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ABSTRACT

The Sine-Exponential (Sine-E) distribution is a probability distribu-
tion that combines the periodic behavior of the sine function with the
decay characteristic of the exponential function. This study addresses
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the problem of identifying the most accurate and reliable estimation
method for the parameter of the Sine-E distribution. The objective is
to evaluate various parameter estimation techniques, including Maxi-
mum Likelihood Estimation (MLE), Least Squares Estimation (LSE),
Weighted Least Squares Estimation (WLSE), Maximum Product of
Spacing Estimation (MPSE), Cramer-von-Mises Estimation (CVME),
and Anderson-Darling Estimation (ADE), using Mean Square Error
(MSE) as the criterion for determining the technique with the mini-
mum error. The study’s findings reveal that as sample size increases,
the parameter estimates for all techniques converge to the true param-
eter value, with decreases in bias, MSE, and mean relative estimates.
Among the techniques evaluated, the MPSE method consistently pro-
vides estimates closest to the true parameter value and exhibits the
least bias and lowest MSE across small, moderate, and large sample
sizes, making it the best estimator for the Sine-E distribution.

Keywords: Sine-Exponential Distribution, Maximum Product, Cra-
mer-von-Mises, Anderson-Darling, Mean Square Error.

INTRODUCTION

Sine-Exponential (Sine-E) is of great importance in statistical mod-
eling despite its shortcomings in terms of constant failure rate and
memoryless condition. It stands among the most utilized models. Ar-
eas of its applicability include but are not limited to reliability theory,
queuing theory, population growth, radioactive decay, and the amount
of medicine in the bloodstream. Sine distribution is probability dis-
tribution based on a portion of the sine curve. The sine distribution
is capable of fitting multimodal datasets. In order to achieve a better
model of extending the capacity of distribution with the inability to
model multimodal, the sine family was introduced by Kumar et al.
(2015) with its probability density function (pdf), cumulative distri-
bution function (cdf), and other mathematical properties. Thereafter,
Isa et al. (2022) explored the sine family of distribution to extend the
exponential distribution. Maximum likelihood was adopted to esti-
mate the parameter, and the breaking stress of the carbon fiber dataset
was adopted to justify the model’s flexibility. However, no inference
about the model parameter was presented. Authors who extend the ex-
ponential distribution include Adepoju et al. (2023), Gul et al. (2023),
Balogun et al. (2021), Bello et al. (2020, 2021), Ibrahim et al. (2020a),
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Ibrahim et al. (2020b), Kajuru et al. (2023), and other extended distri-
bution include Isa et al. (2023) and Adepoju et al. (2024).

Researchers employed inferential techniques to study the various
methods that provide estimates of model parameter(s). These tech-
niques are employed in simulation studies and are also adopted in
real-life applications. The Cetinkaya (2022) studied the generalized
fiducial inference for the shape parameters of the Chen distribution.
Simulation and application using datasets were conducted to prove
that the generalized fiducial inference performs better than the other
estimators for the shape parameters of the Chen distribution. Mean-
while, Adepoju et al. (2024) compared six techniques for estimating
Type I Half Logistic Topp-leone Exponential distribution through
simulation, and the Maximum Product of Spacing Estimation (MPSE)
technique proved to be better for estimating the model. Migdadi et al.
(2023) focused on inference for power Rayleigh distribution parame-
ters via Bootstrap, Likelihood, and Bayesian estimation methods. No-
tably, simulation studies and real-life applications of these methods
were considered to examine the performance of the estimates by vari-
ous estimators. The results revealed that both interval and point esti-
mates are efficient and capable of estimating the model parameters,
with Bayesian as the most preferred method for point and interval
estimates under the General Entropy GE loss function. At the same
time, Anabike et al. (2023) introduced the Zubair-Exponential model.
Simulation studies using various classical approaches and Bayesian
methods were conducted. Accordingly, the model was applied to the
survival times of Guinea pigs using various estimation methods, and
the model’s efficacy was demonstrated.

Other articles that explored various estimation techniques for distinct
models include Hassan et al. (2023), Alotaibi et al. (2023), Yilmaz et
al. (2021), Adepoju, Usman et al. (2021), Adepoju, Isa et al. (2021),
ZeinEldin et al. (2019), Warsono et al. (2019), Cheng and Amin
(1979), Anderson and Darling (1952), Macdonald (1971), and Swain
et al., (1988), to name a few.

This article aims to investigate the behavior of various estimators of
Sine-E model parameters using different classical techniques. The
techniques considered in this article are the Maximum Likelihood
Estimation (MLE), Least Squares Estimation (LSE), Weighted Least
Square Estimation (WLSE), MPSE, Cramér—von Mises Estimation
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(CVME), and Anderson-Darling Estimation (ADE). The motivation
for this study lies in the consistency and efficiency assessment of
the model parameter’s estimators for Sine-E distribution at different
parameter values across the sample sizes.

ESTIMATION TECHNIQUES

This section introduced the cdf and pdf of the Sine E Distribution and
various techniques of estimation of the model parameter

Fsio i (x;a)zsin(%(l—e_m)j (1

b
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fon-r (5:) 2 [ 2 ( )j 2)
Maximum Likelihood Estimation (MLE)

MLE is a popular technique for parameter estimation. The technique
will be considered among other techniques for estimating the
parameters of the Sine-E model. Now, consider a random sample
X, where i =1,...,n obtained from the Sine-E distribution parameterized
Wlth a .The 10g—11ke11h00d function L (‘P) of equation (2) can be obtained
as

L(¥)= mlog(szrmloga azx +Zlog005(2(1—6_ax(’))j 5

Differentiating L(‘P)in equation (3) with respect to and setting the
result to zero will provide the estimators. Thus,

5L Zx Zm: tan (f (1 —e 0 )j =0 )
i—0 2 -

Least Square Estimation (LSE)
The LSE technique is explored in this study. The LSE of the Sine-E
distribution with parameter & can be obtained by minimizing the

equation (5) with respect to the parameter. The LSE function can be
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Thus, the LSE can be obtained by differentiating the equation [5] with
respect to the parameter & and setting the result to zero

5LSE 25: o {Sm( ( -ax(i))j_ i }:0 (6)

m+1

where ¢ = 5 7
More details are provided by Swain et al (1988).

Weighted Least Square Estimation (WLSE)

Another technique is the WLSE. Now, the WLSE of the Sine-E

distribution parameter ¢ is obtained by minimizing the equation below
with respect to parameter «« The WLSE function can be defined as

WLSE, = i %J{%E (x(,-);a)— ml_FJ (8)

i=1

b

2 ey REEE)
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ot 2248 { i(m+1-1) || 2(1 ¢ ()) m+1 )

i=1

where fi(a is defined in equation (7). More details are provided’ by
Swain et al (1988).

Maximum Product of Spacings Estimates (MPSE)

The MPSE technique is another vital technique introduced by Cheng,
etal. (1979). The MPSE estimate of the Sine-E distribution parameter
can be obtained by maximizing the equation below with respect to the
parameter:

m+l1

=—Zlog (10)
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where
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Thus, the MPS,, estimate is obtained by differentiating the equation
(10) with respect to the parametee where Fg, ( Xiy> ) is the cdf of
the Sine-E distribution defined in (1)

Cramér-von-Mises Estimates (CVME)

The CVME technique is another vital estimation technique that was
considered in this study. The concept of this technique is to minimize
the function in equation (11) with respect to parameter & .The CVME
distance function for Sine-E distribution can be expressed as

1 & 2i-1T
VM, = +Z[FSM (x:@)- }
i=1

2m

. 2
=L+ sin( (1— _W))j—zl_l
12m “5 2 2m |

Thus, the estimate of the Sine-E distribution parameter using the
CVM technique can be obtained by differentiating the equation (11)
with respect to « .and setting the result to zero.

5CVM 22( {sm( ( e“x)j—zé_l} =0 (12)

m

(11)

where &, ,-(a) is defined in (7). More details are provided by Macdonald
(1971).

Anderson—Darling Estimation (ADE)

The ADE technique is also considered in this study. Applying the
ADE technique for the Sine-E distribution parameter ¢ .
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Thus, the estimates can be easily obtained by differentiating equation
(13) with respect to « . and setting the results to zero.

(13)

m
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where ¢ is defined in equation (7) and

Details are provided by Anderson and Darling. (1952)

SIMULATION STUDY

Now, the performance of the MLE, LSE, WLSE, MPSE, CVME, and
ADE are investigated for the Sine-E distribution parameter through
a simulation study while considering 10,000 replications. Data were
generated with different sample sizes (10, 30, 50, 75, 100). The
estimates, bias, Mean Square Error (MSE), and mean relative estimate
were obtained by R software. Thus, it is obtained as follows.

Table 1

Estimates of Various Estimation Techniques for Parameter Lambda = 0.5

n MLE LSE WLSE MPSE CVME ADE

10 0.5559 0.5383  0.5349  0.4966 0.5469 0.5337
30 0.5206 0.5180  0.5165 0.4932  0.5210 0.5159
50 0.5077 0.5057  0.5051  0.4893 0.5075 0.5046
75 0.5030  0.5010  0.5008  0.4896 0.5022 0.5006
100 0.5043 0.5021  0.5023  0.4936 0.5031 0.5021
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Table 2

Bias of Various Estimation Techniques for Parameter Lambda = 0.5

n MLE LSE WLSE MPSE CVME ADE

10 0.0559  0.0383 0.0349 -0.0034  0.0469  0.0337
30 0.0206  0.0180 0.0165 -0.0068  0.0210  0.0159
50 0.0077  0.0057 0.0051 -0.0107  0.0075  0.0046
75 0.0030  0.0010 0.0008 -0.0104  0.0022  0.0006
100 0.0043  0.0021 0.0023 -0.0064  0.0031  0.0021

Table 3

Mean Square Error of Various Estimation Techniques for Parameter
Lambda = 0.5

n MLE LSE WLSE MPSE CVME ADE

10 0.0354 0.0438 0.0406 0.0259  0.0452 0.0345
30 0.0090 0.0121 0.0110 0.0077  0.0123 0.0102
50 0.0045 0.0061 0.0054 0.0042  0.0061 0.0052
75 0.0029 0.0038 0.0035 0.0029  0.0039 0.0034
100 0.0023 0.0030 0.0027 0.0022  0.0030 0.0026

Table 4

Mean Relative Estimates of Various Estimation Techniques Lambda = 0.5

n MLE LSE WLSE MPSE  CVME ADE

10 0.2660 0.2908 0.2803 0.2418  0.2942  0.2664
30 0.1473 0.1671 0.1590 0.1411  0.1680  0.1552
50 0.1044 0.1214 0.1145 0.1036  0.1216  0.1130
75 0.0844 0.0972 0.0922 0.0852  0.0973  0.0913
100 0.0758 0.0863 0.0818 0.0755  0.0864  0.0813

Table 5

Estimates of Various Estimation Techniques for Parameter Lambda = 1.5

n MLE LSE WLSE MPSE CVME ADE

10 1.6676 1.6150 1.6047 1.4897  1.6407 1.6011
30 1.5618 1.5539 1.5495 1.4796  1.5630 1.5477
50 1.5231 1.5170 1.5153 1.4680 1.5224 1.5138
75 1.5090 1.5029 1.5025 1.4687  1.5066 1.5018
100 1.5129 1.5064 1.5068 1.4809  1.5092 1.5062
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Table 6

Bias of Various Estimation Techniques for Parameter Lambda = 1.5

n MLE LSE WLSE MPSE CVME ADE

10 0.1677  0.1150  0.1047 -0.0103 0.1407  0.1011
30 0.0619  0.0539  0.0495 -0.0204 0.0630  0.0477
50 0.0231 0.0170  0.0153  -0.0320 0.0224  0.0138
75 0.0090  0.0029  0.0025 -0.0313 0.0066  0.0018
100 0.0129  0.0064  0.0068 -0.0191 0.0092  0.0062

Table 7

Mean Square Error of Various Estimation Techniques for Parameter
Lambda = 1.5

n MLE LSE WLSE MPSE CVME ADE

10 0.3190 0.3942 0.3652 0.2332  0.4066  0.3108
30 0.0809 0.1088 0.0991 0.0696  0.1107  0.0921
50 0.0402 0.0546 0.0487 0.0380  0.0551  0.0470
75 0.0264 0.0346 0.0313 0.0261  0.0348  0.0306
100 0.0207 0.0268 0.0243 0.0201  0.0269  0.0238

Table 8

Mean Relative Estimates of Various Estimation Techniques Lambda = 1.5

n MLE LSE WLSE MPSE CVME  ADE

10 0.2660 0.2908 0.2803 0.2418  0.2942  0.2664
30 0.1472 0.1671 0.1590 0.1410  0.1680 0.1552
50 0.1043 0.1214 0.1145 0.1036  0.1216  0.1130
75 0.0844 0.0972 0.0922 0.0851 0.0973  0.0913
100 0.0758 0.0863 0.0818 0.0755 0.0864 0.0813

Table 9

Estimates of Various Estimation Techniques for Parameter Lambda = 3.5

n MLE LSE WLSE MPSE CVME ADE

10 3.8912  3.7682 3.7442  3.4760 3.8282 3.7358
30  3.6443 3.6258 3.6155 3.4524 3.6471 3.6113
50  3.5539  3.5397 3.5356  3.4251 3.5524 3.5321
75  3.5210 3.5068 3.5058  3.4268 3.5153 3.5043
100 3.5301 3.5150 3.5158  3.4556 3.5214 3.5146
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Table 10

Bias of Various Estimation Techniques for Parameter Lambda = 3.5

n MLE LSE WLSE MPSE CVME ADE

10 0.3913 0.2682  0.2442  -0.0240  0.3282 0.2358
30 0.1444  0.1258  0.1155 -0.0476  0.1471 0.1113
50 0.0539  0.0397  0.0356 -0.0749  0.0524 0.0321
75 0.0210  0.0068  0.0058  -0.0732  0.0153 0.0043
100 0.0302  0.0150  0.0158  -0.0444  0.0214 0.0146

Table 11

Mean Square Error of Various Estimation Techniques for Parameter
Lambda = 3.5

n MLE LSE WLSE MPSE  CVME ADE

10 1.7368  2.1464 1.9884 1.2697  2.2139 1.6920
30 0.4406  0.5924 0.5393 0.3787  0.6026 0.5012
50 0.2188  0.2974 0.2649 0.2067  0.3002 0.2559
75 0.1442  0.1885 0.1704 0.1420  0.1895 0.1665
100 0.1130  0.1460 0.1321 0.1094  0.1466 0.1298

Table 12

Mean Relative Estimates of Various Estimation Techniques Lambda = 3.5

n MLE LSE WLSE MPSE CVME ADE

10 0.2660  0.2908 0.2803 0.2417 0.2942  0.2664
30 0.1472  0.1671 0.1590 0.1410 0.1680  0.1552
50 0.1043  0.1214 0.1145 0.1033 0.1216  0.1130
75  0.0844  0.0972 0.0922 0.0848 0.0973  0.0913
100 0.0758  0.0863 0.0818 0.0751 0.0864  0.0813

Table 13

Estimates of Various Estimation Techniques for Parameter Lambda = 10.5

n MLE LSE WLSE MPSE CVME ADE

10 11.6738 11.3047 11.2326 10.4264 11.4846  11.2075
30 10.9331 10.8774 10.8466 10.3553 10.9412  10.8339
50 10.6617 10.6190 10.6068 10.2719  10.6571  10.5963
75 10.5631 10.5203 10.5175 10.2845 10.5460  10.5129
100 10.5905 10.5449 10.5475 10.3639  10.5643  10.5437
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Table 14

Bias of Various Estimation Techniques for Parameter Lambda = 10.5

n MLE LSE WLSE  MPSE CVME ADE

10 1.1738  0.8047 0.7326  -0.0736  0.9846  0.7075
30 0.4331  0.3774 0.3466  -0.1447 0.4412  0.3339
50 0.1617  0.1190 0.1068  -0.2281  0.1571  0.0963
75 0.0631  0.0203 0.0175  -0.2155 0.0460  0.0129
100 0.0905  0.0449 0.0475  -0.1361  0.0643  0.0437

Table 15

Mean Square Error of Various Estimation Techniques for Parameter
Lambda = 10.5

n MLE LSE WLSE MPSE CVME ADE

10 15.6311 193177 17.8954 11.4254  19.9247 15.2282
30 3.9657 53318  4.8541  3.4048 5.4237  4.5110
50 1.9694 2.6769 23845  1.8552 2.7016  2.3034
75 1.2980 1.6963 1.5338  1.2707 1.7052  1.4988
100 1.0169 1.3137 1.1889  0.9748 1.3196  1.1683

Table 16

Mean Relative Estimates of Various Estimation Techniques Lambda
=105

n MLE LSE WLSE MPSE CVME ADE

10 0.2660 0.2908 0.2803 0.2407 0.2942 0.2664
30 0.1473 0.1671 0.1590 0.1396 0.1680 0.1552
50 0.1044 0.1214 0.1145 0.1013 0.1216 0.1130
75 0.0844 0.0972 0.0922 0.0819 0.0973 0.0913
100 0.0758 0.0863 0.0818 0.0714 0.0864 0.0813
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Table 19

Best Parameter Estimation Techniques Based on the Simulation
Studies Across All the Fixed Values of the Parameter

rank 10 30 50 75 100
¥ MPSE MPSE MPSE MPSE MPSE
2nd MLE MLE MLE MLE MLE
3 ADE ADE ADE ADE ADE
4 WLSE WLSE WLSE WLSE WLSE
5t LSE LSE LSE LSE LSE
6" CVME CVME CVME CVME CVME

DISCUSSION OF RESULTS

Tables 1-16 are illustrations of a simulation study conducted. The
six techniques (MLE, ADE, CVME, MPSE, LSE, and WLSE) are
explored in this article. On the other hand, Tables 1, 5, 9, and 13 reveal
various estimates for the Sine-E parameters across the six techniques
explored at different fixed values of the parameter. Estimations of
estimation techniques approach the true value of the parameters as the
sample size increases. Meanwhile, Tables 2, 6, 10, and 14 illustrate the
biases of the different techniques explored at different fixed values of
the parameter, and one can deduce that the biases reduce as the sample
size increases. At the same time, Tables 3, 7, 11, and 15 illustrate
the MSE. The MSE values decay as the sample sizes increase at
different fixed values of the parameter. Notably, it is evidenced that
the mean relative estimates of different estimation techniques decay
as the sample sizes increase. This is portrayed in Tables 4, 8, 12, and
16. Accordingly, it is evident from the results that the six estimators
possess consistency property.

CONCLUSION

Conclusively, all estimators’ bias and MSE values decay as sample
size increases, justifying improved accuracy in Sine-E distribution
parameter estimation. As the parameter value increases, the bias
and MSE increase, indicating lower precision at the high parameter
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value. However, as the parameter value decreases, the bias and the
MSE decrease, indicating higher precision at lower parameter values.
Nevertheless, the MPSE stands as the best estimator of the Sine-E
distribution across various sample sizes and at the given parameter
value, followed by MLE.
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