mailto:uumlib@uum.edu.my 24x7 Service; AnyTime; AnyWhere

The Comparison between Standardized Mortality Ratio, Poisson-Gamma and Stochastic Sic Model for Pneumonia Disease Mapping in Malaysia

Mohd Diah, Ijlal and Aziz, Nazrina (2022) The Comparison between Standardized Mortality Ratio, Poisson-Gamma and Stochastic Sic Model for Pneumonia Disease Mapping in Malaysia. Journal of Information and Communication Technology, 21 (4). pp. 549-570. ISSN 2180-3862

[thumbnail of JICT 21 04 2022 549-570.pdf]
Preview
PDF - Published Version
Available under License Attribution 4.0 International (CC BY 4.0).

Download (2MB) | Preview

Abstract

Pneumonia is one of the primary causes of death from infectious diseases. Traditionally, its spread has been tracked based on the total number of cases reported, with no concern for geographical distribution. Disease mapping is among the ways public health and the government can monitor diseases as a preventative strategy. Clear pictures of the risk areas can be seen using this method. Relative risk estimation is a significant part of disease mapping that needs to be considered when studying disease occurrence. This paper aimed to estimate the relative risk values for pneumonia based on three models and compare the results. The approaches used in this study were Standardized Morbidity Ratio (SMR), Poisson-gamma, and discrete time-space stochastic Susceptible-Infected-Carriers (SIC) models, which were applied in estimating the relative risk values. Results showed that Kuala Lumpur was classified as a very low-risk area for pneumonia incidence when using the SMR and Poisson-gamma models. In contrast, Selangor was identified as a very low-risk area when using the discrete time-space stochastic SIC model. Putrajaya was categorised as a very high-risk area in the results of all three types of methods. In conclusion, this stochastic SIC model demonstrated better performance than the conventional models.

Item Type: Article
Uncontrolled Keywords: Disease mapping, Poisson-gamma, pneumonia, SIC model, SMR
Subjects: Q Science > QA Mathematics
Divisions: School of Computing
Depositing User: Mrs Nurin Jazlina Hamid
Date Deposited: 24 Jan 2023 06:14
Last Modified: 09 Feb 2023 03:25
URI: https://repo.uum.edu.my/id/eprint/29110

Actions (login required)

View Item View Item