by the slope of the curve. 
The curve follows a sigmoidal pattern, typical of biological growth, 
with an initial slow phase, rapid growth and a slowdown as the trees 
matured. Sub-block D13 consistently exhibited the highest growth 
throughout the period, followed closely by A1, while A3 exhibited 
significantly lower growth. Figure 8 shows the trunk girth of the 
trees in millimetres (mm) on the y-axis, plotted against the week 
number on the x-axis. As tree height increased, the trunk girth also 
grew over time. All sub-blocks showed an increase in trunk size, with 
sub-block D13 exhibiting the most significant increase, followed by 
A1 and A3, similar to the height growth trend. These results suggest 
that soil conditions at D13 positively impacted tree growth. The 
consistent growth across all blocks indicates that the care provided 
was effective, adhering to the farm’s standard operating procedures, 
including proper irrigation and nutrient supply (Zakaria, 2020).

Figures 9 and 10 illustrate tree height and girth growth rates for D13, 
A1, and A3 from Week 1 (November 2020) to Week 113 (March 2023). 
Figure 6 displays the weekly growth rate of tree height in centimetres. 
The height growth rates for all sub-blocks vary significantly each 
week, showing spikes and drops. This variability is likely due to 
environmental and biological factors, such as inconsistent weather 
and nutrient and water uptake variations. The growth rates for each 
sub-block were inconsistent throughout the monitoring period, which 
is typical for open-field farming, where environmental factors affect 
tree growth (Cocozza et al., 2021). 

Additionally, Figure 10 indicates the weekly increase in tree girth, 
measured in millimetres (mm). The girth growth rates were generally 
lower than the height growth rates, which is typical of biological 
growth patterns. The girth growth rates were more consistent, with 
less fluctuation than height growth. Both height and girth growth were 
affected by weather, environmental changes, resource availability, and 
the trees’ natural biological cycles. Trees in sub-block D13 showed 
higher growth peaks in both height and girth compared to those in A1 
and A3. Despite using the same procedures for all trees, the trees in 
D13 responded better, indicating more favourable growth conditions.
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Irrigation Volume

The farm utilised a rain-fed irrigation method, supplying 30 litres of 
water to the trees on days with no rain or less than 5 mm of rainfall. 
The growth of the trees based on this irrigation method is depicted in 
Figures 7 and 8. Additionally, Figure 11 displays the monthly total of 
days with less than 5 mm of rain, indicating when 30 litres of water 
were applied, using data from the farm’s weather station.

Figure 11

Total Days of Rain with Less Than 5mm on the Farm

Based on the analysis of rainfall frequency, the farm required irrigation 
almost every day. In March 2023, there was the highest amount of 
rainfall, with only three days out of 30 receiving less than 5mm of 
rain. On the other hand, January 2023 experienced the least amount 
of rain, with all 31 days having less than 5mm of rain daily. A single 
weather station represented the entire farm area. When the rainfall 
was less than 5mm, each sub-block received 30 litres of irrigation, 
effectively tripling the total irrigation volume for D13, A1, and A3 
combined.

Figures 12 to 14 illustrate the daily irrigation volume using SMB-
Irr and RL-Irr for all terraces. Despite each sub-block having five 
terraces, the irrigation volume applied to the trees was consistent 
across all terraces within each sub-block.
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Based on the analysis of rainfall frequency, the farm required irrigation 
almost every day. In March 2023, there was the highest amount of 
rainfall, with only three days out of 30 receiving less than 5mm of rain. 
On the other hand, January 2023 experienced the least amount of rain, 
with all 31 days having less than 5mm of rain daily. A single weather 
station represented the entire farm area. When the rainfall was less than 
5mm, each sub-block received 30 litres of irrigation, effectively 
tripling the total irrigation volume for D13, A1, and A3 combined. 
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Figure 12

Irrigation Volume Using SMB-Irr and RL-Irr for D13

Figure 13

Irrigation Volume Using SMB-Irr and RL-Irr for A1
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Figures 12 to 14 illustrate the daily irrigation volume using SMB-Irr 
and RL-Irr for all terraces. Despite each sub-block having five terraces, 
the irrigation volume applied to the trees was consistent across all 
terraces within each sub-block. 
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Figure 13 
 
Irrigation Volume Using SMB-Irr and RL-Irr for A1 
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Figure 14

Irrigation Volume Using SMB-Irr and RL-Irr for A3

Figures 12 to 14 display the daily water usage for irrigation in litres 
for three sub-blocks (D13, A1 and A3) from November 2020 to March 
2023. The data compares two irrigation methods: SMB-Irr (based on 
soil moisture) and RL-Irr. Both methods exhibited daily variations 
influenced by rainfall, temperature, evapotranspiration and the needs 
of the trees over the three years. Water usage fluctuated, with some 
days requiring significantly more water, indicating the necessity for 
adaptive irrigation strategies. RL-Irr used less water overall compared 
to SMB-Irr across all sub-blocks. RL-Irr did not perform irrigation 
on several days, such as November 3, 2020, September 15, 2021, 
and various days in October 2021, November 2021, December 2021, 
May 2022 and December 2022. On the other hand, SMB-Irr showed 
sudden increases in irrigation when soil moisture was low, but such 
occurrences were rare in RL-Irr. RL-Irr accounted for additional 
factors to determine the specific amount of water needed each day. 
Figures 15 to 17 illustrate the cumulative weekly irrigation volume 
for each terrace, and Table 2 compares the total irrigation volumes of 
SMB-Irr and RL-Irr with the measured rain-fed method.
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Figures 12 to 14 display the daily water usage for irrigation in litres for 
three sub-blocks (D13, A1 and A3) from November 2020 to March 
2023. The data compares two irrigation methods: SMB-Irr (based on 
soil moisture) and RL-Irr. Both methods exhibited daily variations 
influenced by rainfall, temperature, evapotranspiration and the needs 
of the trees over the three years. Water usage fluctuated, with some 
days requiring significantly more water, indicating the necessity for 
adaptive irrigation strategies. RL-Irr used less water overall compared 
to SMB-Irr across all sub-blocks. RL-Irr did not perform irrigation on 
several days, such as November 3, 2020, September 15, 2021, and 
various days in October 2021, November 2021, December 2021, May 
2022 and December 2022. On the other hand, SMB-Irr showed sudden 
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Figure 15

Cumulative Irrigation Volume for Trees at D13

Figure 16

Cumulative Irrigation Volume for Trees at A1
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increases in irrigation when soil moisture was low, but such 
occurrences were rare in RL-Irr. RL-Irr accounted for additional 
factors to determine the specific amount of water needed each day. 
Figures 15 to 17 illustrate the cumulative weekly irrigation volume for 
each terrace, and Table 2 compares the total irrigation volumes of 
SMB-Irr and RL-Irr with the measured rain-fed method. 
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Cumulative Irrigation Volume for Trees at D13 
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Figure 16 
 
Cumulative Irrigation Volume for Trees at A1 
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Figure 17

Cumulative Irrigation Volume for Trees at A3

Table 2

Total Irrigation Volume for All Sub-blocks Calculated Using Different 
Irrigation Strategies

Irrigation Method Irrigation Volume (litres)
D13 A1 A3 Total

Rain-fed 18840 18840 18840 56520
SMB-Irr 6731 6161 7862 20754
RL-Irr 4704 4290 5606 14600

The graphs illustrate the cumulative weekly irrigation volume for trees 
at sub-blocks D13, A1 and A3 over a period of 113 weeks. Each graph 
compares three irrigation methods: rain-fed, SMB-Irr and RL-Irr. The 
X-axis represents the number of weeks, while the Y-axis shows the 
cumulative volume of irrigation water in litres.

The rain-fed method indicated the highest cumulative irrigation 
volume across all three sub-blocks, with a consistent increase in 
water usage over time. The SMB-Irr method used a moderate amount 
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Cumulative Irrigation Volume for Trees at A3 
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of water, with its cumulative volume steadily rising but remaining 
below the rain-fed method throughout the period. Notably, the RL-Irr 
method demonstrated the lowest cumulative irrigation volume for all 
sub-blocks, increasing much slower than the other two methods. The 
RL-Irr method consistently used the least water over the 113 weeks 
for all sub-blocks, indicating that RL-Irr is the most water-efficient 
method among the three, offering substantial water savings while 
maintaining adequate irrigation.

Based on Table 1, the RL-Irr method uses approximately 75.03 
percent, 77.23 percent and 70.24 percent less water than the rain-fed 
method for sub-blocks D13, A1 and A3, respectively, with a total 
percentage difference of about 74.16 percent. Similarly, RL-Irr uses 
approximately 30.13 percent, 30.39 percent and 28.72 percent less 
water than the SMB-Irr method for sub-blocks D13, A1 and A3, 
respectively, with a total percentage difference of about 29.68 percent. 
This indicates that RL-Irr is significantly more water-efficient than the 
other two methods across all sub-blocks.

The RL-Irr system is highly effective and uses less water consistently 
in all sub-blocks. If RL-Irr can meet the trees’ water needs while 
maintaining their growth, it could be a more sustainable irrigation 
method that conserves water, especially in water-scarce regions or 
during droughts. Using RL-Irr instead of SMB-Irr could significantly 
reduce water usage, lower irrigation costs and lessen the strain on 
water supplies, particularly in large-scale agriculture.

Tree Height Comparison with Rain-fed, SMB- Irr and RL- Irr 
Strategies

Tree growth section demonstrates that measuring tree girth may be 
less significant due to the minimal changes observed. Consequently, 
comparisons are made based on the tree heights of sub-blocks D13, 
A1 and A3 to validate the outcomes of the irrigation strategies.
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Figure 18

Simulated Tree Height for Trees Sub-block D13 Using the AQUACROP 
Model with Different Irrigation Strategies

Figure 19

Simulated Tree Height for Trees Sub-block A1 Using the AQUACROP 
Model with Different Irrigation Strategies
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Figure 19 
 
Simulated Tree Height for Trees Sub-block A1 Using the AQUACROP 
Model with Different Irrigation Strategies 
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Figure 20

Simulated Tree Height for Trees Sub-block A3 Using the AQUACROP 
Model with Different Irrigation Strategies

Figures 18 to 20 illustrate the impact of different irrigation techniques 
on tree growth over a period of 113 weeks. The growth from rain-
fed irrigation was used as a benchmark. The AQUACROP model was 
adjusted to match the growth of rain-fed trees. The data indicates that 
the tree growth AQUACROP simulated closely matched the rain-fed 
growth. The trees showed a progressive increase in height over time. 
The figures demonstrate that different irrigation methods and rain-fed 
conditions resulted in similar growth patterns, with the lines closely 
overlapping. The rain-fed trees exhibited steady growth that closely 
mirrored the growth of trees using SMB-Irr and RL-Irr methods. The 
proximity of the lines in each figure suggests that various irrigation 
methods and rain-fed conditions led to similar tree heights after 
the monitoring period. The growth curves illustrate that irrigation 
technologies and natural rainfall contributed similarly to the trees’ 
growth. This is further illustrated in Figures 21 to 23.
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Figure 21

Simulated Tree Height Growth Rate for Tree Sub-block D13 Using the 
AQUACROP Model with Different Irrigation Strategies

Figure 22

Simulated Tree Height Growth Rate for Tree Sub-block A1 Using the 
AQUACROP Model With Different Irrigation Strategies
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methods and rain-fed conditions led to similar tree heights after the 
monitoring period. The growth curves illustrate that irrigation 
technologies and natural rainfall contributed similarly to the trees’ 
growth. This is further illustrated in Figures 21 to 23. 
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Figure 22 
Simulated Tree Height Growth Rate for Tree Sub-block A1 Using the 
AQUACROP Model With Different Irrigation Strategies 

 
Figure 23 
Simulated Tree Height Growth Rate for Tree Sub-block A3 Using the 
AQUACROP Model With Different Irrigation Strategies 
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Figure 23

Simulated Tree Height Growth Rate for Tree Sub-block A3 Using the 
AQUACROP Model With Different Irrigation Strategies

The figures compare the growth rates of tree heights in sub-blocks 
D13, A1 and A3 using three different irrigation methods: rain-
fed, SMB-Irr, and RL-Irr. Rain-fed serves as the baseline, SMB-Irr 
supplies water when soil moisture falls below 25%, and RL-Irr uses 
a Reinforcement Learning algorithm to optimise water usage. In 
sub-block D13, there is a significant increase in growth under RL-Irr 
towards the end of the observed period. Similarly, sub-blocks A1 and 
A3 also show fluctuations with peaks in growth under both SMB-Irr 
and RL-Irr. Overall, the RL-Irr method generally resulted in higher 
growth rates than rain-fed and SMB-Irr, indicating better optimisation 
of water usage for improved growth. However, the effectiveness of 
RL-Irr varied across different trees, likely due to individual tree health 
and conditions. In sub-block A3, RL-Irr occasionally showed the 
highest growth rate peaks, especially towards the end of the observed 
period. Across all sub-blocks, RL-Irr sometimes optimised water 
amounts to significantly boost growth by leveraging past and current 
data to predict and apply the most beneficial irrigation schedule, thus 
avoiding over- and under-irrigation.
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Table 3

Statistical Analysis for Rain-fed, SMB-Irr and RL-Irr for Tree Growth 
(mm)

Mean (m) (mm) Standard Deviation (s) (mm)
Sub-block D13 A1 A3 D13 A1 A3
Rain-fed 2.47 2.46 2.51 1.84 1.87 1.35
SMB-Irr 1.89 1.88 1.92 1.20 2.10 1.41
RL-Irr 2.41 2.36 2.46 1.60 2.19 1.54

Table 3 shows a statistical comparison of tree growth under three 
different irrigation methods: rain-fed, SMB-Irr, and RL-Irr. The 
analysis revealed noticeable differences in the performance of tree 
growth. The rain-fed shows relatively consistent growth across all 
sub-blocks, with mean values of 2.47 mm, 2.46 mm and 2.51 mm, 
respectively, and standard deviations ranging from 1.35 mm to 1.87 
mm. SMB-Irr exhibits lower mean growth values of 1.89 mm, 1.88 
mm and 1.92 mm, with varying levels of consistency, with the lowest 
standard deviation in sub-block D13, which is 1.20 mm and higher 
variability in sub-block A1, which is 2.10 mm. RL-Irr demonstrates 
higher mean growth values closer to rain-fed, which is at 2.41 mm, 
2.36 mm, and 2.46 mm, but with slightly higher standard deviations 
than SMB-Irr, indicating moderate consistency. Overall, RL-Irr 
combines near-optimal growth performance identical to rain-fed with 
a moderate level of variability, suggesting that it offers a balanced 
approach to achieving high growth and maintaining consistent results 
across different sub-blocks.

This study’s results demonstrate the RL-Irr system’s efficiency in 
optimising water usage for durian trees while maintaining growth 
performance. RL-Irr consistently reduced water consumption 
compared to traditional rain-fed and SMB-Irr methods. Specifically, 
RL-Irr achieved a water savings of up to 74.16 percent compared 
to rain-fed irrigation and approximately 29.68 percent compared to 
SMB-Irr across all sub-blocks. These findings highlight the potential 
of RL-Irr for water conservation and saving.

In addition, the simulation results indicate that tree growth under 
RL-Irr was comparable to that under rain-fed and SMB-Irr methods. 
Figures 18 to 23 show that tree height and girth growth patterns were 
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similar across all sub-blocks, despite the reduced irrigation volume 
in the RL-Irr system. This suggests that RL-Irr can maintain optimal 
tree growth while using less water, providing a balanced solution for 
sustainable irrigation.

The implications of these results are notable for agriculture, particularly 
in durian cultivation, where efficient water management is critical. 
The RL-Irr system could be widely adopted to improve irrigation 
efficiency, reduce water costs, and promote sustainable farming 
practices. Since the RL-Irr parameters were calibrated using site-
specific data, replicating the system in diverse locations with varying 
soil types and climates is recommended to enhance its robustness. 
Future studies should also consider including a larger sample of trees 
and different terrains to further refine the algorithm’s sensitivity and 
overall effectiveness.

CONCLUSION

This study applied Reinforcement Learning Irrigation (RL-Irr) to 
irrigate durian trees grown in an open area. The amount of water 
given to the trees was adjusted daily based on the trees’ current 
growth rate, soil tension, previous irrigation volume, rain forecast, 
and evapotranspiration forecast. This approach differs from traditional 
irrigation methods, as irrigation was fine-tuned daily by adjusting 
the RL-Irr rewards to ensure a precise water supply to the trees. The 
AQUACROP model was used to simulate tree growth under various 
irrigation volumes, and its feedback was utilised to adjust the reward 
system in the RL-Irr algorithm for subsequent irrigation schedules.

When comparing RL-Irr with rain-fed (practised on the farm) and 
SMB-Irr, RL-Irr proved to be more efficient, effectively hydrating 
the trees while reducing water consumption. This suggests that RL-
Irr can maintain optimal tree growth while conserving water, making 
it an ideal solution for sustainable agriculture. Adaptive irrigation 
systems like RL-Irr offer a way to address water wastage, particularly 
in regions facing water scarcity, and help combat the challenges posed 
by climate change.

The study was conducted in Malaysia, where 120 trees (2.5% of the 
total 4,800 trees on the farm) were used. As RL-Irr parameters, such 
as weather data, are site-specific, replicating this system in different 
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regions with varying weather and soil conditions is recommended 
to improve its robustness. Future studies should consider testing 
the algorithm with more trees across varying terrains to enhance 
sensitivity. While the results provide valuable insights into adaptive 
irrigation, they are based on model assumptions and should be further 
validated through real-world applications.
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