UUM Repository | Universiti Utara Malaysian Institutional Repository
FAQs | Feedback | Search Tips | Sitemap

Improving accuracy metric with precision and recall metrics for optimizing stochastic classifier

M., Hossin and M.N., Sulaiman and N., Mustpaha and R.W., Rahmat (2011) Improving accuracy metric with precision and recall metrics for optimizing stochastic classifier. In: 3rd International Conference on Computing and Informatics (ICOCI 2011), 8-9 June 2011, Bandung, Indonesia.

Download (194kB) | Preview


All stochastic classifiers attempt to improve their classification performance by constructing an optimized classifier.Typically, all of stochastic classification algorithms employ accuracy metric to discriminate an optimal solution.However, the use of accuracy metric could lead the solution towards the sub-optimal solution due less discriminating power.Moreover, the accuracy metric also unable to perform optimally when dealing with imbalanced class distribution. In this study, we propose a new evaluation metric that combines accuracy metric with the extended precision and recall metrics to negate these detrimental effects.We refer the new evaluation metric as optimized accuracy with recall-precision (OARP). This paper demonstrates that the OARP metric is more discriminating than the accuracy metric and able to perform optimally when dealing with imbalanced class distribution using one simple counter-example.We also demonstrate empirically that a naïve stochastic classification algorithm, which is Monte Carlo Sampling (MCS) algorithm trained with the OARP metric, is able to obtain better predictive results than the one trained with the accuracy and FMeasure metrics.Additionally, the t-test analysis also shows a clear advantage of the MCS model trained with the OARP metric over the two selected metrics for almost five medical data sets.

Item Type: Conference or Workshop Item (Paper)
Additional Information: ISBN 978-983-2078-49-4 Organized by: UUM College of Arts and Sciences, Universiti Utara Malaysia.
Uncontrolled Keywords: optimized classifier, optimal performance, stochastic classification algorithm
Subjects: Q Science > QA Mathematics > QA76 Computer software
Divisions: College of Arts and Sciences
Depositing User: Mrs. Norazmilah Yaakub
Date Deposited: 07 Apr 2015 06:57
Last Modified: 07 Apr 2015 06:57
URI: http://repo.uum.edu.my/id/eprint/13629

Actions (login required)

View Item View Item